
1

Deriving Specifications from
Requirements: An Example

Michael Jackson and Pamela Zave

Abstract: A requirement is a desired relationship among phenomena of the environment of

a system, to be brought about by the hardware/software machine that will be constructed

and installed in the environment. A specification describes machine behaviour sufficient

to achieve the requirement. A specification is a restricted kind of requirement: all the

environment phenomena mentioned in a specification are shared with the machine;

the phenomena constrained by the specification are controlled by the machine; and the

specified constraints can be determined without reference to the future. Specifications

are derived from requirements by reasoning about the environment, using properties that

hold independently of the behaviour of the machine. These ideas, and some associated

techniques of description, are illustrated by a simple example.

1. Introduction
Software development is concerned with the construction of machines of a

particular kind: those that can be implemented by a general-purpose computer,
which then becomes the desired machine. Many problems can be solved by these
means [Jackson 94], including problems in process control, message switching,
text manipulation, decision support, and other fields. For example, an information
system is a machine that models a real world outside itself and produces
information about it based on the model; a word-processing system is a machine
that offers its user a repertoire of operations on texts held within the machine; a
control system is a machine that interacts with its environment to bring about or
maintain relationships in that environment. We call the hardware/software to be
developed the machine, preferring this term to the more common system, which
we consider to be open to too many interpretations. For example, the term system

©1995 ACM Press. Reprinted, with permission, from: Jackson, M., and Zave, P., "Deriving
specifications from requirements: An example", in Proceedings of the 17th International Conference
on Software Engineering, Seattle, Washington, April 1995. ACM, New York, NY, 15-24.

2 • Jackson & Zave

may be used to denote the hardware/software machine; or the machine together
with the part of the environment with which it interacts directly; or the machine
together with its users and the whole environment.

Although the different kinds of problem, and the appropriate methods,
have much in common, we focus in this paper on control systems, and on their
functional requirements. They seem to offer the cleanest and most concise
illustration of the points that we want to make.

A requirement states desired relationships in the environment—relationships
that will be brought about or maintained by the machine. The requirement is
concerned entirely with the environment, where the effects and benefits of the
machine will be felt and assessed: the machine is purely a means to the end of
achieving the required effect in the environment.

A specification describes the behaviour of the machine at its interface with the
environment. Like a requirement, it is expressed entirely in terms of environment
phenomena. Seen from the machine, a specification is a starting point for
programming; seen from the environment, it is a restricted kind of requirement.

A specification is derived from a requirement. Given a requirement, we progress
to a specification by purging the requirement of all features—such as references
to environment phenomena that are not accessible to the machine—that would
preclude implementation. The derivation is made possible by environment
properties that can be relied on regardless of the machine’s behaviour. These
properties must, of course, be explicitly described if they are to be exploited.

Such derivation of specifications from requirements is loosely analogous to
program refinement [Morgan 90]. In program refinement the purpose is to refine
a specification to a program. Program specifications and programs are expressed in
the same language, which contains both non-executable elements and executable
code. Refinement is complete when all non-executable elements have been
removed. The result is a program, because it contains only executable code. The
refinement steps must ultimately be justified by appeal to the properties of the
computer, as embodied in the semantics of the specification and programming
language.

In refining requirements to specifications, we begin with requirements
expressed in terms of the environment phenomena. Just as program specifications
may contain non-executable elements, so requirements may refer to phenomena
that are inaccessible to the machine. Refinement is complete when all references
to inaccessible phenomena have been removed. The result is purely a description
of machine behaviour. The refinement steps must ultimately be justified by appeal
to the properties of the environment.

In this paper we present some elements of a method for describing requirements
and for deriving specifications from them. We explain certain distinctions that
we regard as essential to a sound treatment, and we show how they guide us in
bridging the gap between requirements and specifications. We also show how
certain real-time considerations can be handled in a simple and direct way.

We illustrate our points chiefly by means of a very small example. Our
intention in using this small example, rather than something more substantial,

• 3Deriving Specifications from Requirements: an Example

is to ensure that as little detail as possible is left to the reader’s imagination. In
presenting the example we rely on finite-state automata and predicate logic as
descriptive languages. This choice is meant to simplify the presentation: it should
be taken neither as a recommendation nor as an intended contribution.

2. Designating environment phenomena
Our small example concerns the control of a turnstile at the entry to a zoo.

The turnstile consists of a rotating barrier and a coin slot, and is fitted with an
electrical interface. This mechanical apparatus has already been chosen, and the
development job is to write the controlling software. The software will run in a
small computer: this is the machine. The environment is the turnstile mechanism
itself and its use by visitors to the zoo. To enter the zoo, a visitor must first push
on the turnstile barrier, moving it to an intermediate position from which it will
continue rotating of its own accord, returning to its initial position and gently
pushing the visitor into the zoo. The turnstile is equipped with a locking device;
when locked it prevents the barrier from being pushed to the intermediate
position.

The first step is to decide what environment phenomena are of interest (we
consider entity classes to be phenomena too). We capture these decisions by
writing a designation set. Each designation of the set gives a careful informal
description by which certain phenomena may be recognised in the environment;
it also gives a term by which the phenomena may be denoted in requirement and
specification descriptions:

in event e a visitor pushes the barrier to its intermediate position ≈ Push(e)
in event e a visitor pushes the barrier fully home and so gains entry to the

zoo ≈ Enter(e)
in event e a valid coin is inserted into the coin slot ≈ Coin(e)
in event e the turnstile receives a locking signal ≈ Lock(e)
in event e the turnstile receives an unlocking signal ≈ Unlock(e)
The terms on the right hand sides of the designations are predicates. Push(e)

is a predicate that is true of e if and only if e is an event in which a visitor pushes
the barrier to its intermediate position. In this small example, all the designated
phenomena are unary predicates characterising sets of events. This is not
typical: in general, designated terms are n-ary predicates. However, it is fully
typical that we choose to refer to the designated phenomena by predicates. Our
phenomenology is based on facts about individuals; predicates are regarded as
generalisations of such facts, and hence as the appropriate vehicle for denoting
phenomena [Jackson 92].

By deciding on the designations that are specific to the environment—Push(e),
Enter(e), Coin(e), Lock(e) and Unlock(e)—we are not only laying down a basis
for description. We are also identifying the phenomena in terms of which we
will express the requirement and specification. This is an important decision, and

4 • Jackson & Zave

must be made consciously and explicitly. It is often claimed that requirements are
relative: one person’s requirement is another’s implementation, and one person’s
what is another’s how. Without the clear statement that designations provide, it
is easy to vacillate about the subject matter of the requirement. Is the requirement
really about controlling a turnstile, or is it more generally about admitting and
excluding visitors? Or is it about the zoo's profitability? Or perhaps about the
profitability of the company that owns the zoo? Might the developers legitimately
recommend that entry should be free? Or that the zoo be sold and its real estate
redeveloped? Writing a designation set locates the requirement unambiguously
in the world.

We must also state explicitly that we are adopting our usual phenomenology
of time [Jackson 92, Zave 93]. Like most researchers in formal specifications and
requirements engineering, we usually regard events as atomic and totally ordered.
We also regard both events, and intervals between successive events, as individuals.
Each event begins one interval and ends another. Predicates associated with time-
varying phenomena must have interval arguments. The appropriate designations
for our view of time are:

e is an atomic instantaneous event ≈ Event(e)
v is an interval in which no event occurs ≈ Interval(v)
event e occurs before event f ≈ Earlier(e,f)
event e begins interval v ≈ Begins(e,v)
event e ends interval v ≈ Ends(e,v)
These temporal phenomena are general, being recognisable in many different

environments. We will assume in this paper that the appropriate assertions about
them—for example, that Earlier(e,f) is a total ordering on events—have been
made.

3. Shared phenomena
If the machine is to interact with the environment, some phenomena must

be shared by both. Investigation of the turnstile mechanism and its electrical
connections shows that Push(e), Coin(e), Lock(e), and Unlock(e) are shared
phenomena; Enter(e) is not shared. (Sharing phenomena does not imply sharing
control. Rather, the shared phenomena may be regarded as constituting the
interface between the machine and the environment, and control may reside on
either side of the interface. We return to this point in Section 4 below.)

By identifying certain events as shared we are choosing to regard them as
occurring both in the machine and in the environment. Since events are atomic
and instantaneous, this means that we are ignoring any delay involved in
transmission of the electrical signals. This decision is reasonable in the context
of the turnstile. If we were to decide that the delay is not ignorable, we would
treat the electrical channel as another part of the environment, distinguishing
the events at the machine end of the channel from those at the turnstile end. The

• 5Deriving Specifications from Requirements: an Example

shared events would then be those at the machine end of the channel; the events
at the other end would not be shared.

The underlying basis of shared phenomena is shared individuals: the event
individuals appear in both the environment and the machine. But this is not
enough. It is also necessary that the facts about those individuals, generalised in
the predicates, are shared. Push and Coin events are clearly distinguished in the
environment. But if, perversely, they were identically signalled by the turnstile,
then they would still be shared individuals, but the distinction captured in the
two predicates would not be accessible to the machine.

Similar considerations apply to shared state phenomena. In a lift control
system, the sensors at the floors may be shared individuals. For the information
from the sensors to be accessible to the machine, the facts that particular sensors
are associated with particular floors, and that a particular sensor is On or Off in
a particular time interval, must also be shared.

4. Control of phenomena
We must also determine where control of the shared phenomena resides.

Investigation—confirming everyday expectations of turnstiles—shows that Push
and Coin events are environment-controlled, while Lock and Unlock events are
machine-controlled. Push and Coin events are environment-controlled because
they are initiated by the environment. Approaches based on the identification
of agents [Feather 87, Johnson 88, Feather 91] would identify agents in the
environment rather than in the machine for these events: if there are no visitors
to the zoo, no Push or Coin event will ever occur, regardless of the machine’s
behaviour. Conversely, Lock and Unlock events are initiated by the machine,
which sends electrical signals to the turnstile. Regardless of the behaviour of
the environment, no Lock or Unlock event will occur unless the machine causes
it. Environment phenomena that are not shared are necessarily environment-
controlled. (Machine phenomena that are not shared are, of course, of no interest
in requirements or specifications. They are significant only in programming.)

Control of an event is the power to perform it spontaneously, but only when
it is not precluded by other constraints on its occurrence. Some environment-
controlled events may be constrained by environment properties; the machine
can exploit these constraints to prevent the events from occurring. For example,
Push and Enter events are environment-controlled; but, as we shall see, the
machine can prevent their occurrence by locking the turnstile. Coin events are
also environment-controlled, but their occurrence, by contrast, can be neither
prevented nor stimulated by the machine.

Control of state phenomena is associated with control of events. To say that
the environment in a lift scheduling problem controls the state of the floor sensors
is to say that the environment controls those events that cause the sensor states
to change. The lift scheduling machine can access the sensor states, but only the
movement of the lift car in the environment can change them.

In our view, control of events is always unilateral: it is never shared. We
consider shared control to be unrealistic: it is rarely found in the real world

6 • Jackson & Zave

[Feather 87, Abadi 93]. If some kind of event is sometimes initiated by the
machine and sometimes by the environment, we separate it into two kinds by
designating the machine-controlled and the environment-controlled events as
different phenomena. In some cases shared state phenomena may be changed
either by the machine or by the environment.

5. Indicative environment descriptions
In developing requirements we are interested in two distinct kinds of

environment description. The first kind describes the properties we would like the
machine to bring about or maintain. These descriptions are in what grammarians
would call the optative mood: they express our wishes. The second kind describes
the properties that the environment has, or will have, regardless of the behaviour
of the machine. These are in the indicative mood: they express what is the case
whether we wish it or not.

We avoid descriptions of mixed indicative and optative mood. This separation
allows the mood of a description to be determined by its context rather than by
its contents. We adopt this approach for two reasons. First: reliance on internal
syntactic distinctions, whether formal or informal, between the two moods
would cause great linguistic difficulty and would exclude many languages from
effective use. Second: when a system has been successfully built and installed
the optative descriptions become indicative—the wishes come true. It would
be very inconvenient if the descriptions themselves then had to be rewritten.
The contextual information on which we rely is, so far, quite informal; but in
a practical development environment it should be formalised. In this paper we
distinguish the moods of descriptions by giving indicative descriptions names of
the form INDn, and optative descriptions names of the form OPTn. We also use
definitions of new (undesignated) terms. Definitions may appear in indicative
descriptions, where they may rely on the truth of the indicative assertion. They
may also appear in separate, purely definitional. descriptions, whose names are of
the form DEFn.

We begin here with two indicative properties. The first of these properties is
that Push and Enter events alternate, starting with Push. A visitor can not Enter
without first Pushing; the next visitor can not Push until the first has Entered.
This property is described in a Finite-State Automaton:

The state names PEO and PE1 do not refer to designated phenomena: they
are defined in this indicative description. The description asserts only a constraint
on the ordering of Push and Enter events. It could be falsified by observation of

• 7Deriving Specifications from Requirements: an Example

the environment—for example if the sequence <Push,Push> were found to be
possible. The property asserted is purely a safety property: the description would
still be true if no Push or Enter event ever occurred.

The second indicative property is that if Lock and Unlock events alternate,
starting with Unlock, then a Push event can occur only after an Unlock and before
the next Lock. This too is a safety property, but its description needs a little care.
We do not know, and therefore must not describe, what will happen if Lock and
Unlock events do not alternate in the stated way. Possibly the turnstile mechanism
will break; perhaps events not fitting the pattern will be ignored; perhaps the
mechanism will become permanently locked or permanently unlocked.

So we make this description in two stages. In the first we define three states of
the mechanism. LU2 is the state reached when the alternation has been broken.
LU0 and LU1 are the two alternating states in which the alternation has been (so
far) maintained:

This description is purely definitional. It has an outgoing arc in each state for
each kind of event, and so imposes no safety constraint on the event occurrences.
Nor is it intended to express any liveness property: there is no implication that
the initial state, or any other, will not persist indefinitely. The states LU0, LU1
and LU2 do not appear in the designation set. Nothing in this description DEF1
could be falsified by observation of the environment.

These definitions can now be exploited to assert a safety property:

(IND2) ∀ e,v • (LU0(v) ∧ Ends(e,v))  → ¬ Push(e)
This description asserts that if LU0 holds in interval v, and v is ended by an

event e, then e can not be a Push event: in other words, Push events are impossible
in state LU0. The assertion could be falsified by environment observation—
for example, if a Push were found to be possible before the first Unlock. The
description exploits the definition of the states, both to assert the safety property
concerning Push events and to limit the assertion to the known cases. If we later
discover that Lock or Unlock events not fitting the alternating pattern will be
ignored, we can add further definition and description to capture the resulting
properties without changing or contradicting what we have already said. This
kind of technique is essential to effective separation of concerns.

8 • Jackson & Zave

6. Requirements
It is the customer’s prerogative to determine the requirements. Essentially,

there are two simple requirements: that no-one should enter without paying; and
that anyone who has paid should be allowed to enter.

Our customer does not require that payments alternate with entries: that
would inconvenience school teachers in charge of groups of children. So the first
requirement is simply that entries should never exceed payments. Assume that
we have defined predicates Push#(v,n), Enter#(v,n) and Coin#(v,n), meaning that
the count of Push, Enter and Coin events respectively preceding interval v is n.
(Like the states PE0 and PE1, and LU0, LU1, and LU2, these are not newly
designated environment phenomena: their definitions are based purely on the
previously designated phenomena.) The first requirement can then be stated:

(OPT1) ∀ v,m,n • (Enter#(v,m) ∧ Coin#(v,n))  → m ≤ n
The second requirement is that visitors who pay are not prevented from

entering the zoo. Strictly interpreted, this requirement is unimplementable: they
may be prevented by other visitors ahead of them in the queue, or by a police
cordon, or by their own inability or unwillingness to perform the Push action
that must precede the Enter event that admits them. Intuitively, it means that the
machine will not prevent their entry. For now, we can state this requirement very
informally as:

(OPT2) ∀ v,m,n •

(Enter#(v,m) ∧ Coin#(v,n) ∧ m < n)  →
`the machine will not prevent another Enter event'

Later we will make it precise in the form of a specification of the machine
behaviour. Like many requirements, this requirement seems very difficult to
formalise solely in terms of phenomena that are important to the customer
[Johnson 88]. A precise statement must await refinement in terms of the turnstile
mechanism.

7. Specifications
A requirement describes a desired relationship among environment

phenomena; a specification describes a desired behaviour of the machine in the
environment. To be a specification, a requirement must observe at least these
rules:

(a) All environment phenomena mentioned in the requirement are shared with
the machine. That is, the specification is located entirely at the interface
between the machine and the environment.

(b) All phenomena required to be constrained are directly machine-controlled.
That is, the implementor will not need to reason about environment
properties to achieve execution or inhibition of events: the machine can
execute, or refrain from executing, the actions directly.

• 9Deriving Specifications from Requirements: an Example

(c) All required constraints on events are expressed in terms of preceding events
or states in preceding intervals. That is, the conditions for executing, or not
executing, an event can be evaluated in a suitably defined current state and
do not involve reasoning from a subsequent state.

The two requirements stated in the descriptions OPT1 and OPT2 express
the customer's intention, but they are not specifications. Both are expressed in
terms of Enter events, which are not shared: so they break rule (a).

To realise OPT1 the machine must either compel Coin events or prevent
Enter events. Coin events are shared phenomena, but they are environment-
controlled. If, then, we interpret OPT1 as requiring the machine to enforce Coin
events, it fails as a specification by rule (b): it requires constraints on phenomena
that are not machine-controlled.

OPT1 also constrains the state in every interval, including those that are still
in the future. When the machine executes, or refrains from executing, any event,
it must ensure that OPT1 will hold afterwards. A requirement based in this way
on a future state, even if refined to a form in which it infringes neither rule (a) nor
rule (b), can not be a specification by rule (c).

Our strategy for obtaining a specification from a requirement is to make
explicit use of the indicative environment properties. Denoting the requirement,
specification, and environment properties by R, S, and E respectively, for a given
R and E we seek S such that:

S, E ⊢ R
Satisfaction of the requirement can be deduced from satisfaction of the
specification together with the indicative environment properties.

Considering OPT1, we know of no environment property by which the
machine could ensure the occurrence of Coin events. Therefore it must instead
act to prevent Enter events. We must rely on the safety properties described
in IND1—the alternation of Push and Enter events, and in IND2—the
impossibility of Push events occurring after certain sequences of Lock and
Unlock events. Our specification will require the machine to perform Lock and
Unlock events so that certain Push events, and hence the undesired Enter events,
do not occur.

The first step is to obtain a form of OPT1 that does not involve Enter events.
From the indicative description IND1 we can immediately derive:

(IND3) ∀ v,m,n • (Enter#(v,m) ∧ Push#(v,n))  → n−1 ≤ m ≤ n
That is: at all times Push#–1 ≤ Enter# ≤ Push#. This property allows us to
obtain OPTla, expressed in terms of Push# (whose definition depends on shared
phenomena), rather than of Enter# (whose definition depends on unshared
phenomena):

(OPT1a) ∀ v,m,n • (Push#(v,m) ∧ Coin#(v,n))  → m ≤ n

OPT1a is a strengthening of OPT1. The requirement OPT1 is, informally, that
at all times Enter# ≤ Coin#. OPT1a specifies the stronger condition that at all

10 • Jackson & Zave

times Enter# ≤ Push# ≤ Coin# (the first part of the inequality being guaranteed
by IND3). The strengthening is inevitable. If Push# > Coin# were ever allowed
to hold, the environment possesses no properties by which Enter# > Coin# could
then be prevented: once a Push has occurred the subsequent Enter can not be
stopped; and a further occurrence of Coin can not be enforced.

To satisfy the requirement OPT1, then, the machine must ensure that Push#
never exceeds Coin#. By an obvious piece of reasoning necessitated by rule (c), we
refine this to the requirement that when Push# already equals Coin# the machine
must prevent a further Push at least until after a further Coin event. How can
Push events be prevented by the machine?

IND2, together with the definitional description DEF1, constrains Push
events provided that the alternation of Lock and Unlock events is maintained: in
the absence of this alternation we can say nothing. So we require the machine’s
behaviour to satisfy the following safety specification:

 If the machine behaviour has this property, we can be sure that LU2 will
never hold. In any interval either Pushes are impossible because LU0 already
holds, or LU1 holds and the machine can reach LU0 by causing a Lock event.

Now we can refine OPT1 (in its strengthened form OPTla). The refinement
is to a safety property and a liveness property. The safety property is:

(OPT4) ∀ v,e,n •

(LU0(v) ∧ Push#(v,n) ∧ Coin#(v,n) ∧ Ends(e,v))  → ¬Unlock(e)
If LU0 holds and Push# equals Coin#, the machine must not unlock the turnstile.
Push events are impossible while LU0 holds, so the turnstile will eventually be
unlocked only after another Coin event, as we might expect.

The liveness property is that the machine must perform a Lock event in certain
states. The relevant states are defined by a predicate on intervals:

(DEF2) ReqLock(v) ⩠
LU1(v) ∧ ∃ n • (Push#(v,n) ∧ Coin#(v,n)) 

The liveness property is that if ReqLock holds—that is, if the turnstile is
unlocked and Push# equal Coin#—the machine must perform a Lock event in
time to prevent a further Push (and thus a further Enter) event.

If we were to adopt the reactive systems hypothesis (the commonly adopted
assumption that the machine will react to each stimulus from the environment
before the next stimulus occurs), we would say simply that in state ReqLock
the machine must perform a Lock event. But there are important real-time

• 11Deriving Specifications from Requirements: an Example

considerations here. We will return to this point—and state the liveness property
exactly—in the next section.

The refinement of OPT2 is somewhat analogous to that of OPT1. The
machine must ensure that the indicative safety property IND2 does not prevent
Push events when there is a coin in credit. Again there is both a safety property
and a liveness property. The safety property is:

(OPT5) ∀ v,e,m,n •

(LU1(v) ∧ Push#(v,m) ∧ Coin#(v,n) ∧ (m < n) ∧ Ends(e,v)) 
 → ¬Lock(e)

If LU1 holds—the turnstile is unlocked—and there is a coin in credit, the
machine must not lock the turnstile. The condition in which Lock events are
forbidden will cease to be true when an excess of subsequent Push events over
Coin events uses up the credit. The liveness property is that the machine must
perform an Unlock event in certain states. The relevant states are defined by a
predicate on intervals:

(DEF3) ReqUnlock(v) ⩠
LU0(v) ∧ ∃ m,n • (Push#(v,m) ∧ Coin#(v,n) ∧ m < n) 

The liveness property is that if ReqUnlock holds—that is, if the turnstile is
locked and there is a coin in credit—the machine must perform an Unlock event.
Again, there is a real-time consideration, and we will state the liveness property
exactly in the next section.

8. Real time
We return now to the point deferred above in discussing the statement of the

liveness properties in the refinements of OPT1 and OPT2.
The refinement of OPT2 must be more than a specification that in state

ReqUnlock the machine will eventually perform an Unlock. It must ensure that
that state, in which some visitor has paid but has not yet been enabled to Push,
does not persist unreasonably long. We may express this quite directly in an
optative description:

(OPT6) Duration[ReqLock] < 250
The visitor must be enabled to Push within 250 msecs of paying. OPT6

specifies that the machine must terminate a ReqUnlock state within the time limit.
Its only means of doing so, by virtue of DEF3, is to exit from state LU0. By DEF1
and OPT3, that means it must execute an Unlock event. (The environment can
not terminate a ReqUnlock state: it can not initiate an Unlock event to terminate
LU0; and while LU0 holds it can not initiate a Push.)

The refinement of OPT1 discussed above led us to the specification that in
state ReqLock the machine must perform a Lock event soon enough to prevent
another Push event: that is the whole point of the requirement. Clearly, we can
satisfy this requirement only if the environment guarantees a sufficient real-time

12 • Jackson & Zave

delay for the machine to respond. Further investigation of the turnstile reveals
that hydraulic damping guarantees delays of at least 750 msecs between a Push
and a following Enter, and at least 10 msecs between an Enter and a following
Push:

(IND4) Duration[PE0] ≥ 10 ∧ Duration[PE1] ≥ 750
At least 760 msecs will therefore intervene between successive Push events,

and the necessary refinement of the liveness part of requirement OPT1 is:

(OPT7) Duration[ReqLock] < 760
The freedom to delay the Lock event is important for smooth and efficient

working of the turnstile. The machine may wait in state ReqLock, within the
limit of 760 msecs, in order to increase the probability that another Coin event
will intervene to cause an exit from the ReqLock state and so make the Lock
unnecessary. A machine that does so is preferable to a machine that performs the
Lock event immediately.

The preferable machine is not readily specifiable under the reactive system
hypothesis. The virtue of the reactive systems hypothesis is that we can avoid
real-time considerations in writing requirements and specifications. Everything
that the machine must do to satisfy the requirement is assumed to be done fast
enough. Or, equivalently, everything that the environment might do to frustrate
the requirement is assumed to happen too slowly to do so. The disadvantage is
that it becomes very inconvenient to specify that the machine should wait in
case another stimulus arrives to countermand the effect of a previous stimulus.
Our technique of defining states avoids this disadvantage, and allows us to deal
reasonably directly with real-time considerations.

9. Satisfaction of the requirement
In the entailment

S, E ⊢ R
mentioned in Section 7 above, the requirement R is OPT1 and OPT2. The
specification S is OPT3, OPT4, OPT5, OPT6, and OPT7. The environment
properties E are IND1, IND2 and IND4 (IND3 being deduced from IND1).
Assuming the definitions DEF1, DEF2, DEF3, the entailment is therefore

IND1,IND2,IND4,OPT3,OPT4,OPT5,OPT6,OPT7 ⊢ OPT1 ∧ OPT2
To prove satisfaction of the requirement is to prove this entailment. OPTIa will
be a lemma in this proof.

The derivation steps presented in this paper are, of course, somewhat too
informal to constitute a proof of satisfaction. Most notably, some subtleties in the
relationship of Push and Enter events were ignored in the refinement of OPT2.
The requirement ‘The machine will not prevent another Enter event’ is satisfied
by a specification in which the machine unlocks, or refrains from locking, the
turnstile, thus enabling the visitor to perform a Push event, following which the

• 13Deriving Specifications from Requirements: an Example

visitor is automatically enabled to execute an Enter event.

10. Related work
Many researchers in requirements engineering are interested in achieving a

fuller understanding of the relationship between requirements and specifications.
In this section we compare our ideas to those of four closely related papers.

[Feather 91] is agent-oriented; it envisions systems that are mixtures of
human, software, and hardware agents, taking responsibility for various goals
and subgoals. We recognize only two agents—environment and machine—and
their multiple agents are clearly a decomposition of our two. We emphasise a
fixed environment that must be fully accommodated by the machine, while
Feather, Fickas, and Helm emphasise a environment that is “designed” along with
the machine. Both are legitimate viewpoints for requirements engineering (and
we certainly don’t intend to limit ourselves to only one of them), but they are
irrelevant to this comparison. We are concerned here chiefly with the technical
issue of how requirements and specifications differ, and how are they related. For
a precise comparison, it is necessary to factor out this difference in viewpoint.

They mention four key transformations by which agent specifications are
obtained from requirements or goals:

(a) Brinksmanship: identify actions that could cause a constraint to be violated,
add components to exert control over these actions, assign some agent to be
the controller.

(b) Spatial split: split goal responsibility into pieces assigned to separate agents.
(c) Indirect access: agent B needs some information it does not have direct access

to; agent A gets it and communicates it to B.
(d) Responsibility accumulation: assigning multiple responsibilities to the same

agent.

Spatial split and responsibility accumulation concern a level of detail that
is lower than our scheme—decomposition of the environment and machine
agents. We would expect such separations of concerns to be reflected in separate
descriptions; but these separations are not needed to explain the difference
between requirements and specifications.

Brinksmanship is reminiscent of our rule concerning requirements that are not
specifications because they constrain environment-controlled phenomena. But
brinksmanship concerns only safety properties, while our rule includes liveness.

Indirect access is reminiscent of our rule concerning requirements that are not
specifications because they use unshared phenomena; but it requires the use of an
active operational agent to maintain the relation ship between the unshared and
the shared phenomena In our view this relationship must be described explicitly,
but need not be attributed to an active agent.

In summary, we find our scheme simpler because it does not depend on
decomposition of agents, and does not introduce them when not needed. It seems
to be more comprehensive because it includes such things as liveness requirements

14 • Jackson & Zave

on environment-controlled phenomena. It also seems to be more systematic
because it is not an empirically discovered collection, but rather is based on the
exhaustive classifications into shared and unshared, and environment-controlled
and machine-controlled phenomena.

[Feather 94] extends the work reported in [Feather 91], concentrating on
bringing a number of formal techniques to bear on the derivation of specifications
from requirements. In particular, Feather exploits a finite differencing
transformation, calculation of weakest preconditions, weakening of invariants,
and the unfolding of invariants into guarded commands. Use of such formal
techniques assists refinement by reformulation of previously stated requirements.
It complements the exploitation of indicative environment properties that is a
central feature of our approach.

Feather also discusses a form of our distinction between shared and unshared
phenomena. Agents in the environment—in his example, railway trains—may
be unable to evaluate a predicate that guards one of their actions. For example,
a train does not ‘know’ whether there is another train in the next track segment.

The scheme of [Dubois 89] is based on bilaterally controlled actions, which we
consider unrealistic. They are also prone to unnecessary semantic complications,
such as the distinction between external and internal (hidden) nondeterminism
in [Abadi 93]. Further, Dubois’s scheme requires a cumbersome and nonstandard
logic.

In many ways, Johnson’s work on deriving specifications from requirements
[Johnson 88] is the closest to ours philosophically. Johnson's transformation of
“removing the perfect knowledge assumption” has exactly the same purpose as
our rule about requirements that are not specifications because they use unshared
phenomena. Also, his transformation of “defining capabilities” has exactly
the same purpose as our rule about requirements that are not specifications
because they constrain environment-controlled phenomena. (Incidentally, these
transformations have roughly the same purpose as the “operationalization”
goals IsEvaluable and IsAchievable in [Mostow 83]. But Mostow’s work focuses
on automated problemsolving, and thus assumes—if applied to requirements
engineering—that the domain is as malleable as the machine.)

One difference is that [Johnson 88], like [Feather 91], is agent-oriented
rather than description-oriented. Also, Johnson describes requirements as being
edited until they become specifications. Our characterization of requirements
and specifications as distinct optative descriptions, linked by the indicative
descriptions that cause the specification to imply the requirement, is more general:
it embraces other considerations such as the reuse of existing specifications.

We feel that we have added significantly to Johnson’s notion of “defining
capabilities” by explaining the precise circumstances under which agents have the
wrong capabilities (an optative description constrains environment-controlled
phenomena) and the precise remedy for the problem (there must be indicative
descriptions linking machine-controlled phenomena to the relevant environment-
controlled phenomena).

• 15Deriving Specifications from Requirements: an Example

11. Conclusions
We have explained a distinction between requirements and specifications. Both

are expressed in terms of environment phenomena. A requirement is expressed
in terms of phenomena and relationships that are of direct interest to the
system’s customers and users, while a specification is restricted to implementable
behaviour of a machine that can ensure satisfaction of the requirement. The gap
between the two is bridged by reasoning based on environment properties that
can be relied on independently of the machine’s behaviour.

This view leads to an emphasis on careful expression of environment
properties. We separate indicative from optative properties—those that can be
relied on from those that the system must bring about. We separate definition
from assertion, and designated phenomena from defined terms. We pay explicit
attention to control, and express liveness properties in terms of real time.

We have illustrated our ideas with a simple control system example. We
believe that other kinds of problem will demand application of the same ideas,
albeit in different contexts and expressed in different languages. In some cases a
structuring of the environment into domains will be necessary. Larger problems,
of realistic complexity, will additionally demand a decomposition into simple
problems, and a recombination of the resulting solutions.

Acknowledgement
Martin Feather read an earlier version of this paper and gave us many detailed

and helpful comments.

References
[Abadi 93]	 Martín Abadi and Leslie Lamport; Composing specifications;

ACM TOPLAS Volume 15, Number 1, pp. 73-132, January
1993.

[Dubois 89]	 Eric Dubois; A logic of action for supporting goal-oriented
elaboration of requirements; in Proc. IWSSD-5; IEEE CS Press,
1989.

[Feather 87]	 M. S. Feather; Language support for the specification and
development of composite systems; ACM TOPLAS Volume 9,
Number 2, pp. 198-234, April 1987.

[Feather 91]	 Martin S. Feather, Stephen Fickas, and B. Robert Helm;
Composite system design: The good news and the bad news; in
Proc. 6th RADC KBSE Conference; IEEE CS Press, 1992.

[Feather 94]	 Martin S. Feather; Towards a derivational style of distributed
system design—An example; Automated Software Engineering
Volume 1, Number 1, pp. 31-60, March 1994.

[Jackson 92]	 Michael Jackson and Pamela Zave; Domain descriptions; in Proc.
RE’93; IEEE CS Press, 1992.

[Jackson 94]	 M. A. Jackson; Software development method; in A Classical

16 • Jackson & Zave

Mind: Essays in Honour of C. A. R. Hoare; A. W. Roscoe, ed;
Prentice-Hall International, 1994.

[Johnson 88]	 W. Lewis Johnson; Deriving specifications from requirements; in
Proc. ICSE-10; IEEE CS Press, 1988.

[Morgan 90]	 Carroll Morgan; Programming from Specifications; Prentice-Hall
International 1990.

Mostow 83]	 Jack Mostow; A problem-solver for making advice operational; in
Proc. AAAI-83, pp. 279-283; William Kaufmann Inc, 1983.

[Zave 93]	 Pamela Zave and Michael Jackson; Conjunction as composition;
ACM Transactions on Software Engineering and Methodology,
Volume 2, Number 4, pp. 379-411, October 1993.

