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Deriving Specifications from 
Requirements: An Example

Michael Jackson and Pamela Zave

Abstract: A requirement is a desired relationship among phenomena of the environment of 

a system, to be brought about by the hardware/software machine that will be constructed 

and installed in the environment. A specification describes machine behaviour sufficient 

to achieve the requirement. A specification is a restricted kind of requirement: all the 

environment phenomena mentioned in a specification are shared with the machine; 

the phenomena constrained by the specification are controlled by the machine; and the 

specified constraints can be determined without reference to the future. Specifications 

are derived from requirements by reasoning about the environment, using properties that 

hold independently of the behaviour of the machine. These ideas, and some associated 

techniques of description, are illustrated by a simple example.

1. Introduction
Software development is concerned with the construction of machines of a 

particular kind: those that can be implemented by a general-purpose computer, 
which then becomes the desired machine. Many problems can be solved by these 
means [ Jackson 94], including problems in process control, message switching, 
text manipulation, decision support, and other fields. For example, an information 
system is a machine that models a real world outside itself and produces 
information about it based on the model; a word-processing system is a machine 
that offers its user a repertoire of operations on texts held within the machine; a 
control system is a machine that interacts with its environment to bring about or 
maintain relationships in that environment. We call the hardware/software to be 
developed the machine, preferring this term to the more common system, which 
we consider to be open to too many interpretations. For example, the term system 
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may be used to denote the hardware/software machine; or the machine together 
with the part of the environment with which it interacts directly; or the machine 
together with its users and the whole environment.

Although the different kinds of problem, and the appropriate methods, 
have much in common, we focus in this paper on control systems, and on their 
functional requirements. They seem to offer the cleanest and most concise 
illustration of the points that we want to make.

A requirement states desired relationships in the environment—relationships 
that will be brought about or maintained by the machine. The requirement is 
concerned entirely with the environment, where the effects and benefits of the 
machine will be felt and assessed: the machine is purely a means to the end of 
achieving the required effect in the environment.

A specification describes the behaviour of the machine at its interface with the 
environment. Like a requirement, it is expressed entirely in terms of environment 
phenomena. Seen from the machine, a specification is a starting point for 
programming; seen from the environment, it is a restricted kind of requirement.

A specification is derived from a requirement. Given a requirement, we progress 
to a specification by purging the requirement of all features—such as references 
to environment phenomena that are not accessible to the machine—that would 
preclude implementation. The derivation is made possible by environment 
properties that can be relied on regardless of the machine’s behaviour. These 
properties must, of course, be explicitly described if they are to be exploited.

Such derivation of specifications from requirements is loosely analogous to 
program refinement [Morgan 90]. In program refinement the purpose is to refine 
a specification to a program. Program specifications and programs are expressed in 
the same language, which contains both non-executable elements and executable 
code. Refinement is complete when all non-executable elements have been 
removed. The result is a program, because it contains only executable code. The 
refinement steps must ultimately be justified by appeal to the properties of the 
computer, as embodied in the semantics of the specification and programming 
language.

In refining requirements to specifications, we begin with requirements 
expressed in terms of the environment phenomena. Just as program specifications 
may contain non-executable elements, so requirements may refer to phenomena 
that are inaccessible to the machine. Refinement is complete when all references 
to inaccessible phenomena have been removed. The result is purely a description 
of machine behaviour. The refinement steps must ultimately be justified by appeal 
to the properties of the environment.

In this paper we present some elements of a method for describing requirements 
and for deriving specifications from them. We explain certain distinctions that 
we regard as essential to a sound treatment, and we show how they guide us in 
bridging the gap between requirements and specifications. We also show how 
certain real-time considerations can be handled in a simple and direct way.

We illustrate our points chiefly by means of a very small example. Our 
intention in using this small example, rather than something more substantial, 
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is to ensure that as little detail as possible is left to the reader’s imagination. In 
presenting the example we rely on finite-state automata and predicate logic as 
descriptive languages. This choice is meant to simplify the presentation: it should 
be taken neither as a recommendation nor as an intended contribution.

2. Designating environment phenomena
Our small example concerns the control of a turnstile at the entry to a zoo. 

The turnstile consists of a rotating barrier and a coin slot, and is fitted with an 
electrical interface. This mechanical apparatus has already been chosen, and the 
development job is to write the controlling software. The software will run in a 
small computer: this is the machine. The environment is the turnstile mechanism 
itself and its use by visitors to the zoo. To enter the zoo, a visitor must first push 
on the turnstile barrier, moving it to an intermediate position from which it will 
continue rotating of its own accord, returning to its initial position and gently 
pushing the visitor into the zoo. The turnstile is equipped with a locking device; 
when locked it prevents the barrier from being pushed to the intermediate 
position.

The first step is to decide what environment phenomena are of interest (we 
consider entity classes to be phenomena too). We capture these decisions by 
writing a designation set. Each designation of the set gives a careful informal 
description by which certain phenomena may be recognised in the environment; 
it also gives a term by which the phenomena may be denoted in requirement and 
specification descriptions:

in event e a visitor pushes the barrier to its intermediate position ≈ Push(e)
in event e a visitor pushes the barrier fully home and so gains entry to the 

zoo ≈ Enter(e)
in event e a valid coin is inserted into the coin slot ≈ Coin(e)
in event e the turnstile receives a locking signal ≈ Lock(e)
in event e the turnstile receives an unlocking signal ≈ Unlock(e)
The terms on the right hand sides of the designations are predicates. Push(e) 

is a predicate that is true of e if and only if e is an event in which a visitor pushes 
the barrier to its intermediate position. In this small example, all the designated 
phenomena are unary predicates characterising sets of events. This is not 
typical: in general, designated terms are n-ary predicates. However, it is fully 
typical that we choose to refer to the designated phenomena by predicates. Our 
phenomenology is based on facts about individuals; predicates are regarded as 
generalisations of such facts, and hence as the appropriate vehicle for denoting 
phenomena [ Jackson 92].

By deciding on the designations that are specific to the environment—Push(e), 
Enter(e), Coin(e), Lock(e) and Unlock(e)—we are not only laying down a basis 
for description. We are also identifying the phenomena in terms of which we 
will express the requirement and specification. This is an important decision, and 
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must be made consciously and explicitly. It is often claimed that requirements are 
relative: one person’s requirement is another’s implementation, and one person’s 
what is another’s how. Without the clear statement that designations provide, it 
is easy to vacillate about the subject matter of the requirement. Is the requirement 
really about controlling a turnstile, or is it more generally about admitting and 
excluding visitors? Or is it about the zoo's profitability? Or perhaps about the 
profitability of the company that owns the zoo? Might the developers legitimately 
recommend that entry should be free? Or that the zoo be sold and its real estate 
redeveloped? Writing a designation set locates the requirement unambiguously 
in the world.

We must also state explicitly that we are adopting our usual phenomenology 
of time [ Jackson 92, Zave 93]. Like most researchers in formal specifications and 
requirements engineering, we usually regard events as atomic and totally ordered. 
We also regard both events, and intervals between successive events, as individuals. 
Each event begins one interval and ends another. Predicates associated with time-
varying phenomena must have interval arguments. The appropriate designations 
for our view of time are: 

e is an atomic instantaneous event ≈ Event(e)
v is an interval in which no event occurs ≈ Interval(v)
event e occurs before event f ≈ Earlier(e,f)
event e begins interval v ≈ Begins(e,v)
event e ends interval v ≈ Ends(e,v)
These temporal phenomena are general, being recognisable in many different 

environments. We will assume in this paper that the appropriate assertions about 
them—for example, that Earlier(e,f) is a total ordering on events—have been 
made.

3. Shared phenomena
If the machine is to interact with the environment, some phenomena must 

be shared by both. Investigation of the turnstile mechanism and its electrical 
connections shows that Push(e), Coin(e), Lock(e), and Unlock(e) are shared 
phenomena; Enter(e) is not shared. (Sharing phenomena does not imply sharing 
control. Rather, the shared phenomena may be regarded as constituting the 
interface between the machine and the environment, and control may reside on 
either side of the interface. We return to this point in Section 4 below.)

By identifying certain events as shared we are choosing to regard them as 
occurring both in the machine and in the environment. Since events are atomic 
and instantaneous, this means that we are ignoring any delay involved in 
transmission of the electrical signals. This decision is reasonable in the context 
of the turnstile. If we were to decide that the delay is not ignorable, we would 
treat the electrical channel as another part of the environment, distinguishing 
the events at the machine end of the channel from those at the turnstile end. The 
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shared events would then be those at the machine end of the channel; the events 
at the other end would not be shared.

The underlying basis of shared phenomena is shared individuals: the event 
individuals appear in both the environment and the machine. But this is not 
enough. It is also necessary that the facts about those individuals, generalised in 
the predicates, are shared. Push and Coin events are clearly distinguished in the 
environment. But if, perversely, they were identically signalled by the turnstile, 
then they would still be shared individuals, but the distinction captured in the 
two predicates would not be accessible to the machine.

Similar considerations apply to shared state phenomena. In a lift control 
system, the sensors at the floors may be shared individuals. For the information 
from the sensors to be accessible to the machine, the facts that particular sensors 
are associated with particular floors, and that a particular sensor is On or Off in 
a particular time interval, must also be shared.

4. Control of phenomena 
We must also determine where control of the shared phenomena resides. 

Investigation—confirming everyday expectations of turnstiles—shows that Push 
and Coin events are environment-controlled, while Lock and Unlock events are 
machine-controlled. Push and Coin events are environment-controlled because 
they are initiated by the environment. Approaches based on the identification 
of agents [Feather 87, Johnson 88, Feather 91] would identify agents in the 
environment rather than in the machine for these events: if there are no visitors 
to the zoo, no Push or Coin event will ever occur, regardless of the machine’s 
behaviour. Conversely, Lock and Unlock events are initiated by the machine, 
which sends electrical signals to the turnstile. Regardless of the behaviour of 
the environment, no Lock or Unlock event will occur unless the machine causes 
it. Environment phenomena that are not shared are necessarily environment-
controlled. (Machine phenomena that are not shared are, of course, of no interest 
in requirements or specifications. They are significant only in programming.)

Control of an event is the power to perform it spontaneously, but only when 
it is not precluded by other constraints on its occurrence. Some environment-
controlled events may be constrained by environment properties; the machine 
can exploit these constraints to prevent the events from occurring. For example, 
Push and Enter events are environment-controlled; but, as we shall see, the 
machine can prevent their occurrence by locking the turnstile. Coin events are 
also environment-controlled, but their occurrence, by contrast, can be neither 
prevented nor stimulated by the machine.

Control of state phenomena is associated with control of events. To say that 
the environment in a lift scheduling problem controls the state of the floor sensors 
is to say that the environment controls those events that cause the sensor states 
to change. The lift scheduling machine can access the sensor states, but only the 
movement of the lift car in the environment can change them.

In our view, control of events is always unilateral: it is never shared. We 
consider shared control to be unrealistic: it is rarely found in the real world 
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[Feather 87, Abadi 93]. If some kind of event is sometimes initiated by the 
machine and sometimes by the environment, we separate it into two kinds by 
designating the machine-controlled and the environment-controlled events as 
different phenomena. In some cases shared state phenomena may be changed 
either by the machine or by the environment.

5. Indicative environment descriptions
In developing requirements we are interested in two distinct kinds of 

environment description. The first kind describes the properties we would like the 
machine to bring about or maintain. These descriptions are in what grammarians 
would call the optative mood: they express our wishes. The second kind describes 
the properties that the environment has, or will have, regardless of the behaviour 
of the machine. These are in the indicative mood: they express what is the case 
whether we wish it or not.

We avoid descriptions of mixed indicative and optative mood. This separation 
allows the mood of a description to be determined by its context rather than by 
its contents. We adopt this approach for two reasons. First: reliance on internal 
syntactic distinctions, whether formal or informal, between the two moods 
would cause great linguistic difficulty and would exclude many languages from 
effective use. Second: when a system has been successfully built and installed 
the optative descriptions become indicative—the wishes come true. It would 
be very inconvenient if the descriptions themselves then had to be rewritten. 
The contextual information on which we rely is, so far, quite informal; but in 
a practical development environment it should be formalised. In this paper we 
distinguish the moods of descriptions by giving indicative descriptions names of 
the form INDn, and optative descriptions names of the form OPTn. We also use 
definitions of new (undesignated) terms. Definitions may appear in indicative 
descriptions, where they may rely on the truth of the indicative assertion. They 
may also appear in separate, purely definitional. descriptions, whose names are of 
the form DEFn.

We begin here with two indicative properties. The first of these properties is 
that Push and Enter events alternate, starting with Push. A visitor can not Enter 
without first Pushing; the next visitor can not Push until the first has Entered. 
This property is described in a Finite-State Automaton:

The state names PEO and PE1 do not refer to designated phenomena: they 
are defined in this indicative description. The description asserts only a constraint 
on the ordering of Push and Enter events. It could be falsified by observation of 
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the environment—for example if the sequence <Push,Push> were found to be 
possible. The property asserted is purely a safety property: the description would 
still be true if no Push or Enter event ever occurred.

The second indicative property is that if Lock and Unlock events alternate, 
starting with Unlock, then a Push event can occur only after an Unlock and before 
the next Lock. This too is a safety property, but its description needs a little care. 
We do not know, and therefore must not describe, what will happen if Lock and 
Unlock events do not alternate in the stated way. Possibly the turnstile mechanism 
will break; perhaps events not fitting the pattern will be ignored; perhaps the 
mechanism will become permanently locked or permanently unlocked.

So we make this description in two stages. In the first we define three states of 
the mechanism. LU2 is the state reached when the alternation has been broken. 
LU0 and LU1 are the two alternating states in which the alternation has been (so 
far) maintained:

This description is purely definitional. It has an outgoing arc in each state for 
each kind of event, and so imposes no safety constraint on the event occurrences. 
Nor is it intended to express any liveness property: there is no implication that 
the initial state, or any other, will not persist indefinitely. The states LU0, LU1 
and LU2 do not appear in the designation set. Nothing in this description DEF1 
could be falsified by observation of the environment.

These definitions can now be exploited to assert a safety property:

(IND2)  ∀ e,v • (LU0(v) ∧ Ends(e,v) )  → ¬ Push(e)
This description asserts that if LU0 holds in interval v, and v is ended by an 

event e, then e can not be a Push event: in other words, Push events are impossible 
in state LU0. The assertion could be falsified by environment observation—
for example, if a Push were found to be possible before the first Unlock. The 
description exploits the definition of the states, both to assert the safety property 
concerning Push events and to limit the assertion to the known cases. If we later 
discover that Lock or Unlock events not fitting the alternating pattern will be 
ignored, we can add further definition and description to capture the resulting 
properties without changing or contradicting what we have already said. This 
kind of technique is essential to effective separation of concerns.
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6. Requirements
It is the customer’s prerogative to determine the requirements. Essentially, 

there are two simple requirements: that no-one should enter without paying; and 
that anyone who has paid should be allowed to enter.

Our customer does not require that payments alternate with entries: that 
would inconvenience school teachers in charge of groups of children. So the first 
requirement is simply that entries should never exceed payments. Assume that 
we have defined predicates Push#(v,n), Enter#(v,n) and Coin#(v,n), meaning that 
the count of Push, Enter and Coin events respectively preceding interval v is n. 
(Like the states PE0 and PE1, and LU0, LU1, and LU2, these are not newly 
designated environment phenomena: their definitions are based purely on the 
previously designated phenomena.) The first requirement can then be stated:

(OPT1)  ∀ v,m,n • (Enter#(v,m) ∧ Coin#(v,n))  → m ≤ n
The second requirement is that visitors who pay are not prevented from 

entering the zoo. Strictly interpreted, this requirement is unimplementable: they 
may be prevented by other visitors ahead of them in the queue, or by a police 
cordon, or by their own inability or unwillingness to perform the Push action 
that must precede the Enter event that admits them. Intuitively, it means that the 
machine will not prevent their entry. For now, we can state this requirement very 
informally as:

(OPT2)  ∀ v,m,n • 

(Enter#(v,m) ∧ Coin#(v,n) ∧ m < n)  →
`the machine will not prevent another Enter event'

Later we will make it precise in the form of a specification of the machine 
behaviour. Like many requirements, this requirement seems very difficult to 
formalise solely in terms of phenomena that are important to the customer 
[ Johnson 88]. A precise statement must await refinement in terms of the turnstile 
mechanism.

7. Specifications
A requirement describes a desired relationship among environment 

phenomena; a specification describes a desired behaviour of the machine in the 
environment. To be a specification, a requirement must observe at least these 
rules:

(a) All environment phenomena mentioned in the requirement are shared with 
the machine. That is, the specification is located entirely at the interface 
between the machine and the environment.

(b) All phenomena required to be constrained are directly machine-controlled. 
That is, the implementor will not need to reason about environment 
properties to achieve execution or inhibition of events: the machine can 
execute, or refrain from executing, the actions directly.
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(c) All required constraints on events are expressed in terms of preceding events 
or states in preceding intervals. That is, the conditions for executing, or not 
executing, an event can be evaluated in a suitably defined current state and 
do not involve reasoning from a subsequent state.

The two requirements stated in the descriptions OPT1 and OPT2 express 
the customer's intention, but they are not specifications. Both are expressed in 
terms of Enter events, which are not shared: so they break rule (a).

To realise OPT1 the machine must either compel Coin events or prevent 
Enter events. Coin events are shared phenomena, but they are environment-
controlled. If, then, we interpret OPT1 as requiring the machine to enforce Coin 
events, it fails as a specification by rule (b): it requires constraints on phenomena 
that are not machine-controlled.

OPT1 also constrains the state in every interval, including those that are still 
in the future. When the machine executes, or refrains from executing, any event, 
it must ensure that OPT1 will hold afterwards. A requirement based in this way 
on a future state, even if refined to a form in which it infringes neither rule (a) nor 
rule (b), can not be a specification by rule (c).

Our strategy for obtaining a specification from a requirement is to make 
explicit use of the indicative environment properties. Denoting the requirement, 
specification, and environment properties by R, S, and E respectively, for a given 
R and E we seek S such that:

S, E ⊢ R
Satisfaction of the requirement can be deduced from satisfaction of the 
specification together with the indicative environment properties.

Considering OPT1, we know of no environment property by which the 
machine could ensure the occurrence of Coin events. Therefore it must instead 
act to prevent Enter events. We must rely on the safety properties described 
in IND1—the alternation of Push and Enter events, and in IND2—the 
impossibility of Push events occurring after certain sequences of Lock and 
Unlock events. Our specification will require the machine to perform Lock and 
Unlock events so that certain Push events, and hence the undesired Enter events, 
do not occur.

The first step is to obtain a form of OPT1 that does not involve Enter events. 
From the indicative description IND1 we can immediately derive:

(IND3)  ∀ v,m,n • (Enter#(v,m) ∧ Push#(v,n))  → n−1 ≤ m ≤ n
That is: at all times Push#–1 ≤ Enter# ≤ Push#. This property allows us to 
obtain OPTla, expressed in terms of Push# (whose definition depends on shared 
phenomena), rather than of Enter# (whose definition depends on unshared 
phenomena):

(OPT1a)  ∀ v,m,n • (Push#(v,m) ∧ Coin#(v,n))  → m ≤ n 

OPT1a is a strengthening of OPT1. The requirement OPT1 is, informally, that 
at all times Enter# ≤ Coin#. OPT1a specifies the stronger condition that at all 
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times Enter# ≤ Push# ≤ Coin# (the first part of the inequality being guaranteed 
by IND3). The strengthening is inevitable. If Push# > Coin# were ever allowed 
to hold, the environment possesses no properties by which Enter# > Coin# could 
then be prevented: once a Push has occurred the subsequent Enter can not be 
stopped; and a further occurrence of Coin can not be enforced.

To satisfy the requirement OPT1, then, the machine must ensure that Push# 
never exceeds Coin#. By an obvious piece of reasoning necessitated by rule (c), we 
refine this to the requirement that when Push# already equals Coin# the machine 
must prevent a further Push at least until after a further Coin event. How can 
Push events be prevented by the machine?

IND2, together with the definitional description DEF1, constrains Push 
events provided that the alternation of Lock and Unlock events is maintained: in 
the absence of this alternation we can say nothing. So we require the machine’s 
behaviour to satisfy the following safety specification:

 If the machine behaviour has this property, we can be sure that LU2 will 
never hold. In any interval either Pushes are impossible because LU0 already 
holds, or LU1 holds and the machine can reach LU0 by causing a Lock event.

Now we can refine OPT1 (in its strengthened form OPTla). The refinement 
is to a safety property and a liveness property. The safety property is:

(OPT4)  ∀ v,e,n • 

(LU0(v) ∧ Push#(v,n) ∧ Coin#(v,n) ∧ Ends(e,v))  → ¬Unlock(e)
If LU0 holds and Push# equals Coin#, the machine must not unlock the turnstile. 
Push events are impossible while LU0 holds, so the turnstile will eventually be 
unlocked only after another Coin event, as we might expect.

The liveness property is that the machine must perform a Lock event in certain 
states. The relevant states are defined by a predicate on intervals:

(DEF2)  ReqLock(v) ⩠ 
LU1(v) ∧ ∃ n • (Push#(v,n) ∧ Coin#(v,n))  

The liveness property is that if ReqLock holds—that is, if the turnstile is 
unlocked and Push# equal Coin#—the machine must perform a Lock event in 
time to prevent a further Push (and thus a further Enter) event.

If we were to adopt the reactive systems hypothesis (the commonly adopted 
assumption that the machine will react to each stimulus from the environment 
before the next stimulus occurs), we would say simply that in state ReqLock 
the machine must perform a Lock event. But there are important real-time 
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considerations here. We will return to this point—and state the liveness property 
exactly—in the next section.

The refinement of OPT2 is somewhat analogous to that of OPT1. The 
machine must ensure that the indicative safety property IND2 does not prevent 
Push events when there is a coin in credit. Again there is both a safety property 
and a liveness property. The safety property is:

(OPT5)  ∀ v,e,m,n • 

(LU1(v) ∧ Push#(v,m) ∧ Coin#(v,n) ∧ (m < n) ∧ Ends(e,v)) 
 → ¬Lock(e)

If LU1 holds—the turnstile is unlocked—and there is a coin in credit, the 
machine must not lock the turnstile. The condition in which Lock events are 
forbidden will cease to be true when an excess of subsequent Push events over 
Coin events uses up the credit. The liveness property is that the machine must 
perform an Unlock event in certain states. The relevant states are defined by a 
predicate on intervals:

(DEF3)  ReqUnlock(v) ⩠ 
LU0(v) ∧ ∃ m,n • (Push#(v,m) ∧ Coin#(v,n) ∧ m < n)  

The liveness property is that if ReqUnlock holds—that is, if the turnstile is 
locked and there is a coin in credit—the machine must perform an Unlock event. 
Again, there is a real-time consideration, and we will state the liveness property 
exactly in the next section.

8. Real time
We return now to the point deferred above in discussing the statement of the 

liveness properties in the refinements of OPT1 and OPT2.
The refinement of OPT2 must be more than a specification that in state 

ReqUnlock the machine will eventually perform an Unlock. It must ensure that 
that state, in which some visitor has paid but has not yet been enabled to Push, 
does not persist unreasonably long. We may express this quite directly in an 
optative description:

(OPT6)  Duration[ReqLock] < 250
The visitor must be enabled to Push within 250 msecs of paying. OPT6 

specifies that the machine must terminate a ReqUnlock state within the time limit. 
Its only means of doing so, by virtue of DEF3, is to exit from state LU0. By DEF1 
and OPT3, that means it must execute an Unlock event. (The environment can 
not terminate a ReqUnlock state: it can not initiate an Unlock event to terminate 
LU0; and while LU0 holds it can not initiate a Push.)

The refinement of OPT1 discussed above led us to the specification that in 
state ReqLock the machine must perform a Lock event soon enough to prevent 
another Push event: that is the whole point of the requirement. Clearly, we can 
satisfy this requirement only if the environment guarantees a sufficient real-time 
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delay for the machine to respond. Further investigation of the turnstile reveals 
that hydraulic damping guarantees delays of at least 750 msecs between a Push 
and a following Enter, and at least 10 msecs between an Enter and a following 
Push:

(IND4)  Duration[PE0] ≥ 10 ∧ Duration[PE1] ≥ 750
At least 760 msecs will therefore intervene between successive Push events, 

and the necessary refinement of the liveness part of requirement OPT1 is:

(OPT7)  Duration[ReqLock] < 760
The freedom to delay the Lock event is important for smooth and efficient 

working of the turnstile. The machine may wait in state ReqLock, within the 
limit of 760 msecs, in order to increase the probability that another Coin event 
will intervene to cause an exit from the ReqLock state and so make the Lock 
unnecessary. A machine that does so is preferable to a machine that performs the 
Lock event immediately.

The preferable machine is not readily specifiable under the reactive system 
hypothesis. The virtue of the reactive systems hypothesis is that we can avoid 
real-time considerations in writing requirements and specifications. Everything 
that the machine must do to satisfy the requirement is assumed to be done fast 
enough. Or, equivalently, everything that the environment might do to frustrate 
the requirement is assumed to happen too slowly to do so. The disadvantage is 
that it becomes very inconvenient to specify that the machine should wait in 
case another stimulus arrives to countermand the effect of a previous stimulus. 
Our technique of defining states avoids this disadvantage, and allows us to deal 
reasonably directly with real-time considerations. 

9. Satisfaction of the requirement 
In the entailment

S, E ⊢ R
mentioned in Section 7 above, the requirement R is OPT1 and OPT2. The 
specification S is OPT3, OPT4, OPT5, OPT6, and OPT7. The environment 
properties E are IND1, IND2 and IND4 (IND3 being deduced from IND1). 
Assuming the definitions DEF1, DEF2, DEF3, the entailment is therefore

IND1,IND2,IND4,OPT3,OPT4,OPT5,OPT6,OPT7 ⊢ OPT1 ∧ OPT2
To prove satisfaction of the requirement is to prove this entailment. OPTIa will 
be a lemma in this proof.

The derivation steps presented in this paper are, of course, somewhat too 
informal to constitute a proof of satisfaction. Most notably, some subtleties in the 
relationship of Push and Enter events were ignored in the refinement of OPT2. 
The requirement ‘The machine will not prevent another Enter event’ is satisfied 
by a specification in which the machine unlocks, or refrains from locking, the 
turnstile, thus enabling the visitor to perform a Push event, following which the 
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visitor is automatically enabled to execute an Enter event.

10. Related work
Many researchers in requirements engineering are interested in achieving a 

fuller understanding of the relationship between requirements and specifications. 
In this section we compare our ideas to those of four closely related papers.

[Feather 91] is agent-oriented; it envisions systems that are mixtures of 
human, software, and hardware agents, taking responsibility for various goals 
and subgoals. We recognize only two agents—environment and machine—and 
their multiple agents are clearly a decomposition of our two. We emphasise a 
fixed environment that must be fully accommodated by the machine, while 
Feather, Fickas, and Helm emphasise a environment that is “designed” along with 
the machine. Both are legitimate viewpoints for requirements engineering (and 
we certainly don’t intend to limit ourselves to only one of them), but they are 
irrelevant to this comparison. We are concerned here chiefly with the technical 
issue of how requirements and specifications differ, and how are they related. For 
a precise comparison, it is necessary to factor out this difference in viewpoint.

They mention four key transformations by which agent specifications are 
obtained from requirements or goals:

(a) Brinksmanship: identify actions that could cause a constraint to be violated, 
add components to exert control over these actions, assign some agent to be 
the controller.

(b) Spatial split: split goal responsibility into pieces assigned to separate agents.
(c) Indirect access: agent B needs some information it does not have direct access 

to; agent A gets it and communicates it to B.
(d) Responsibility accumulation: assigning multiple responsibilities to the same 

agent.

Spatial split and responsibility accumulation concern a level of detail that 
is lower than our scheme—decomposition of the environment and machine 
agents. We would expect such separations of concerns to be reflected in separate 
descriptions; but these separations are not needed to explain the difference 
between requirements and specifications.

Brinksmanship is reminiscent of our rule concerning requirements that are not 
specifications because they constrain environment-controlled phenomena. But 
brinksmanship concerns only safety properties, while our rule includes liveness.

Indirect access is reminiscent of our rule concerning requirements that are not 
specifications because they use unshared phenomena; but it requires the use of an 
active operational agent to maintain the relation ship between the unshared and 
the shared phenomena In our view this relationship must be described explicitly, 
but need not be attributed to an active agent.

In summary, we find our scheme simpler because it does not depend on 
decomposition of agents, and does not introduce them when not needed. It seems 
to be more comprehensive because it includes such things as liveness requirements 
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on environment-controlled phenomena. It also seems to be more systematic 
because it is not an empirically discovered collection, but rather is based on the 
exhaustive classifications into shared and unshared, and environment-controlled 
and machine-controlled phenomena.

[Feather 94] extends the work reported in [Feather 91], concentrating on 
bringing a number of formal techniques to bear on the derivation of specifications 
from requirements. In particular, Feather exploits a finite differencing 
transformation, calculation of weakest preconditions, weakening of invariants, 
and the unfolding of invariants into guarded commands. Use of such formal 
techniques assists refinement by reformulation of previously stated requirements. 
It complements the exploitation of indicative environment properties that is a 
central feature of our approach.

Feather also discusses a form of our distinction between shared and unshared 
phenomena. Agents in the environment—in his example, railway trains—may 
be unable to evaluate a predicate that guards one of their actions. For example, 
a train does not ‘know’ whether there is another train in the next track segment.

The scheme of [Dubois 89] is based on bilaterally controlled actions, which we 
consider unrealistic. They are also prone to unnecessary semantic complications, 
such as the distinction between external and internal (hidden) nondeterminism 
in [Abadi 93]. Further, Dubois’s scheme requires a cumbersome and nonstandard 
logic.

In many ways, Johnson’s work on deriving specifications from requirements 
[ Johnson 88] is the closest to ours philosophically. Johnson's transformation of 
“removing the perfect knowledge assumption” has exactly the same purpose as 
our rule about requirements that are not specifications because they use unshared 
phenomena. Also, his transformation of “defining capabilities” has exactly 
the same purpose as our rule about requirements that are not specifications 
because they constrain environment-controlled phenomena. (Incidentally, these 
transformations have roughly the same purpose as the “operationalization” 
goals IsEvaluable and IsAchievable in [Mostow 83]. But Mostow’s work focuses 
on automated problemsolving, and thus assumes—if applied to requirements 
engineering—that the domain is as malleable as the machine.)

One difference is that [ Johnson 88], like [Feather 91], is agent-oriented 
rather than description-oriented. Also, Johnson describes requirements as being 
edited until they become specifications. Our characterization of requirements 
and specifications as distinct optative descriptions, linked by the indicative 
descriptions that cause the specification to imply the requirement, is more general: 
it embraces other considerations such as the reuse of existing specifications.

We feel that we have added significantly to Johnson’s notion of “defining 
capabilities” by explaining the precise circumstances under which agents have the 
wrong capabilities (an optative description constrains environment-controlled 
phenomena) and the precise remedy for the problem (there must be indicative 
descriptions linking machine-controlled phenomena to the relevant environment-
controlled phenomena).
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11. Conclusions
We have explained a distinction between requirements and specifications. Both 

are expressed in terms of environment phenomena. A requirement is expressed 
in terms of phenomena and relationships that are of direct interest to the 
system’s customers and users, while a specification is restricted to implementable 
behaviour of a machine that can ensure satisfaction of the requirement. The gap 
between the two is bridged by reasoning based on environment properties that 
can be relied on independently of the machine’s behaviour.

This view leads to an emphasis on careful expression of environment 
properties. We separate indicative from optative properties—those that can be 
relied on from those that the system must bring about. We separate definition 
from assertion, and designated phenomena from defined terms. We pay explicit 
attention to control, and express liveness properties in terms of real time.

We have illustrated our ideas with a simple control system example. We 
believe that other kinds of problem will demand application of the same ideas, 
albeit in different contexts and expressed in different languages. In some cases a 
structuring of the environment into domains will be necessary. Larger problems, 
of realistic complexity, will additionally demand a decomposition into simple 
problems, and a recombination of the resulting solutions.
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