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Abstract—This paper presents three conclusions about the
description of protocols, based on extensive experience: (1)
Informal methods are inadequate for widely used protocols.
(2) Lightweight formal methods are easy and useful. (3) Infor-
mal natural language cannot be trusted, but natural-language
paraphrases of formal language can be trusted for certain
purposes. None of these conclusions will be new or surprising
to participants in this workshop. The purpose of this paper is to
provide new, specific, and relevant evidence for these conclusions,
in the hopes that researchers can use this evidence to justify their
methods and influence the thinking of others.

I. INTRODUCTION

In this paper, “description” refers to all the ways peo-
ple communicate about protocols. “Specifications,” which are
expected to be formal and complete, are only one kind of
description. “Documentation” is another kind of description,
with the connotation of being informal, but yet complete. The
discussion of a protocol in a research paper is a third kind of
description that is seldom complete.

This paper presents three conclusions about the use of
formal languages for describing protocols, based on extensive
experience. None of these conclusions will be new or sur-
prising to participants in this workshop. The purpose of this
paper is to provide new, specific, and relevant evidence for
these conclusions, in the hopes that researchers can use this
evidence to justify their methods and influence the thinking of
others.

The first conclusion (Section II) is that purely informal
methods are inadequate for widely used protocols. The second
conclusion (Section III) is that a formal description can be
useful even if it falls far short of the “gold standard” of a
complete formal specification that has been verified correct by
means of an automatically checkable proof. These conclusions
require no further introduction.

The third conclusion (Section IV) concerns the distinction
between two kinds of natural language: the normal everyday
kind, and language that is a paraphrase of a formal description.
While the former can never be trusted as a protocol descrip-
tion, the latter, for many purposes, can.

Much of Section IV is a cautionary tale about the use of
everyday natural language to describe a protocol in a research
paper. This tale should have the effect of making researchers
extremely careful if they attempt such a thing.

The positive side of Section IV, for researchers who do
use formal descriptions for rigorous protocol engineering, is
its endorsement of natural-language paraphrases. This is im-
portant because many researchers face the following dilemma.
They wish to publish their results in venues where they will
be noticed by people who design and use protocols. (This is

more valuable than publishing in venues dedicated to formal
methods, where the audience can appreciate the results but not
use them.) The papers get poor reviews in practical venues,
however, because the unfamiliar formalism makes them seem
out-of-scope, not self-contained, and just too hard to read.

This seemingly insurmountable obstacle could be overcome
if: (1) paper writers would include natural-language para-
phrases of everything that they state formally, and (2) paper
readers could be convinced that, for purposes of reading and
understanding an applied-research paper, a natural-language
paraphrase of a formal description is almost as good as the
formal description itself. With this mutual understanding, an
applied-research paper based on a formal protocol description
could be self-contained, even for readers who skip the formal-
ism entirely.

The fundamental purpose of Section IV is to make para-
phrases credible and thereby promote this mutual understand-
ing between writers and readers, which may be the only way
to get the right people interested in technology that can help
them.

II. INFORMAL METHODS ARE INADEQUATE
FOR WIDELY USED PROTOCOLS

A. The Session Initiation Protocol (SIP)

SIP is the dominant protocol for IP-based voice and multi-
media applications, and has been standardized by the Internet
Engineering Task Force (IETF). In keeping with the IETF
philosophy of standardization based on “rough consensus and
working code,” it is described primarily in informal English.

The baseline description of SIP is 268 pages long [1].1 Even
when it was written, this document was not self-contained.
Now that the protocol has been used extensively and extended
frequently, its description (as of 2009) consists of 142 docu-
ments totaling tens of thousands of pages [3].

There is ample evidence that this description is not suitable
for a protocol that is so widely used. The rest of this section
contains some of this specific evidence.

The main reason for standardizing protocols is so that
hardware and software produced by different equipment ven-
dors will interoperate. If the standard is adequate, then all
equipment compliant with the standard will be guaranteed to
interoperate with all other such equipment. Yet for many years
SIP interoperation was achieved only by twice-yearly “bake-
offs.” A bake-off was an event at which engineers from various
vendors gathered in one room, with all their equipment, to test
and re-program until their equipment interoperated on the test
cases.

1This document replaced the original SIP standard [2].
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People who use a protocol should be able to refer to its
description to answer questions about the protocol. I am a
member of a research group that develops tools and technology
for SIP applications. Even for baseline SIP, we spend many
hours trying to get the answers to simple questions such
as, “Can a protocol endpoint in state S send a message of
type m?” We search the document for clues, and argue their
meanings like Biblical scholars. We rarely achieve certainty.
Examination of SIP discussion forums indicates that we are
not the only ones in this situation.

Regardless of how it is described, a protocol should be
consistent. SIP experts worry that SIP’s many extensions have
introduced inconsistencies, and are well aware that inconsis-
tencies could survive the existing documentation and standard-
ization process. In fact, their fears are well founded. Even
two of the earliest extensions, reliable provisional responses
[4] and the update transaction [5], can cause violations of
fundamental assumptions of the protocol [6].

A widely used protocol should not be unnecessarily com-
plex. Each capability should be generalized as much as is
reasonable and convenient, in preference to adding new ca-
pabilities that accomplish similar and overlapping goals.

The most important piece of SIP is the invite transaction,
a three-way handshake allowing two endpoints to set up and
negotiate the parameters of a set of media channels between
them. The early extensions of reliable provisional responses
[4] and the update transaction [5] serve the same function
as the invite transaction, in different but overlapping circum-
stances. The cost of these extensions is considerable. They
require five new message types, and create inconsistencies
as reported above. A simplified model of the correct use of
reliable provisional responses alone requires 11 states and 15
state transitions [6].

Yet with the addition of a single Boolean flag to the mes-
sages of the invite transaction, all of this additional complexity
could be avoided, and all media-control functions could be
performed with invite transactions alone [7]. As with detection
of inconsistencies, informal description obscures the protocol
and interferes with recognition of generalizations and other
insights.

B. The Chord ring-maintenance protocol
In contrast to the wide industrial deployment of SIP, the

ring-maintenance protocol for the Chord distributed hash ta-
ble may be chiefly of interest to researchers. However, the
interest is great—as of March 2011, according to Citeseer, the
conference paper introducing Chord [8] is the fourth-most-
referenced paper in computer science. Also, this paper just
won the 2011 SIGCOMM Test-of-Time Award.

The protocol is described in the Chord papers in the form of
very brief pseudocode [8], [9], [10]. Although this pseudocode
appears to be more formal than natural language, it is incom-
plete in comparison to most formal descriptions in lacking
types, preconditions, exceptions, and realistic definitions of
distributed operations. Most importantly, it has no formal
semantics and is not subject to any form of automated analysis.

This description is not sufficient, even for research purposes.
This section contains two specific examples of its insufficiency.
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Fig. 1. How a Chord network with one node grows to two.

A study of the properties and correctness of the protocol
reveals many problems with it, ranging from fundamental to
easily fixable [11]. Reviewers of this work have said, “. . .
many of the problems they identify are actually fixed by going
through the process of implementation,” and “. . . I am not
sure that implementers of DHTs are not already aware of most
of the issues.” These statements may be true, but if so, none
of the changes are documented in the public record.

More seriously, Chord is known for its fast and analyzable
performance [10], [12]. In general, Chord performs well
because its ring-maintenance operations are asynchronous and
loosely coupled (see below), but this is exactly the characteris-
tic that causes it to be incorrect and therefore unreliable [11].
It seems extremely likely that if implementers have altered the
protocol to make it more correct, then they have also degraded
its performance. It is misleading to claim a beneficial change
without also acknowledging its harmful side-effects. Without
better description of the protocol that is being implemented, a
discussion of the trade-offs cannot take place.

Figure 1 illustrates some of the most basic concepts of the
protocol. The solid arrows represent successor pointers, while
the dotted arrows represent predecessor pointers. In an early
state, a network has one node (here with identifier 1) whose
successor and predecessor point to itself. In the left snapshot,
a node 3 has joined the early network.

In the transition from the left to middle snapshot, node 3
stabilizes and notifies. The result in this case is simply to move
node 1’s predecessor pointer to 3.

In the transition from the middle to right snapshot, node 1
stabilizes and notifies. In the stabilization operation, it acquires
its successor’s predecessor, which is 3. Because 3 is a better
successor to node 1 than 1, node 1 adopts 3 as its successor.
In the notification operation, node 1 notifies its new successor
3 that node 1 is now its predecessor.

Note that a sequence like this is the only way that a Chord
ring of size one can ever become a Chord ring of size two.
Note also that no notion of atomicity applies. Each stabiliza-
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tion is scheduled independently by its initiating node, at fixed
intervals rather than upon the occurrence of some triggering
event. Each stabilization is followed by a notification, with
some unspecified delay.

Several papers have studied Chord implementations with
model checking, among them [13]. This paper reports that
the techniques applied were successful in discovering the
following invariant: “A node’s predecessor is itself if and only
if its successor is itself.” Given that the middle snapshot in
Figure 1 shows a necessary stage of unknown duration, the
protocol studied in [13] cannot be the documented Chord
protocol. This leaves us wondering what changes were made,
why they were made (unless they were due to accidental
misunderstanding), and how the two protocols relate to each
other.

III. LIGHTWEIGHT FORMAL METHODS
ARE EASY AND USEFUL

Lightweight modeling is constructing abstract formal models
of key concepts. These formal descriptions tend to be small
and incomplete. Lightweight analysis is investigating the prop-
erties of formal models with tools based on exhaustive enu-
meration, so that analysis is “push-button,” and yields results
with little human effort. This section offers two examples of
lightweight modeling languages and their analyzers.

A. Promela and Spin

We have built many models of SIP in the language Promela,
with varying purposes and scopes [6], [14], [15], [16], and
analyzed them with the model checker Spin [17].

The structure of our models is deliberately kept simple. Each
protocol endpoint is a finite-state machine with a few major
states. Minor state information is maintained in variables with
Boolean or enumerated types. In each major state, there is a
list of applicable guarded commands. Each command has a
predicate (guard) true if a message might be received in that
state or might be sent in that state. If a message might be
received, the corresponding command defines the endpoint’s
immediate response to it (which might include sending other
messages or updating local state). If a message might be sent,
the corresponding command sends the message and updates
local state.

There are assertions within the guarded commands, but only
for one specific reason. They document the expected values
of the minor state variables when a message is received in a
major state.

Model checking verifies that these models do not deadlock,
that they are complete in the sense of describing every message
that can be received in every state, and that all parts of
the model are necessary, i.e., reachable. The techniques for
performing this verification are simple and push-button [6].
There is no attempt to verify more abstract properties of
the protocol, mostly because no such properties have been
proposed.

The models are very incomplete, because almost all of the
information in the many large message fields allowed by SIP is
removed by abstraction. Many messages are represented only

Caller CalleeCallee Caller
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inv200
inv200,offer

ack,answer
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Fig. 2. Race conditions arise when messages going in the same or opposite
directions cross in transit.

A Controller B
| (1) INVITE no SDP | |
| <-------------------------- | |
| (2) 200 offer1 | |
| --------------------------> | |
| | (3) INVITE offer1 |
| | -------------------------> |
| | (4) 200 answer1 |
| | <------------------------- |
| | (5) ACK |
| | -------------------------> |
| (6) ACK answer1 | |
| <-------------------------- | |
| (7) RTP | |
| . . . . . . . . . . . . . . . . . . . . . . . . . . . . .|

Fig. 3. Because the IETF standard for message-sequence charts shows
instantaneous message delivery, race conditions appear to be impossible.

by their types. In messages that carry descriptions of media
sessions [18], the complex session descriptions are mapped to
the enumerated values offer and answer, indicating their role
in offer/answer negotiation of the details of media sessions.
We retain this information so that we can check consistency
with respect to offer/answer negotiation.

Because of their simplicity, the models are easy to read and
maintain. Yet they are complete enough to provide our group
with useful everyday documentation.2 We have also used them
to generate automatically a large number of test cases [16].

Analysis of the models also allows us to discover un-
known properties of SIP. One instance is the inconsistencies
mentioned in Section II-A. Another instance concerns race
conditions.

In protocols, a race condition occurs when two messages
cross in transit, either going the same direction (Figure 2 left)
or different directions (Figure 2 right). Either kind of race can
happen in SIP, especially when SIP messages are sent via UDP
at the transport level.3

Many SIP documents use message-sequence charts to show
particular common scenarios. These charts are rendered in
ASCII by means of IETF macros, and look like Figure 3.
Note that these charts represent message transmission as
instantaneous, so that race conditions are impossible. Not
surprisingly, SIP race conditions are not well documented, and
their handling is incompletely standardized.

2Because of the uncertainties mentioned in Section II-A, we footnote our
models with the sections in the standard where clues were found.

3SIP messages can use TCP or UDP.
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A SIP document [19], many years in the making, records
7 possible race conditions within the scope of our earliest
models [6]. Our models point to race conditions wherever they
show that a message can be received when it is not expected
or desired. By examining these places in our models, it is
straightforward to find the same 7 race conditions and 42
others.4

B. Alloy and the Alloy Analyzer

The purpose of the Chord protocol is to maintain the ring
structure of the network even though nodes can spontaneously
join, fail, or leave silently. Because the protocol is best under-
stood through the global network properties it holds invariant
and the ideal properties it seeks to restore, it can be described
well in Alloy [20]. The Alloy language is a powerful and
flexible medium for expressing structural network properties.

The description of Chord operations in Alloy is slightly
larger than the original pseudocode, primarily because the
Alloy descriptions include extra information such as precon-
ditions. Unlike the pseudocode, they can be checked with the
Alloy Analyzer to get a complete characterization of their
possible effects on the network state.

For example, Figure 4 shows how the operations as de-
scribed in the pseudocode can allow the cycle to be broken
[21]. The example applies to a network of any size, with the
three snapshots showing only a portion of the network. In the
left snapshot, the node with identifier 10 is joining. It has
reached the same stage as node 3 in the middle snapshot of
Figure 1.

In the middle snapshot, node 10 has failed or silently left the
network. This is represented by the fact that 10 no longer has a
successor pointer. In the transition from the middle snapshot to
the right snapshot, node 6 has stabilized, causing it to change
its successor pointer from 12 to 10. Also, node 12 has detected
that 10 is no longer a member, and has flushed its predecessor
pointer to 10.5

The right snapshot is a state from which a Chord network
might not be able to recover, if it does not have the relevant
redundant successor information (see Section IV) in place at
the right time. Even if it can recover, some information will
be temporarily inaccessible.

These problems can be avoided if node 6 checks, before
discarding its previous successor 12, that the new successor
10 is still a member of the network. This is easily added to
the stabilization operation as a precondition.

This counterexample to the correctness of Chord can be
discovered simply by checking model instances in which
stabilization occurs, to see if a cycle is always present in
the final state of the operation. The problem is detectable
by checking all instances of networks with 2 nodes, or any
number of nodes greater than 2.

4Later documents show that ASCII art for race conditions has been
developed. Otherwise [19] could not have been written.

5The flush is not necessary to break the cycle, as predecessor pointers do
not define the cycle.
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Fig. 4. How the cycle in a Chord network can be broken.

IV. WHICH NATURAL LANGUAGE
YOU CAN AND CANNOT TRUST

Section I explained the need for natural-language descrip-
tion that people can trust for certain purposes, such as un-
derstanding the results in a research paper. The need arises
because the readers who can benefit from the results are
not necessarily the people who can read a particular formal
language with ease.

There is a form of natural language that readers can trust,
namely paraphrases of formal language. This section uses an
example to show the difference between informal language
and paraphrases of formal language.

Returning to Chord, Figure 5 shows a possible well-formed
state of a Chord network. This figure shows successor pointers
as solid arrows, as do Figures 1 and 4. Like node 10 in the
middle of Figure 4, node 18 has no pointers because it is not
a member of the network. It has failed or left the network—
colloquially, it is dead.

To provide robustness in the face of node death, a member
can also have a successor2 pointing to a node other than its
immediate successor. Second successors are shown as dashed
arrows in the figure. Node 2 has just become a member, and
does not have a second successor yet.

A desired invariant of Chord networks has been stated as
follows [10]:

“If v is on the cycle, then v.successor is the first live cycle
node following v.”

This is ordinary or informal English, because it is not based
on a comprehensive underlying formal model.

Consider first the term cycle, which is not rigorously de-
fined, but is clearly meant to include only members, and to
exclude appendages such as node 2. Most readers of [10]
probably assume that the cycle is the subset of members that
can reach themselves by following successor pointers, but with
this definition the network in Figure 5 has no cycle at all.
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Fig. 5. A snapshot of a valid Chord network.

The Alloy model of Chord mentioned in Sections II-B
and III-B defines a node’s best successor as its first live
successor, which may be its first or second successor.6 The
Alloy model defines a cycle member as a node that can reach
itself by following best-successor pointers, expressed in an
Alloy predicate as:

pred CycleMember [n: Node, t: Time] {
n in n.(ˆ(bestSucc.t)) }

The cycle is the set of all cycle members. This definition
successfully captures our intuition, which is that the cycle in
Figure 5 consists of nodes 5, 29, and 40.

With this plausible definition the network does not satisfy
the stated invariant, however, because 5 is in the cycle, and its
successor is neither live nor a cycle node.

Using the formal definitions of cycle and best successor as
a foundation, we can improve the invariant by rewriting it as:

“If v is in the cycle, then v’s best successor is the first cycle
node following v.”

We now turn our attention to the original word “following.”
Following in what sense? If “following” means following
pointers, then the statement is a tautology. If “following”
means following in integer order on node identifiers, then
the invariant is more meaningful but still wrong. The best
successor of node 40 is 5, which does not follow it.

Chord identifiers come from a bounded set of natural
numbers, and the relevant order on these identifiers wraps
around from the highest number to zero. It is not useful to
define “following” in such an order, however, because every
identifier follows (and precedes) every other identifier. A more
useful concept is that of “between,” defined by the following
Alloy predicate:

pred Between [n1,n2,n3: Node] {

6Real successor lists are longer than 2, but two successors are sufficient
for lightweight modeling. Other constraints in the model guarantee that each
member node always has a best successor. The constraints are a deterministic
version of Chord’s probabilistic assumption that successor lists are long
enough to include a live successor, with high probability.

lt[n1,n3] => ( lt[n1,n2] && lt[n2,n3] )
else ( lt[n1,n2] || lt[n2,n3] )

}

The built-in predicate lt is ordinary “less than” on natural
numbers. The predicate between is true if and only if argument
n2 lies between arguments n1 and n3 in identifier order.

The many problems with the original Chord invariant are
not surprising, because it is well known that ordinary infor-
mal natural language works poorly for rigorous description.
Readers are right to distrust it when they find it in a paper.

To get an Alloy definition of the intended invariant property,
we must reformulate it in terms of between (a ternary concept)
rather than following (a binary concept). The result is:

pred OrderedCycle [t: Time] {
let cycle =

{ n: Node | CycleMember[n,t] } |
all disj n1, n2, n3: cycle |

n2 = n1.bestSucc.t
=> ! Between[n1,n3,n2]

}

This predicate is based on the formal definitions of best
successor, cycle member and between. If you don’t understand
the Alloy syntax, its English paraphrase is:

“If n1 and n2 are any two distinct cycle nodes, and n2 is the
best successor of n1, then no third cycle node falls between
them in identifier order.”

This paraphrase can be understood by any computer scien-
tist. Yet all its terms are precisely defined, and its validity has
been established by a great deal of automated analysis. It can
be trusted to be unambiguous, consistent with intuition about
ring networks, and suitable for the purpose of documenting and
conveying some information about the properties of Chord. If
it fails as a description for any reason, everyone has the formal
model to fall back on.

V. CONCLUSION

Despite the maturity of formal description languages and
formal methods for analyzing them, the description of real
protocols is still overwhelmingly informal. The consequences
of informal protocol description drag down industrial produc-
tivity and impede research progress, as the experience reported
in this paper demonstrates.

One hears many prejudices from people who design and use
network protocols. These prejudices help to explain and pro-
long the problem of inadequate protocol description. Among
them, some people believe that formal descriptions:

• are difficult to write;
• must be complete (in the sense of covering every aspect

of a protocol);
• must be completely verified as correct, yet cannot be

verified manually because that is too difficult, and can-
not be verified automatically because of computational
complexity;

• are difficult to read;
• are useless unless every potential reader knows the formal

language.



6

This paper has presented evidence from experience with real
protocols that none of these beliefs is necessarily valid. This
evidence also shows how partial models, push-button analysis,
and natural-language paraphrases make formal description of
protocols surpassingly useful and practical.
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