
Understanding SIP Through Model-Checking

Pamela Zave
AT&T Laboratories—Research, Florham Park, New Jersey USA

pamela@research.att.com

4 June 2008

Abstract

In recent years, SIP has become an important and
widely-used protocol for IP-based multimedia ser-
vices. Despite voluminous documentation, there is
only scattered and informal material explaining the
states of the protocol and the events that can occur
in each state. To fill this gap, this paper presents a
Promela model of invite dialogs in SIP. The model
has been verified and validated with the Spin model-
checker. The paper discusses the practical value
of this model, explains some problems in SIP re-
vealed by it, makes recommendations for solutions,
and presents some directions for future work.

1 Introduction

In recent years, SIP has become an important and
widely-used protocol for IP-based multimedia ser-
vices. The SIP standard is documented in many
IETF “Request for Comments” (RFC) documents,
most notably [9]. Although this documentation is
voluminous, its style emphasizes some points of view
over others. One of the least-emphasized viewpoints
is the state-oriented viewpoint, from which a user
agent always has a dynamic protocol state, and in
each protocol state some events can happen and some
cannot.

To give an example of what a state-oriented view-
point contains, the RFC on reliable provisional re-
sponses [8] says, “The UAS MUST NOT send a sec-
ond reliable provisional response until the first is ac-
knowledged.” In other words, this state-oriented con-
straint says that in the UAS state of having sent a
first provisional response, and not having received an
acknowledgment of it, the UAS cannot send a provi-
sional response.

As this example shows, state-oriented information
is often present, but it is informal, scattered, and
incremental. As an inevitable consequence of being
informal, scattered, and incremental, it is incomplete.

The purpose of this paper is to improve the doc-
umentation of SIP by working toward state-oriented
documentation that is formal, centralized, and com-
plete. A necessary part of producing such documen-
tation is to find the places where the standards doc-
uments are incomplete or erroneous, and to fix these
problems. This paper reports on five such problems,
and recommends changes that will eliminate them.
The documentation is primarily intended for peo-

ple who build applications using SIP. A good state-
oriented formal model of SIP would have many other
uses in addition to that of user documentation, how-
ever. For example, the model could also serve as:
† a new technical viewpoint that might suggest im-
provements and best practices;

† a basis for checking proposed new extensions to
SIP, to prevent inconsistencies and other problems;

† a basis for modeling network elements, such as
proxies and back-to-back user agents;

† an aid to conformance and interoperability check-
ing of SIP implementations.
To serve these purposes well, a model should be

written in a language that is not only formal, but
subject to automated analysis. Promela is a language
for finite-state modeling of concurrent processes. It
is well-suited to this modeling task for two reasons.
First, the scope of the study is limited to aspects of
SIP that can be expressed conveniently in Promela.
Second, Promela models can be validated and veri-
fied using the model-checker Spin [3]. As subsequent
sections will show, Spin provides “push button” ver-
ification of a large number of relevant properties of
the model.
In related work, Bishop et al. provided a more

complete and formal specification of TCP and UDP
than was available in RFCs [1]. They were interested
in all aspects of the behavior of these protocols, which
necessitated the use of a wider-spectrum language,
namely higher-order logic (HOL). HOL’s automated
support is a theorem prover, which is a powerful tool
but unfortunately requires a great deal of time and
skill to wield productively.

1

This paper reports on a first attempt to construct
a state-oriented formal model of SIP. As such, it is
inevitably limited in scope. Section 2 delimits what
is and is not included.

Section 3 summarizes the formal methods used in
this work. It gives a brief overview of model-checking,
then explains the specification, verification, and val-
idation techniques used on the model.

Section 4 presents the full SIP model, up to the
scope given in Section 2. Section 5 presents two al-
ternate models with slightly different properties. The
paper concludes with recommendations and plans for
future work.

2 Scope of the modeling

In this paper, all the models contain a SIP user agent
on the client side (UAC) and a SIP user agent on the
server side (UAS), modeled as concurrent processes.
These processes communicate with each other only
by sending and receiving messages.

As stated in Section 1, the primary purpose of the
models is to assist builders of applications. For this
reason, the chosen level of abstraction is that of the
“transaction user” as defined in Section 17 of [9], and
many phenomena that occur at lower levels of the
SIP stack are not included. These phenomena include
transaction timeouts, retransmissions, absorption of
some messages, and 100(Trying) messages. As a con-
sequence, in the view of the models, transactions are
reliable.

The models document SIP for a transaction user by
representing everything that a transaction user can
do while complying with the standards, and nothing
that would violate the standards. Because no behav-
ior of the models is erroneous, the models do not con-
tain any handling of errors introduced by transaction
users.

The primary focus of modeling is the control of
media sessions. Thus the models include the of-
fer/answer negotiation of media sessions, but are lim-
ited to covering only dialogs created by invite re-
quests. Subscribe and refer requests can also create
dialogs, but these requests are not considered. As
a result, the dialogs in these models cannot be ex-
tended by embedded subscribe and refer dialogs, a
phenomenon that is described in [10].

For purposes of simplicity and efficiency, most re-
quests that are not concerned with media sessions are
omitted. These requests are subscribe and refer, as
noted above, and also register, options, notify, and
message. The exception is the info request, which is
not involved in media session negotiation, but is in-

cluded because of its value for providing extensible
signaling. For example, info requests and responses
are used to control media servers [4].

For purposes of simplicity, a message carries at
most one session description (SDP field). To eval-
uate the significance of this restriction, there is an
example in [2] of a message with two session descrip-
tions, one an offer and one an answer. The offer refers
to an early media session, while the answer refers to
an ordinary media session.

Finally, the models are coarse-grained in the sense
that they usually do not distinguish between different
messages of the same type. Thus most aspects of SIP
that depend on message fields are not represented.
This is the main reason why this study presents a
narrower view of SIP than [1] does of TCP and UDP.

3 Semantics and analysis

3.1 A brief overview of model-
checking

A Promela model has concurrent processes that com-
municate by sending and receiving messages. Mes-
sages in transit are stored in bounded, FIFO queues.

A model is intended to represent a range of possi-
ble behaviors. For this reason, execution of a model
is highly nondeterministic. Within each process, in
any state, several different steps may be executable.
If there are executable steps in several different pro-
cesses, then there is also a nondeterministic choice
of which process to execute. A trace is the sequence
of steps in one particular execution, so it is the re-
sult of many nondeterministic choices among possible
next steps. A trace can be finite or infinite, because
nonterminating models are valid and correct for some
applications.

Model-checking is a form of analysis that attempts
to explore all possible traces of a model, whether fi-
nite or infinite. It creates a finite state-transition
graph in which each state is a state of the entire model
(all processes and queues), and each transition is a
possible execution step. Thus the entire graph repre-
sents all possible interleavings of executable steps.

A Promela model has a single initial state. A ter-
minal state is one in which there are no possible exe-
cution steps, and thus no outgoing state transitions.
A trace is a path through the state-transition graph,
starting at the initial state. If the trace is finite, the
path eventually ends at a terminal state. If the trace
is infinite, the path loops through the graph forever,
without entering a terminal state.

Often a model checker cannot construct a complete

2

state-transition graph, because the graph is too large.
Because the Spin model-checker is a well-engineered
tool, it offers many ways in which a user can opti-
mize the checking for better results. When the state-
transition graph can be completed, the number of
transitions in it is a measure of the overall complex-
ity of the model.

3.2 Model semantics

The purpose of our models is to describe all possi-
ble user-agent behaviors and how they can affect the
other user agent in a dialog. In each state, the model
should indicate which messages can be sent and which
messages might be received.
These concepts will be illustrated with a very sim-

ple model that is a small fraction of the size of the
real SIP models. To make it simple, the only mes-
sage types are invite, invSucc (any 2xx response to an
invite), invFail (any 3xx-6xx response to an invite),
ack, bye, and byeRsp (any 200 OK response to a bye
message). Furthermore, there are no re-invites. For
this simple model, the UAC and UAS processes are
defined as follows.

proctype UAC() {

bool endedc = false;

reqc!invite;

inviting: do

:: irps?invFail -> goto preEnd

:: irps?invSucc -> sakc!ack;

goto confirmed

:: reqs?bye -> brpc!byeRsp;

goto preEnd

:: brps?byeRsp -> assert(false)

od;

confirmed: do

:: irps?invFail -> assert(false)

:: irps?invSucc -> assert(false)

:: reqs?bye -> brpc!byeRsp;

goto preEnd

:: brps?byeRsp -> assert(false)

:: reqc!bye -> goto byeing

od;

byeing: do

:: irps?invFail -> assert(false)

:: irps?invSucc -> assert(false)

:: reqs?bye -> brpc!byeRsp

:: brps?byeRsp -> goto preEnd

od;

preEnd: endedc = true;

end: do

:: irps?invFail -> assert(false)

:: irps?invSucc -> assert(true)

:: reqs?bye -> brpc!byeRsp

:: brps?byeRsp -> assert(false)

od

}

proctype UAS() {

bool acked = true;

bool endeds = false;

reqc?invite;

invited: do

:: ackc?ack -> assert(false)

:: reqc?bye -> assert(false)

:: brpc?byeRsp -> assert(false)

:: irps!invFail -> goto preEnd

:: irps!invSucc -> acked = false;

goto confirmed

od;

confirmed: do

:: ackc?ack -> assert(!acked);

acked = true

:: reqc?bye -> brps!byeRsp;

goto preEnd

:: brpc?byeRsp -> assert(false)

:: reqs!bye -> goto byeing

od;

byeing: do

:: ackc?ack -> assert(!acked);

acked = true

:: reqc?bye -> brps!byeRsp

:: brpc?byeRsp -> goto preEnd

od;

preEnd: endeds = true;

end: do

:: ackc?ack -> assert(!acked);

acked = true

:: reqc?bye -> brps!byeRsp

:: brpc?byeRsp -> assert(false)

od

}

The expression reqc!invite sends an invite to the
queue reqc, which contains all requests sent by the
UAC. (The other queues and their purposes are dis-
cussed in the next section.) A send expression such
as reqc!invite is always executable unless the queue is
full.
The expression reqc?invite receives an invite from

the queue reqc; it is executable if and only if the queue
is nonempty and the message at its head is an invite.
In each labeled state, the semantics of a do loop
is to choose nondeterministically from among the ex-
ecutable guarded commands (executability is based
only on the executability of the guard), execute the
entire command, and repeat forever. Thus only a
goto causes a change to another labeled state.
For a formal model, both validity and correctness

3

are important. A valid model is faithful to the needs
and assumptions of its human readers. A correct
model conforms to some separate formal specifica-
tion of its intended properties. Because correctness
is a relation between two formal objects, it can be
verified formally, using model-checking or other tech-
niques.
The models in this paper are intended to describe

SIP rather than achieve a particular user goal, so
their external specifications are weak. For the simple
model, the only external specification is that every
dialog should end, and both user agents should agree
that it has ended.
To formalize this property, in the desired end state

of a dialog, the two Boolean variables endedc and
endeds are true. The variables are used in a linear-
time temporal logic formula:

32(endedc = true ^ endeds = true)
This formula is called a stability property, because it
says that in any trace, there is eventually (3) a point
where the variable assertion becomes invariantly true
(2) for the rest of the trace. Spin verifies that the
simple model satisfies this property specification.
There is a much more useful form of specification

for this study, however. Assertions on state variables
can be interspersed with the executable code in the
model. Each such assertion is a specification that, at
the control point where the assertion is written, the
assertion’s predicate must always be true.
For example, the simple model of the UAS sets the

Boolean variable acked to false when it sends an inv-
Succmessage. Wherever in the UAS code an ackmes-
sage is received, an assertion states that acked is false,
and an assignment sets it to true again. The asser-
tions specify formally our expectations about when
acks should and should not arrive. Spin reports any
assertion violation as an error, so complete model-
checking without any such errors is a verification that
all of the assertions are satisfied. The real SIP models
contain a large number of assertions.

3.3 Validity of SIP models

For our purposes, validity is as important as cor-
rectness. The most important aspect of validity is
whether a model agrees with the RFCs, and this can
only be decided by consensus.
Although validity is ultimately an informal prop-

erty, validity in this context has formal aspects that
model-checking can help us with. A valid model
should include no illegal or impossible behavior, and
should represent all legal and possible behaviors in
a clear and obvious way. This raises subtle issues,

because send events cause receive events, send and
receive events create new dialog states, and new dia-
log states create the need to describe the events that
can occur during them. In this formal sense, a valid
model is a “fixed point” that contains all the conse-
quences of its own behavior.

This section presents four formal properties that
contribute to model validity and can be checked,
sometimes with the help of Spin. All the models in
this study were checked for these properties, which
are:

† The behavior of message queues matches what is
possible in implementations.

† Send events are always immediately enabled when
execution control gets to them.

† A message can be received as soon as it arrives.
† The model has no unreachable code.
Each of these characteristics will be discussed in turn.

It is obvious that the behavior of message queues
in the model should match what is possible in im-
plementations. All SIP user agents must implement
both UDP and TCP for signal transport ([9], Section
18). UDP makes no ordering guarantees, so mes-
sages need not arrive in the order they were sent.
Promela queues, on the other hand, are FIFO. To
make their behavior as unconstrained as UDP, it is
necessary to have a separate queue for each message
type in each direction. It is not necessary to worry
about the ordering of different instances of the same
message type, because the models cannot distinguish
between instances.

For example, in this simple model two of the mes-
sage types are ack and byeRsp, and each type has
its own queue. The queues are ackc (for acks from
UAC), brpc (for bye responses from UAC), and brps
(for bye responses from UAS). The model is too sim-
ple to need acks from the UAS.

There can be exceptions to this basic rule when
there is specific information to justify them. For ex-
ample, the SIP standard requires that requests have
sequence numbers so that they are received and pro-
cessed in the same order that they were sent. Because
of this, all the requests in each direction of the dialog
can share a FIFO queue. The queue reqc carries re-
quests from the UAC to the UAS, while reqs carries
requests from the UAS to the UAC.

As another example of an exception, there can only
be one final response in transit in each direction at
a time, so invSucc and invFail events can share the
queue irps (invite response) from UAS to UAC. In
this simple model there are no final responses from
the UAC to invites. This accounts for all the message
queues in the simple model.

The next important validity property is that send

4

events are always immediately executable when ex-
ecution control gets to them. For example, in the
confirmed state of UAC, as soon as reqs?bye, is ex-
ecuted, brpc!byeRsp should be executable. Also, be-
tween execution of any two guarded commands in
the confirmed state, the send event reqc!bye should
always be executable. This characteristic is impor-
tant for validity because this is what a reader of the
model would normally expect and assume.

The only reason that a send might not be exe-
cutable is that its queue is already full. It is awk-
ward to check for blocked sends directly, but there is
an easy indirect way. First, do an exhaustive check of
a model with proposed queue sizes. Then increase the
sizes of all the queues and check again. If the number
of state transitions in the second check is the same as
in the first, then the additional space in the queues
has not added any new behavior to the model. This
proves that the proposed queue sizes are adequate to
prevent blocking of send events. Because the example
model is so simple, all its queue sizes are 1.

The third validity property is that a message can
be received as soon as it arrives. For example, in the
confirmed state of UAS the following receive events
are specified: ackc?ack, reqc?bye, and brpc?byeRsp.
It should not be possible for there to be some other
message waiting in one of the UAS queues to be re-
ceived. If there were, the model would not be giving
the reader a clear and complete description of the
possible next steps.

This property can be achieved simply by construct-
ing the model so that in every user-agent state, there
is a receive event for every message type in every
queue directed to that agent. The model above is
constructed in this way, with the single exception of
invite messages. Each dialog begins with a unique,
single invite, so it is easy to determine by inspection
that no invite can ever be received later.

Finally, the model should have no unreachable or
useless code. Unreachable code deceives the reader
into seeing more behavioral possibilities than there
really are.

In a guarded command, each guard is always tech-
nically reachable because Spin checks to see if it is ex-
ecutable. However, if the guard is never executable,
the entire guarded command is useless. To determine
whether a guard is ever executable in any trace, it is
necessary to put a statement after it in the body of
the command. If the guard is never executable, then
the body of the command is not reachable, which will
be reported by Spin. In the example model, every
guarded command has a body.

For those receive events that we believe are never
executable in any trace, it is convenient to use as-

sert(false) as a body. If that body is ever reached,
Spin reports an error. For example, neither user
agent can receive a byeRsp message in an inviting or
invited state. After a model has been checked com-
pletely, it can be cleaned up for readability by remov-
ing all the guarded commands with assert(false) as
their body.

For those receive events that should be executable
sometimes but require no further action, it is conve-
nient to use assert(true) as a body, because it has no
effect on execution. For example, the UAC can re-
ceive invSucc in its end state, when the order of bye
and invSucc from UAS has been reversed in transit,
but the message comes too late to matter. After a
model has been checked completely and all such bod-
ies are known to be reachable, they can be removed
for readability.

4 Basic model of invite dialogs

The basic model of invite dialogs in SIP is too
large to print in this paper (441 lines without
comments or whitespace). It can be viewed
at http:// www.research.att.com/ »pamela/

sip.html. This section presents its structure and
interesting characteristics.

In addition to the six message types introduced
in Section 3.2, this model uses nine new ones. There
are new request types prack, update, cancel, and info.
Provisional responses are partitioned into unreliable
ones unProv and reliable ones relProv. The 200(OK)
responses to prack and update are named prackRsp
and updSucc, respectively. Finally, the failure re-
sponse to an update (a 491) is named updFail.

The channel partition is similar to that explained
in Section 3.3. There is one channel in each direction
for requests; invSucc and invFail share a channel, as
do updSucc and updFail, for the same reason. All
other message types have their own channels.

4.1 Omissions

A few SIP phenomena are omitted from the model,
for the reasons presented here.

First, responses to cancel requests are not included,
because they are required for transport reliability
only, and make no difference to the transaction user.
This omission may seem a bit strange, because can-
cels can succeed or fail. However, a cancel fails only
when the dialog it is meant to destroy is already gone
(for some other reason). When the canceling UAC re-
ceives notice of failure of the cancel, it has nothing
to do.

5

byeing

canceling

inviting

UAC

invite

invSucc

200(OK)
for cancelbye

cancel

UAS

Figure 1: A scenario in which canceling has no effect.
Labels on the left are UAC states in the model.

It is much more important that a cancel request can
succeed without having the desired effect ([9], Section
9). This scenario is illustrated by Figure 1. As the
figure shows, in the canceling state the UAC responds
to invSucc with bye, because that is the only way to
end the dialog. The 200(OK) response to the cancel
is irrelevant to the UAC at the application level.
Second, a UAS never sends a subsequent relProv

until it has a received a prack for the previous one.
This is recommended by the standard [8], and the
model follows this recommendation.
Third, a user agent does not send update requests

within confirmed dialogs, using re-invites instead.
This is recommended by the standard [6], and the
model follows this recommendation.
Fourth, unreliable provisional responses do not

have SDP fields. It seems clear that reliability is re-
quired for offer/answer exchange, and that reliability
is now available in the form of reliable provisional
responses [8].

4.2 State variables

In addition to having almost the same labeled dialog
states as the simple model in Section 3.2, this model
has a large number of state variables.
Most important of all, the model records each UA’s

current media state in a variable media. The four
possible values of this variable are noFlow (there has
been no offer/answer exchange), offering (this UA
has made an offer but has not yet received an answer),
offered (this UA has received an offer but has not yet
answered), and flow (the most recent offer/answer
exchange is completed). Each message whose type

can ever contain an SDP field contains a value offer,
answer, or none. This value indicates whether the
message is carrying an offer, an answer, or neither,
respectively.
In the UAS, the variable media is initialized to

noFlow. The UAS receives the initial invite message
with the following code:

reqc?invite,sdp;

if

:: sdp != none -> assert(sdp == offer);

media = offered

:: sdp == none; assert(true)

fi;

When the invite is received, the local variable sdp
receives the value of the SDP field in the message.
An if statement in Promela executes exactly one of
its guarded commands (and blocks if no guard is exe-
cutable).1 In this case the if statement is a case state-
ment on whether the received value of sdp is none or
not. If it is not none, then it is an offer, and media is
updated to offered; if it is none, media continues to
have the value noFlow.
As we shall see, the media variable is critical for
understanding the state of a UA, and indispensable
for interpreting received messages, because a UA can-
not tell from syntax alone whether an incoming SDP
field is an offer or an answer. This means that any
correct implementation of a SIP user agent must have
a similar state variable.
In the UAC, there are state variables whose value
is important when the UAC is in the labeled state
inviting, after sending the initial invite and before re-
ceiving a final response to it. One of these variables
is the Boolean dialog, which starts false and becomes
true when the dialog is established. The other invit-
ing state variables are explained in Sections 4.4 and
4.5.3.
In the UAS, there are state variables whose value

is important when the UAS is in the labeled state
invited, after receiving the initial invite and before
sending a final response to it. These variables in-
clude dialog (as in the UAC) and the Boolean relOut.
As mentioned in Section 4.1, reliable provisional re-
sponses are sent sequentially. The variable relOut is
true when there is a relProv outstanding, so when it
is true a relProv cannot be sent. The other invited
state variable is explained in Section 4.4.
Both UAC and UAS have the same variables that

are important in the labeled confirmed state, when
the dialog has been confirmed and not yet torn down.

1In Promela syntax, the arrow separating guard from com-
mand can also be written as a semicolon. The actual models
use semicolons.

6

These variables include the Booleans reInviting and
reInvited, which indicate whether the user agent has
an uncompleted outgoing or incoming re-invite trans-
action, respectively.
When a user agent in a confirmed dialog receives a

re-invite, its reInvited variable becomes true. In the
large do loop that defines a confirmed state in the
UAS, this is one of the guarded commands:

:: reInvited -> reInvited = false;

ackDiff++;

if

:: media == flow -> irps!invSucc,offer;

media = offering

:: media == offered ->

irps!invSucc,answer;

media = flow

:: else -> assert(false)

fi

Whenever reInvited is true, the user agent can choose
to make a final response to the re-invite. The vari-
able can remain true, and the re-invite can remain
pending, for as long as the user agent chooses. This
models the fact that a user agent is not required to
make an immediate response to a re-invite.
There are two other confirmed state variables,

which are explained in Sections 4.5.1 and 4.5.2.
In both user agents, there are variables that keep

track of expected acknowledgments or responses, as
acked does in the simple model. For a request type
that cannot be sent until the last request of that type
has been acknowledged, namely update, the corre-
sponding variable updRsped is Boolean. For request
types that can have multiple responses outstanding,
such as prack, an integer such as prackRspDiff holds
the number of requests sent minus the number of re-
sponses (prackRsps) received.
Finally, because info requests and unreliable provi-

sional responses (unProv messages) are almost com-
pletely unconstrained, a full model might loop for-
ever sending these messages, thereby overflowing the
message queues and blocking sends unexpectedly. To
prevent this, there are Boolean variables infoSent and
unProvSent to limit each user agent to sending at
most one message of each type. This small number
is sufficient because receiving these messages has no
effect on user-agent state; the only purpose of model-
ing them is to document when they can be sent and
received.

4.3 Assertions

Writing and checking assertions is the heart of the
modeling and verification process. Assertions find er-

rors, deepen understanding, and provide reassurance.
In this model, the intention of the assertions is to
elucidate the value of every relevant state variable at
every important point in execution. This can be seen
in the (rather large) guarded command in the UAC
that receives a final invSucc response to the original
invite:

:: irps?invSucc,sdp;

assert(!relProvBuffered); dialog = true;

if

:: media == noFlow;

assert(!initOffering && sdp == offer);

ackc!ack,answer; media = flow

:: media == flow;

assert(!initOffering && sdp == none);

ackc!ack,none

:: media == offering && sdp == none;

assert(!initOffering); ackc!ack,none

:: media == offering && sdp != none;

assert(initOffering && sdp == answer);

ackc!ack,none; media = flow

:: media == offered; assert(false)

fi;

goto confirmed

If this command is executable, then the UAC is in the
inviting state, and the relevant state variables areme-
dia, dialog, sdp, initOffering (the meaning of which
is explained in Section 4.4), and relProvBuffered (the
meaning of which is explained in Section 4.5.3).
If this command is executable, then rel-
ProvBuffered should be false. The initial assertion
guarantees this.
If this command is executable, the dialog may or
may not have been established. If it is not estab-
lished, receiving invSucc establishes it, which we see
in the assignment dialog = true.
If this command is executable, media should not
have the value offered, which would mean that the
UAS had sent an offer to the UAC in an update or
relProv message, and the UAC had not yet responded
to it with an answer. The assert(false) guarantees
that the media state is not offered, and that our un-
derstanding is correct.
The embedded if statement is a case statement on
the value of media (and sometimes whether sdp is
none or not). For each of the reachable cases, there
is an assertion about what the current values of sdp
and initOffering must be. In summary, for each path
through this command, we know by inspection the
final value of each relevant state variable.
It is easy to deduce that, when the UAC enters

the confirmed state, media must be offering or flow.
If you become curious about how its value might be

7

media==

media==flow

inviting

media==flow

 offering

media==flow

confirmed

confirmed

update,offer update,offer

updSucc,answer

updSucc,answer

invSucc,none

UAS

invSucc,none

media==flowmedia==flow

media==
 offering

confirmed

inviting invited

confirmed

media==flow

media==flow

UAC UASUAC

media==flow

invited

Figure 2: Scenarios in which the UAC enters the confirmed state with media == offering.

offering, it is fairly easy to discover from the model
that there are two scenarios in which an update or
updSucc is received by a user agent in the confirmed
state. These scenarios are shown in Figure 2.

In the UAS code that produces the scenarios above,
receiving a successful update and sending its response
are in the same guarded command. They cannot
be separated by the execution of any other guarded
command. This reflects the fact that a user agent is
required to respond to an update immediately, and
contrasts with the modeling of re-invites as presented
in the previous section.

There is a possible scenario very similar to that on
the right side of Figure 2, in which the offer is carried
in a prack and the answer is carried in a prackRsp.

4.4 Reliable provisional responses

Reliable provisional responses can be quite complex
to use. To help clarify them, Figure 3 is a finite-state
machine showing all the ways they can be used to
carry SDP fields.

In each oval state of the figure, the top label is the
current media state of the UAC, while the bottom
label is the current media state of the UAS. In the
final state, the dialog has been confirmed.

It is important to recognize the limitations of this
figure. It is a synchronous model, in which send-
ing and receiving a message are one atomic event.
All messages from the UAS are shown as sent on
the channel uas, while all messages from the UAC
are sent on the channel uac. In reality, there are
many other behaviors in which these send and receive
events are interleaved with other events.

Note that in some states of this machine, the
UAS cannot send invSucc to confirm the dialog, even
though it has received an initial invite request and
has not yet made a final response. The reason is that
there is an offer/answer negotiation in progress that
must be completed first. When the Promela model
is in these states, the UAS’s state variable relOut is
true, and its state variable canSucc is false. After
the UAS receives a prack and sends a prackRsp, its
relOut is false and its canSucc is true.

Another limitation of the figure is that it does not
include relProv messages without SDP, which can be
sent by the UAS whenever relOut is false. The subse-
quent prack and prackRspmessages cannot have SDP,
either. Sending a relProv message without SDP sets
relOut to true (until it is acknowledged) but does not
set canSucc to false.

In the model, neither user agent can send an up-
date message unless its media state is flow. In the
RFC on updates [6], the same constraint is stated
in 31 lines of dense text. This text is attempting
to enumerate all the ways that offers and answers
can be interleaved when carried in initial invites, rel-
Provs, pracks, prack responses, updates, and update
responses. Its purpose is to say that there must have
been an initial offer/answer exchange, and that there
are no offer/answer exchanges in progress, which is
the exact meaning of media == flow.

It is easy to see from Figure 3 that SDP in a relProv
is an answer if and only if there is an unanswered offer
from the initial invite. Because (with fully interleaved
behavior) the UAC cannot infer this from any of its
other state variables, it has a Boolean state variable
initOffering for exactly the purpose of determining

8

flow

flow,
flow

offering,

uac!prack,offering
offered,

offered

flow,

flow

flow,
flow

offered,
offer

offer
uac!prack,

offering

none

uac!ack,answer

uas!prackRsp,none
uas!prackRsp,answer

uas!invSucc,none

answer
uas!invSucc,

none
uac!ack,

uas!invSucc,

answer
uas!relProv,

uac!invite,offeruac!invite,none

answer

uas!relProv,

uas!relProv,offer

offer
uac!prack,

flow,

noFlow,
noFlow

offering,
offered

flow
flow,

noFlow
noFlow,

Figure 3: A synchronous model of reliable provisional responses with SDP.

whether SDP in a relProv is an offer or answer.

A reader might wonder about the following state-
ment in [8], Section 4: “The UAC MAY acknowledge
reliable provisional responses received after the final
response or MAY discard them.” What if the relProv
is important? What if it contains SDP?

Assertions in the model can reassure the nervous
reader. In the confirmed state of the UAC model, we
see the statement:

:: rlps?relProv,sdp -> assert(sdp == none)

Thus model-checking has verified that the late rel-
Prov cannot carry SDP, and can be safely ignored.

4.5 SIP problems

Model checking uncovers some apparent problems
with the standards documents. The model incorpo-
rates work-arounds for all the problems found. This is
necessary because the problems show up as errors in
model-checking. Without the work-arounds, known

errors prevent full model exploration and the discov-
ery of further errors.

4.5.1 Dialog establishment and confirmation

An invite dialog is established by the first provisional
or final success response to the invite ([9], Section
12.1). There is an implicit assumption that if a mes-
sage is part of a dialog, and the message does not
establish the dialog, then the message is received af-
ter the dialog is established in the agent where the
message is received.

In contradiction to this implicit assumption, info
messages from the UAS to the UAC can arrive at the
UAC before the dialog they belong to is established.
This can occur because info messages from the UAS
are requests, the dialog is established by responses
traveling in the same direction, and requests are un-
ordered with respect to responses traveling in the
same direction. In the model, this is simply noted,
and the requests are handled as if the dialog were
established.

9

It is obvious that an invite dialog becomes con-
firmed in a UAC when the UAC receives a final re-
sponse to the initial invite. It is not so easy, however,
to find in [9] whether a dialog becomes confirmed in
a UAS when the UAS sends a final response or when
it receives an ack to it.
This is quite important. For example, Section 14.1

of [9] applies the terms completed, confirmed, and ter-
minated to invite transactions, and uses them to spec-
ify how overlapping re-invite transactions should be
avoided.
These terms are formally defined in Figures 5 and

7 of Section 17 of [9]. According to these figures, on
the UAS side, a failing invite transaction becomes
completed when the final response is sent, and con-
firmed when the ack is received. According to these
figures, a successful invite transaction is never in a
completed or confirmed state, going directly from pro-
ceeding to terminated. The common-sense interpre-
tation is that these figures are wrong with respect to
the definition of these terms, and that completed and
confirmed have the same meanings for both successful
and failing transactions.
To avoid confusion, the UAS model has been de-

scribed as having a labeled state confirmed. In actu-
ality it has a labeled state completed and a Boolean
variable confirmed to represent the state of the ini-
tial invite transaction and therefore the dialog as a
whole.

4.5.2 Re-invites

Figure 4 shows a scenario in which the UAS issues
two re-invites. The first re-invite does not contain an
offer, so the invSucc response contains an offer and
the ack contains an answer.
This scenario is not covered in the RFCs, and it

violates the clear intentions that offer/answer ex-
changes are sequential, and that a successful re-invite
can be processed as soon as it is received. The second
re-invite cannot be processed in the normal manner
because it arrives at the UAC during an unfinished
offer/answer exchange. The second re-invite cannot
fail, because the cause of the invFail will not be un-
derstood by the UAS.
As in the previous section, the cause of the problem

is that there is no enforced ordering on the ack mes-
sage and the second invite request.2 The two were
sent in a proper order, but arrived in the wrong or-
der.
The work-around used in the model is to buffer

the second re-invite until the ack arrives and is pro-

2Although the ack is technically a request, like the invSucc
it bears the sequence number of its invite.

UAS

invite,none

invSucc,offer

ack,answer

invite,
offer

UAC

Figure 4: A scenario with a late acknowledgment to
a re-invite.

cessed, then handle the re-invite. This causes no ad-
ditional problems because a user agent is not required
to respond immediately to the re-invite. The Boolean
state variable reInviteBuffered is true when a re-invite
is buffered in the user agent.

The problem is in fact more general, because
the late acknowledgment could just as easily be a
prackRsp, updSucc, or updFail. However, not all late
acknowledgments are expected to carry answers, so
not all of them require delay. Consequently, the UAC
model diagnoses the condition by the media state
when the re-invite arrives:

:: reqs?invite,sdp ->

assert(!reInviteBuffered && !reInvited);

if

:: reInviting -> irpc!invFail,none

:: !reInviting && media != flow ->

reInviteBuffered = true; bufsdp = sdp

:: !reInviting && media == flow ->

reInvited = true;

if

:: sdp != none -> assert(sdp == offer);

media = offered

:: sdp == none -> assert(true)

fi

fi

If the UAC is not re-inviting when the re-invite ar-
rives, and the media state is anything but flow, then a
late acknowledgment carrying an answer is expected.
After the ack, prackRsp, updSucc, or updFail arrives,
if the media state is flow, then the re-invite is un-
buffered and processed.

10

UAC

update,offer

relProv,offer

updSucc,answer

UAS

Figure 5: A scenario with a late acknowledgment to
an update.

The same can happen within a UAS, but the only
possible type of late acknowledgment is ack.
In the model with its work-around, if a user agent

is expecting an ack message without SDP, the user
agent does not wait for it. When it arrives, it has no
effect on the model state except to enable the user
agent to sent its own re-invites. Thus, in theory, there
could be any number of ack messages with sdp ==
none in transit between the user agents.
To prevent state explosion in the model checking,

the size of channels for ack messages is limited arbi-
trarily to 2. This means that a send of an ackmessage
can actually block. As the blockage is an artifact of
model checking, however, and never causes deadlock,
it seems safe enough.
Because there can be two ack messages in transit,

the model tracks ackDiff, the difference between the
number of invSucc messages sent and acks received.
All of the observations in these last three paragraphs
are equally true of prackRsp messages in the model.

4.5.3 More late acknowledgments

Figure 5 shows a scenario very like Figure 4. In Fig-
ure 5 the dialog is not yet confirmed, and the late
acknowledgment is to an update. The offer could
also have been sent in a prack, in which case the late
answer would have been sent in a prackRsp.
As with the previous problem, the relProv cannot

be processed normally because its offer arrives dur-
ing an unfinished offer/answer exchange. As with the
previous problem, the RFCs do not mention this pos-
sibility.
For both update and prack cases the work-around

is the same, which is to buffer the relProv message.
The Boolean state variable relProvBuffered is true

or
media==flow

media==offering

flow
==

media

offering

media==flow

confirmed

updSucc,answer

updFail,none

ack,none

invSucc,none

or
media==offering

==
confirmedmedia

invite,none
or

invite,offer

UAC UAS

or

update,offer

Figure 6: A scenario with a race between an update
and a re-invite.

when a relProv is buffered.
This is arguably a more serious problem than the
previous one, because buffering a relProv is less de-
sirable than buffering a re-invite. A user agent is
supposed to respond to a relProv message immedi-
ately, while it is allowed to delay its response to a
re-invite.

4.5.4 A race condition

Figure 6 illustrates a race condition between an up-
date and a re-invite. There are actually two scenarios
represented, one in which the re-invite carries SDP,
and one in which it does not. All the top parts of
“or” labels go together in one scenario, while all the
bottom parts of “or” labels go together in another
scenario.
There is no standardized resolution to this race
condition. Yet the UAC cannot process the re-invite
until it receives a response to its update, which will
return its media state to flow whether the update has
succeeded or failed.
The model resolves the race condition with the
same work-around used in Section 4.5.2, which is to
buffer the re-invite until it can be processed.

4.5.5 Another race condition

In an unconfirmed dialog, there can be a race con-
dition between a relProv message with an offer from
the UAS, and an update message from the UAC. The
resolution of this race condition is not standardized.

11

Performance Measure Basic Model FIFO Model Pruned Model
lines of reachable code 404 300 266
state vector (bytes) 200 88 88
depth reached 6,165 1,068 464
state transitions 780,538,240 9,043,855 3,429,348

memory usage (Mbytes) 20,904 308 105
elapsed time (seconds) 4,200 38 13

There is a usual way of resolving race conditions
in SIP. In both re-invite/re-invite races and up-
date/update races, both sides receive an invFail (4xx)
response, then are allowed to retry with differing tim-
ing constraints. This usual approach does not seem
to be available in the case of a relProv/update race,
because a relProv is not a request, and there is no
failure response it.

In the model, the work-around is that the relProv
message always wins the race. In the UAS, the up-
date fails and an updFail response is sent. In the
UAC, the relProv is buffered until updFail is received,
after which the relProv is handled normally.

4.6 Results of model-checking

The Promela model can cycle forever, so unlike the
simple model in Section 3.2, it was not checked for
termination.

The table (left column) shows the performance of
exhaustive search of the state-transition graph on a
Sun Solaris M9000 SMP machine with dual-core 2.4
GHz SPARC processors.

“Lines of reachable code” refers to the size of
the Promela code (without comments or whitespace)
after unreachable code (see Section 3.3) has been
removed for readability. The more-readable ver-
sion of the basic model is also available at http://

www.research.att.com/ »pamela/ sip.html.

“State vector” is the amount of memory required to
represent each state of the model. “Depth reached”
is the number of steps in the longest path through
the graph that does not repeat a state. “State tran-
sitions” is the number of edges in the graph, and is
the best measure of model complexity. The memory
usage was improved by compression, and would have
been 88,896 Mbytes without it.

The elapsed time varies from run to run, so it is
less reliable than the other numbers. The value of
compression in minimizing memory usage seems to
outweigh its time penalty.

5 Alternate models

This section presents two alternate versions of the
basic model. All the models, in both model-checked
and readable versions, are available at http://

www.research.att.com/ »pamela/ sip.html. For
comparison, the table reports their sizes and perfor-
mance numbers.

5.1 The FIFO model

The first four of the five problems with the basic
model all have the same underlying cause: the fact
that SIP messages traveling from one user agent to
the other need not arrive in FIFO order. This is ob-
vious for the first three problems.
It is less obvious for the fourth problem, which

presents itself as a race between messages traveling in
opposite directions, but is nevertheless true. As we
can see in Figure 6, the update and ack from the UAC
arrive out of order. If they could not arrive out of or-
der, then the UAS would receive the update before it
sent the re-invite (which is enabled by receiving ack),
so there would be no race.
The FIFO model removes all these problems by us-

ing only a single Promela channel for all the messages
traveling in one direction.
The FIFO model is smaller than the basic model in

every measure, for two main reasons. First, the work-
arounds required for SIP Problems 1-4 have been re-
moved. Second, FIFO ordering constrains the behav-
ior much more. For example, in most states the FIFO
model can receive fewer different message types.
According to the most important measure, which

is the number of state transitions, the complexity of
the FIFO model is 1.2% of the complexity of the basic
model. Its analysis requires 1.5% of the memory to
analyze the basic model, and 0.9% of the time to
analyze the basic model.
The FIFO model is a faithful representation of an

invite dialog in which each user agent uses a single
TCP connection, or a sequence of TCP connections,
to send messages to the other user agent. It does
not matter whether messages traveling in opposite
directions use the same TCP connection or not. In

12

either case, TCP ensures that the messages in one
direction are received in FIFO order.
A signaling implementation based on UDP, or on

a pool of TCP connections, cannot be guaranteed
FIFO. This will be discussed further in Section 6.2.

5.2 The pruned model

Reliable provisional responses [8] were added to SIP
before update requests [6]. Reliable provisional re-
sponses are sent by the UAS only. So that the UAC
would have some capacity to modify media sessions
before receiving a final response, the RFC on reli-
able provisional responses gives the prack request the
ability to carry an offer, as shown in Figure 3.
Update requests allow a UAC to modify media ses-

sions in an unconfirmed dialog, without waiting to
receive a reliable provisional response to which it
can respond with a prack (provided that the media
state has advanced beyond noFlow). Thus the pres-
ence of updates makes offers in pracks redundant and
their extra complexity unnecessary. In the “pruned”
model, this redundant capability has been removed.
Similarly, any media modification that a UAS

might attempt with an update request could just as
easily be performed by sending a reliable provisional
response (unconfirmed dialog) or a re-invite (con-
firmed dialog). Thus the use of updates by UASs is
redundant and its extra complexity unnecessary. In
the “pruned” model, this redundant capability has
also been removed.
The “pruned” model is the same as the FIFO

model, except for these removals. Based on the num-
ber of state transitions, the complexity of the pruned
model is 38% of the complexity of the FIFO model.
Its analysis requires 34% of the memory to analyze
the FIFO model, and 34% of the time to analyze the
FIFO model. Based on the number of state transi-
tions, the complexity of the pruned model is 0.4% of
the complexity of the basic model.
The significant reduction in complexity caused by

the relatively minor change from the FIFO model to
the pruned model is an excellent demonstration that
the size of the state-transition graph grows exponen-
tially.

6 Recommendations

6.1 Why complexity matters

It seems abundantly clear that modeling and model-
checking SIP is a worthwhile thing to do. The invest-
ment is small compared to the thousands of person-
hours that have been spent on the SIP RFCs. Yet it

reveals previously undiscovered problems, and pro-
vides a useful kind of documentation that is not oth-
erwise available.

It seems almost as clear that the complexity of the
resulting model is significant. Every line of Promela
code represents some case that an application devel-
oper must be aware of and must take into account.
Every state and transition in the state-transition
graph represents behavior that can occur “in the
field” and interact with other layers of network and
software. Finally, if a model becomes too complex
it can no longer be model-checked, given practical
limitations on time and memory.

So far all the SIP models are easy to check on a
powerful machine. However, it is important to re-
member that the models represent only a small subset
of SIP and its interesting component configurations,
and that growth of complexity is exponential.

This argument can be quantified by relying on an
analogy. Another research project [12] entailed mod-
eling and model-checking a new protocol that is sim-
ilar to SIP in its purpose and functions.

In that study, the models fall into two categories.
There are models containing only two user endpoints,
which means that they have the same configuration
as the models in this paper. There are also models
containing two user endpoints with a third process
between them. This third process is analogous to a
back-to-back user agent in SIP.

It is interesting to compare a pair of models in [12],
one from each of the two categories above, with all
other factors in the pair held constant. The jump
from checking endpoints alone to checking endpoints
with a back-to-back user agent causes the number of
state transitions, the memory, and the time to grow
by factors of 800, 300, and 1000, respectively. These
are round numbers obtained by averaging many com-
parisons.

If we apply these numbers to the models here, we
predict that the basic model, extended with a back-
to-back user agent between the UAC and UAS, would
have 620 billion state transitions. Model-checking it
would require 6 terabytes of RAM and 1200 hours, or
the equivalent with virtual memory used and swap-
ping time added.

This is only an analogy. The protocols and models
in the two studies are different (although balanced
in the sense that each has sources of complexity that
the other does not have). Nevertheless, if the analogy
holds at all, model-checking the basic model with a
back-to-back user agent is not practical.

13

6.2 What to do about it

The overall complexity of SIP can be reduced consid-
erably, and the five problems reported in Section 4.5
eliminated, by standardizing the pruned model as the
definition of invite dialogs. This proposal does not
reduce the functionality of SIP in any way.

The most important issue is that of FIFO signal-
ing. Even if we assume that TCP is used for signal
transport, there are many open questions concern-
ing the number of TCP connections within a dialog,
which messages are sent in each, and whether they
are overlapped or sequential in time. This appears
to be a complex issue, with many ramifications for
performance and security [5].

A common interpretation of the recommendations
in [9], Section 18, is that an invite dialog should have
at most two TCP connections at any one time, one
for the transactions initiated by the UAC, and one for
the transactions initiated by the UAS. Unfortunately
this recommendation does not produce FIFO signal-
ing; two messages traveling in the same direction can
still arrive out of order. For example, a request from
the UAS and a response from the UAS both travel
from the UAS to the UAC, but they travel in dif-
ferent connections because the response belongs to
a transaction initiated by the UAC. Categorized by
message types, Section 4.5 describes 7 non-FIFO sce-
narios, of which this recommendation eliminates 5,
leaving 2 still possible.

To repeat the conclusions of Section 5.1, FIFO sig-
naling is guaranteed if all of the messages (not trans-
actions) from one user agent to the other use the
same TCP connection, or a sequence of them (with
no overlapping in time). It would be highly advan-
tageous to the SIP community to settle on some way
of doing this that meets reasonable performance and
security requirements.

The other issues are more straightforward. Current
recommendations that should be strengthened into
requirements, from Section 4.1, are:

† A UAS does not send SDP in unreliable provisional
responses [8].

† A UAS does not send a new reliable provisional
response until it has received a prack from the last
one sent [8].

† A user agent does not send update requests within
confirmed dialogs [6].

The pruned model relies on the following further
changes:

† A prack message does not contain an offer.
† A UAS does not send update messages.
Finally, all the models require a resolution to Prob-

lem 5, which can be summarized as: if there is a race

between a relProv message with an offer from the
UAS, and an update message from the UAC, then
the update always fails.

7 Conclusion

This paper has presented three formal, state-oriented
models of invite dialogs in SIP. It has discussed five
places where the SIP standards are incomplete or er-
roneous, and proposed solutions to all the problems
they cause.

As a final observation on the standards, it has al-
ready been noted that the update RFC [6] recom-
mends using re-invites instead of updates in con-
firmed dialogs. The recommendation is explained as
follows: “This is because an UPDATE needs to be an-
swered immediately, ruling out the possibility of user
approval. Such approval will frequently be needed,
and is possible with a re-INVITE.”

In fact, there is an additional way that re-invites
are more powerful than updates: a re-invite can be
sent with no offer, which requires its recipient to send
an offer in the successful response, if there is one.
There are numerous examples to show that this ca-
pability is an important ingredient in third-party call
control [7, 11].

Most of the scope restrictions in Section 2 do not
seem to compromise the validity and usefulness of the
models presented here. In each case, it is fairly easy
to see how broadening the scope would extend the
models or necessitate a complementary model.

The exception is the carrying of multiple session
descriptions in a single message, as in [2], which com-
pletely invalidates this modeling. The RFCs cited in
this paper contain a large number of constraints con-
cerning when offers can be sent, when answers can
be sent, and which messages they can be sent in (all
of which are reflected in the Promela models). It is
not at all clear how the presence of multiple session
descriptions in a message would interact with these
constraints.

No argument or proposal from a single viewpoint
can be conclusive. Many factors, with many stake-
holders and at many levels of abstraction, affect the
current SIP and its possible futures. Nevertheless,
formal modeling of SIP has proved its value as a
source of relevant information. It should be pursued
as a way of shedding light on other aspects of SIP.

There are many ways that the models could be
improved and exploited in their role as documenta-
tion. For example, the model could be cross-indexed
to RFCs, there could be tools that construct—from a
user’s query—a particular trace allowed by a model,

14

and so forth.
Of all the possible uses for a formal model, the

one worst served by the current technology is check-
ing the conformance of implementations. There are
two problems. First, there must be a suitable for-
mal representation of the implementation that can
be compared to the specification model. Second, even
with such a representation, the scale of the verifica-
tion could be beyond current feasibility (even though
hardware implementations are now routinely veri-
fied).
Bishop et al. dealt with these problems, in their

work on TCP and UDP, by building a special-purpose
checker for captured real-world traces from imple-
mentations [1]. Capturing a trace is a lightweight way
to get a formal representation of an implementation’s
behavior. The checker performs symbolic evaluation
to determine whether a trace satisfies the specifica-
tion. Although the results are limited by the quality
of test coverage, this is a big advance in conformance
technology, and one that might be applicable to SIP.

Acknowledgments

Most of what I know about SIP I learned from my
colleagues Greg Bond, Eric Cheung, Hal Purdy, and
Tom Smith. They are not responsible, however, for
my remaining misconceptions.

References

[1] Steve Bishop, Matthew Fairbairn, Michael Nor-
rish, Peter Sewell, Michael Smith, and Keith
Wansbrough. Rigorous specification and confor-
mance testing techniques for network protocols,
as applied to TCP, UDP and sockets. In Pro-
ceedings of SIGCOMM ‘05. ACM, August 2005.

[2] G. Camarillo. The early session disposition type
for the Session Initiation Protocol (SIP). IETF
Network Working Group Request for Comments
3959, 2004.

[3] Gerard J. Holzmann. The Spin Model Checker:
Primer and Reference Manual. Addison-Wesley,
2004.

[4] JSR 309: Java media server control. Java
Community Process, http:// jcp.org/

aboutJava/ communityprocess/ edr/

jsr309.

[5] R. Mahy, V. Gurbani, and B. Tate. Con-
nection reuse in the Session Initiation Proto-

col (SIP). Internet Draft draft-ietf-sip-connect-
reuse-09, 2008.

[6] J. Rosenberg. The Session Initiation Protocol
(SIP) UPDATE method. IETF Network Work-
ing Group Request for Comments 3311, 2002.

[7] J. Rosenberg, J. Peterson, H. Schulzrinne, and
G. Camarillo. Best current practices for third
party call control in the Session Initiation Pro-
tocol (SIP). IETF Network Working Group Re-
quest for Comments 3725, 2004.

[8] J. Rosenberg and H. Schulzrinne. Reliability of
provisional responses in Session Initiation Pro-
tocol (SIP). IETF Network Working Group Re-
quest for Comments 3262, 2002.

[9] J. Rosenberg, H. Schulzrinne, G. Camarillo,
A. Johnston, J. Peterson, R. Sparks, M. Han-
dley, and E. Schooler. SIP: Session Initiation
Protocol. IETF Network Working Group Re-
quest for Comments 3261, 2002.

[10] R. Sparks. Multiple dialog usages in the Ses-
sion Initiation Protocol. IETF Network Working
Group Request for Comments 5057, 2007.

[11] Pamela Zave. Audio feature interactions in
voice-over-IP. In Proceedings of the First Inter-
national Conference on Principles, Systems and
Applicatons of IP Telecommunications, pages
67–78. ACM SIGCOMM, 2007.

[12] Pamela Zave and Eric Cheung. Compositional
control of IP media. IEEE Transactions on Soft-
ware Engineering, 2008. To appear.

15

