
The StratoSIP Manual

Pamela Zave, Gregory W. Bond, Eric Cheung, and Thomas M. Smith
AT&T Laboratories—Research, Florham Park, New Jersey USA

16 April 2012

1 Introduction

StratoSIP (“SIP at a very high level”) is a domain-
specific language for programming SIP applications.
This manual documents Version 1.0 of StratoSIP.

The runtime environment for a StratoSIP program
is a SIP Servlet container [6]. StratoSIP is compiled
into ECharts for SIP Servlets (E4SS) [3]; E4SS is, in
turn, compiled into Java.

StratoSIP is designed to enable all application pro-
grammers, even those with minimal knowledge of
SIP, to program SIP applications easily and correctly.
At the same time, it provides SIP experts with suf-
ficient control over the detailed signaling behavior of
their programs.

This manual is also designed to serve both audi-
ences. Its main text is intended for ordinary appli-
cation programmers. For SIP experts, there is sup-
plementary information in two places. Any section
may have a supplementary part at the end labeled
“For SIP experts”. In addition, footnotes clarify
statements in the main text that might seem over-
simplified and therefore confusing to a SIP expert.

2 The StratoSIP view of SIP

2.1 Dialogs

In SIP, an address is a Universal Resource Indicator
(URI). In SIP a URI typically represents a person or
a telecommunications device.

A StratoSIP program manipulates SIP Invite di-
alogs, or dialogs for short. Intuitively, a dialog corre-
sponds to a telephone call between people or a mul-
timedia session between telecommunications devices.

A dialog begins when a SIP entity, the initiator of
the dialog, sends an initial Invite message. An invite
message can have many fields. In the current version
of StratoSIP, the two most important fields are its
From field, called its source here, and its Request URI
field, called its destination here. The source and des-
tination fields of an invite message are of type URI.

The invite message is routed to another SIP en-
tity, the potential acceptor of the dialog, where it is
treated as a request that elicits a success or failure
response. If the response is failure, then there is no
dialog (and the response carries the reason for the
failure). If the response is success, then a dialog is
established. In addition, it is presumed that the two
endpoints of the dialog are ready and able to have
media communication with each other. The dialog
persists until it is destroyed at the instigation of one
of its endpoints, at which time the media channels
are also torn down.

A dialog can be associated with any number of me-
dia channels of any media. These channels are se-
lected by the endpoints, and the selection can change
during the life of the dialog. In the current version
of StratoSIP, all the media channels of a dialog are
treated alike and handled as a bundle by the language
features. The examples in this manual can be under-
stood most easily by assuming that each dialog has
a single two-way voice channel and possibly a single
two-way video channel.

StratoSIP 1.0 handles the messages and behaviors
in the basic SIP standard [8]. It also includes the Info
message, which is defined in an extension [2].

For SIP experts:
StratoSIP is a language for manipulating invite di-

alogs and controling media streams, and therefore
does not handle Register and Options requests, al-
though they are defined in the basic standard.

Many extensions to the basic SIP standard have
been defined [7], but they are not necessary for the
StratoSIP mission. The power and generality of basic
SIP for controling media streams can be seen from the
examples and comparisons in [12].

2.2 Back-to-back user agents

A StratoSIP program is instantiated and run as a
concurrent process. Each such instantiation is called
a box. From the perspective of SIP, a box is a back-
to-back user agent or B2BUA. From the perspective
of a SIP Servlet container, a StratoSIP program is an

1

application, and a box is a SIP application session.
From the perspective of Java, a StratoSIP program is
a Java class definition, and a box is a class instance.

B2BUAs are powerful SIP entities. As such, they
require a slightly richer vocabulary of concepts than
used in Section 2.1. For example, Figure 1 illustrates
one of the ways that B2BUAs can be invoked in a
SIP Servlet container.

source
app

destina-
tion
app

A
A

B
B

1 2 3

Figure 1: Source and destination applications in-
voked on the same call. All three dialogs have source
= A and destination = B.

The figure shows a call from a caller device with
URI A to a callee device with URI B. To implement
the call, there are three numbered SIP dialogs and
two B2BUAs or boxes. The leftmost box is the accep-
tor of dialog 1 and the initiator of dialog 2. The right-
most box is the acceptor of dialog 2 and the initiator
of dialog 3. Although the boxes are the endpoints of
some dialogs, only the devices are the endpoints of
media streams. Any media control performed by the
boxes is done on behalf of the devices.

In a SIP Servlet container, a URI can subscribe to
a particular application in the source region, the des-
tination region, or both. If a container is handling an
invite message with source = A, and A subscribes to
a StratoSIP application in the source region, then the
container will instantiate the StratoSIP program as a
box and route the invite message to it. Similarly, if a
container is handling an invite message with destina-
tion = B, and B subscribes to a StratoSIP application
in the destination region, then the container will in-
stantiate the StratoSIP program as a box and route
the invite message to it. This is called application
routing.

The SIP Servlet standard provides a small amount
of history in invite messages so that applications can
be invoked correctly. For example, the configuration
of Figure 1 would arise in a container with an appli-
cation subscribed to by A in the source region and
an application subscribed to by B in the destination
region. The history is needed to differentiate the in-
vite messages of the three dialogs; although each has
the same source and destination fields, each must be
routed to a different SIP entity.

The SIP Servlet standard allows the deployer of
a container to choose its application router. Some

application routers might invoke applications based
on different fields of the invite message, or on differ-
ent criteria altogether. The examples in this manual
all assume application routing based on source and
destination fields, however.

It is possible to decompose a source or destina-
tion application into multiple modular applications,
because a SIP Servlet container will automatically
compose the modules at runtime. This capability is
called application composition. StratoSIP’s support
for application composition is discussed in Section 9.
Note that application composition can mix B2BUAs
and proxies freely.

3 Language overview

3.1 Text and graphical views

Figure 2 is an example StratoSIP program for the
Redirect to Voice Mail (RVM) application. RVM be-
haves transparently while it waits for the outcome
of a call. If the call succeeds, then RVM continues
to behave transparently. If the call fails, then RVM
connects the caller with a voicemail server, which will
prompt for and record voicemail from the caller. In
the program, comments, user-chosen identifiers, and
white space follow the same lexical rules as in Java.
Embedded Java code is delimited by <*...*>.

A program in StratoSIP may begin with an
optional package definition having the same syntax
as a Java package definition. Next, there can be an
optional block of embedded Java code containing
package imports (neither of these pieces is shown in
Figure 2). The essential part of the header takes one
of these forms:

free box boxName
bound box boxName

Box names have their own namespace, so these
can overlap with other names used in the program.
The box name may be followed by optional Java
parameters, enclosed in parentheses. The parameters
may be followed by an optional block of Java code for
an inheritance declaration (not shown in Figure 2).

After these headers, the program contains sections
in any order. Each section begins with a section type,
and is delimited with set brackets. There must be at
least one section of type declarations and at least
one section of type graph. There can be one or zero
initialization sections.

The appendix is a complete grammar of the
StratoSIP language. It also includes name spaces and
reserved words.

2

free box RedirectToVoiceMail

(<* RvmToJava rvmToJava *>)

declarations {

Dialog i, o, v;

<* URI voicemail *>;

}

initialization {

<* voicemail =

rvmToJava.getVoicemailResourceURI() *>;

}

graph {

initial state Init;

transition Init -> rcv(i) / o = ctu(i)

-> Waiting;

stable state Waiting { i <> o };

transition Waiting -> succeeded(o)

-> Transparent;

transition Waiting -> ended(o) /

v = new(<* voicemail *>)

-> Redirected;

stable state Transparent { i <> o };

stable state Redirected { i <> v };

}

Figure 2: Example StratoSIP program for the RVM
application.

Figure 3 is another view of the StratoSIP RVM
program. This is a graphical notation that we often
use to display the graph sections of a program. The
graphical notation for each concept will be introduced
along with the concept.

3.2 Additional context and instantia-
tion

In addition to sending and receiving messages
through SIP dialogs, a box can receive messages from
Web services and other Java components through
non-SIP interfaces. A box can communicate with
timers by sending and receiving messages. SIP di-
alogs, non-SIP interfaces, and timers are all similar
in the StratoSIP syntax. In each case, a box receives
messages through an input queue associated with the
entity, and sends messages through an output queue
associated with the entity.

Waiting
i < > o

i < > o
Transparent Redirected

i < > v

rcv(i) /
o = ctu(i)

succeeded(o)

ended(o)
/ r = new

(<*voicemail*>)

Figure 3: A graphical view of the StratoSIP RVM
program.

Furthermore, a StratoSIP program can contain or-
dinary Java code through which a box accesses (in-
vokes methods in) Web services, databases, and other
Java components.

StratoSIP programs are usually instantiated by an
application router running in the SIP Servlet con-
tainer (the exception is discussed below). Applica-
tion routers process initial invite messages, which are
the ones that create dialogs. This processing often
includes program instantiation.

A StratoSIP program must be declared in its
header as either bound or free. The difference arises
when an application router decides to route an ini-
tial invite to an application defined by a StratoSIP
program, on behalf of a subscriber URI. If the appli-
cation is defined by a free StratoSIP program, then
the router makes a fresh instance of the program, and
puts the invite in this instance’s router input queue.

If the application is defined by a bound StratoSIP
program, on the other hand, the program can have at
most one instance at a time for each of its subscribers.
If it is already instantiated for the subscriber, then
the router routes the invite to the existing instance
rather than make a new one. As with new instances,
the router puts the invite in this instance’s router
input queue.

As a consequence of this difference, an instance of
a free program can receive at most one initial invite
message per instance, while an instance of a bound
program can receive any number.

Occasionally the input message that causes instan-
tiation of a program is a non-SIP message rather than

3

a SIP invite. The instantiating program, which may
be a Web service, is responsible for choosing and in-
stantiating the program, creating an association be-
tween itself and a non-SIP interface in the box, and
putting the message in the interface’s input queue.

For SIP experts:

In the terms of the SIP Servlet standard, a box or
program instance is a SIP application session. Bound
boxes are implemented using the session key mecha-
nism in SIP Servlet containers.

3.3 Object classes

Variables of all types used in a StratoSIP program
must be declared in a declarations section. Declara-
tions have a Java-like syntax, as shown in Figure 2.

StratoSIP has four built-in object classes Dialog,
Message, Timer, and NonSipInterface. Objects of
these classes have very particular language-specific
semantics, which are explained in Sections 4, 5, 6,
and 7, respectively. Variables of these types cannot
be initialized in an initialization section.

The built-in object classes have corresponding Java
classes of the same names. Furthermore, the Dialog
and Message classes offer interfaces that can be used
by StratoSIP programs in embedded Java code. For
example, methods of the Java Dialog class can be
used to access the history of a dialog, and methods
of the Java Message class can be used to manipulate
SIP messages.

In addition to the four object classes native to
StratoSIP, there are two domain-specific Java classes
used in StratoSIP programming: URI and Message-
Modifier. Variables of type URI and MessageModi-
fier, as well as ordinary Java classes, can be initial-
ized using embedded Java code in an initialization
section. Programmer interfaces to the Java object
classes Dialog, Message, URI, and MessageModifier
are described in Section 8.

A StratoSIP program is compiled into a Java class
which is a subclass of the Java class Box. All the
local variables of a box, whether built-in or declared,
are variables of this subclass and may be accessed by
the programmer.

3.4 States and annotations

At the top level of control, a StratoSIP program is
a finite-state machine. All the states and transitions
of the finite-state machine are found in the graph

sections of the program. Graph sections, states, and
transitions can be in any order, as their textual order
has no significance.

A state is introduced with a statement in one of
these forms:

initial state stateName ;

stable state stateName { annotation } ;

transient state stateName ;

terminal state stateName ;

State names have their own namespace, so they can
overlap with other names used in the program.

A program must have exactly one initial state.
When a program is first instantiated, its initializa-
tion section is executed (if any), and then it enters
its initial state. An initial state has no in-transitions,
and must have out-transitions.

A program can have any number of terminal states,
which have in-transitions but no out-transitions. A
program need not have any explicit terminal states,
because termination is often handled implicitly.

A program can have any number of stable and tran-
sient states, each with in- and out-transitions. When
a program is quiescent in an initial or stable state,
it is examining its input queues for input messages,
and will react as soon as it finds a non-empty queue
and reads its first message. If more than one input
queue contains a message, the program will choose
one nondeterministically and read its first message.
A program in a transient state, in contrast, does not
react to inputs.

In a graphical view, the initial state is represented
as a black dot, stable states are ovals, transient states
are small circles, and terminal states are black bars.
Figure 4, which is the program for the Quiet Time
(QT) application, has initial, stable, and terminal
states. QT prompts the caller to find out whether
the call is urgent or not. If urgent, the box allows
the call to proceed and behaves transparently. If not
urgent, the box causes failure.

Stable states must be annotated as well as named.
These annotations have the important function of
declaring the desired media states of the devices to
which its SIP dialogs connect.

For example, in the waiting and transparent states
of RVM, i and o are dialog variables referring to the
program’s two current SIP dialogs. The annotation
i < > o declares the programmer’s intention that the
endpoint devices reached by these dialogs should be
connected. The details of the media channels will
be negotiated using SIP signals not visible to the
StratoSIP programmer.

There are also state annotations concerning signal-
ing and timers; see Sections 5 and 6, respectively.

4

Prompting
i <~> r /

i < > o
Transparent

rcv(i) /
r = new(<*VXMLresource*>)
 [<*QTscript*>]

i, r

r?Info[<*isUrgent(msgIn)*>]
/ r!InfoSuccess(msgIn);
end(r);
o = ctu(i)

r?Info
 [<*! isUrgent(msgIn)*>]
/ r!InfoSuccess(msgIn)

Figure 4: StratoSIP program for the Quiet Time
(QT) application. The black dot is the initial state,
the ovals are stable states, the black bar is a terminal
state, and the arrows are state transitions.

3.5 State transitions

A state transition always has a current state, guard,
and next state. It may also contain a sequence of
actions, internally separated with semicolons and
separated from the guard with a slash. The usual
syntax of a transition is:

transition

currentState -> guard /actionSequence -> nextState ;

Note that the slash and action sequence are
optional.

A transition is triggered when its current state
matches the current state of the program, and its
guard becomes true. It is executed as follows:

1. If the transition contains actions, execute them
in the order listed.

2. If there are any entrance actions associated with
the next state of the transition, execute them.

3. Enter the next state.

Note that entrance actions are implicit in StratoSIP
semantics, rather than being programmer-defined.
An example of an entrance action is given in Sec-
tion 3.8.

In a graphical view, a transition is represented as
an arrow from its current state to its next state. The
guard and action sequences of the transition are writ-
ten as a label on the arrow.

3.6 Guards

Transitions out of initial or stable states and transi-
tions out of transient states have different guards. A
guard out of an initial or stable state has the form:

inputPredicate [messagePredicate]

where the message predicate and its enclosing
brackets are optional.

An input predicate is made true by the reading of
a message in an input queue. All the input predicates
are built-in and domain-specific; they are discussed in
Sections 4 through 7 and listed in the grammar. Mes-
sage predicates, on the other hand, are always Java
code that evaluates to a boolean. Within a message
predicate, the received message can be referred to by
using the built-in variable msgIn of type Message. If
a guard has both predicates, then it is true only if
both predicates are true of the same input message.

The triggering of transitions out of initial or stable
states works as follows:

1. Choose a non-empty input queue, read the first
message from it, and assign this message to
msgIn.

2. Find a transition from the current state whose
guard is made true by the input message. If more
than one transition has a true guard, choose one
nondeterministically.

3. If the chosen true guard has side-effects, execute
them.

4. Execute the remainder of the transition as spec-
ified in Section 3.5.

It is very important to note that the StratoSIP se-
mantics defines a default, implicit transition from ev-
ery state on every possible input message. These im-
plicit transitions can be over-ridden by explicit tran-
sitions written in the program. Because of these de-
fault transitions, all StratoSIP programs can handle
any input at any time. This guarantees they have
the property of being input-enabled, which in turn
guarantees that they cannot deadlock.

Implicit transitions on input messages, out of ini-
tial and stable states, are discussed in Sections 4.2
(initial invites), 4.4 (media control), 4.6 (dialog ter-
mination), and 5.2 (status messages).

5

Transitions out of transient states are guarded by
state predicates enclosed in brackets. Most state
predicates are written in Java, although there are
two built-in ones (see Section 4.5). As soon as a pro-
gram enters a transient state, these predicates are
evaluated in the context of the current state vari-
ables, and a transition whose guard is true is exe-
cuted. The guard ! represents the negation of the
disjunction of the state predicates guarding all other
out-transitions from the same state, so it acts as an
“else.” A transient state must always have one out-
transition guarded by !.

3.7 Actions

Most actions are built-in and domain-specific. Ac-
tions can:

• create dialogs (Section 4.3),
• destroy dialogs (Section 4.6),
• re-assign dialog variables (Section 4.7),
• send status messages within dialogs (Section 5.1),
• alter implicit handling of status messages (Sec-

tion 5.2),
• set and cancel timers (Section 6),
• and send messages through non-SIP interfaces

(Section 7).

An action can also consist of embedded Java code.
All actions are listed in the grammar.

Actions that send messages can be enhanced by
programmer-defined message modifiers. Semanti-
cally, a message modifier is an object of type Message-
Modifier that can modify messages. Syntactically, a
message modifier is enclosed in brackets and written
as embedded Java code (which must evaluate to an
object of type MessageModifier). The various uses
of message modifiers are explained in context. The
MessageModifier class is documented in Section 8.

Many elements of StratoSIP have argument lists,
which are always delimited by parentheses. An
argument list may have one required argument,
which must be listed first if present. An argument
list may also have one or more optional arguments,
which may be listed in any order after the required
argument. Optional arguments are identified by field
names. For example, here is a language element with
one required argument and one optional argument:

ctu(dlg, src = <*myURI*>)

The optional argument with field name src re-
quires a value of type URI. Although myURI is just
a variable name, it must be delimited as Java code
because variables of type URI are not native to
StratoSIP.

At the end of the grammar in the appendix, a table
gives the required and optional arguments for each
language element with an argument list.

3.8 Program termination

A terminal state is one in which a StratoSIP pro-
gram can terminate. Every terminal state has an
implicit entrance action that ends all active SIP di-
alogs. There are no explicit transitions out of termi-
nal states.

Typically, a box in a terminal state lives long
enough to handle (automatically) all the messages
needed to clean up the ended dialogs, then termi-
nates and is destroyed.

It is possible for a box in a terminal state to re-
ceive messages other than the ones related to ended
dialogs. Messages from timers and non-SIP interfaces
will be ignored.

The one special case occurs when a bound box in
a terminal state receives a new initial invite mes-
sage. In this case the box goes immediately into its
initial state, from which the box reacts to the mes-
sage. When the box moves from the terminal state
to the initial state, the initialization section is not re-
executed, and the Java state does not change. Mean-
while the cleanup of ended dialogs continues in the
background.

3.9 Completeness and correctness

SIP is a very complex protocol. Even for experts,
it is extremely challenging to program a SIP appli-
cation that conforms perfectly to the SIP standard,
handles all possible events and conditions correctly,
and reliably implements the desired functions.

StratoSIP programmers do not have to worry
about this complexity, because the language handles
it automatically. By means of defaults and runtime
libraries, the StratoSIP implementation provides the
following guarantees:

• All transactions are completed correctly.
• All dialogs are terminated correctly.
• All SIP race conditions are handled correctly.
• All runtime failures are handled correctly.
• Application programs cannot deadlock.
• Matching of protocol states between dialogs is done

correctly.
• Offer/answer negotiation of media channels is used

correctly.

The runtime libraries that provide most of these guar-
antees are based on formal models that have been
verified with the model-checker Spin [4].

6

In addition, static semantic analysis of StratoSIP
programs detects and diagnoses a wide variety of pos-
sible programmer errors. For example, Section 4
presents many constraints on how dialog variables
can be used. StratoSIP programmers need not worry
about what will happen if they violate these con-
straints, because static analysis during compilation
will catch all such violations.

4 Dialog states

4.1 Active dialogs

SIP Invite dialogs and dialog variables are the cen-
tral concepts in StratoSIP. Each dialog in which a
program is participating has a unique internal identi-
fier in the program state. Although dialog identifiers
are like opaque pointers in not being directly readable
by programs, they are the values of dialog variables.

In the RVM program (Figure 3) there are three di-
alog variables: i (for “incoming”) refers to the dialog
connecting the box with the caller, o (for “outgoing”)
refers to a dialog potentially connecting the box with
its subscriber (who is the callee), and v (for “voice
mail”) refers to a dialog connecting the box to a voice
mail server.

Dialog variables must be declared in a declarations
section. These declarations follow Java syntax, as
can be seen in Figure 2. There is a distinguished
“no dialog” identifier “-” to which all dialog variables
are automatically initialized. Dialog variables never
appear in initialization sections.

Active dialogs are the dialogs currently being con-
trolled explicitly by the program. Each active dialog
must have a dialog variable that refers to it.

Figure 5 shows the predefined states and events of
an active dialog in StratoSIP. The StratoSIP view of
a dialog is an abstraction of the SIP view. In the
StratoSIP abstraction, the events shown are atomic
operations, and the SIP messages that implement the
events are hidden.

An active dialog is in one of the three states In-
coming, Outgoing, or Succeeded. A dialog may exist
after leaving these states, while it is being cleaned
up, but it can no longer be observed or controlled by
the program.

The set of active dialogs is so important that each
stable state must list, in its annotation, the variables
referring to the dialog active in that state. It is not
possible to have active dialogs in initial or terminal
states.

d d

d

d = new(...)
d = ctu(...)
d = rev(...)

rcv(d)

Incoming Outgoing

Succeeded

succeeded(d)

end(d)

ended(d)

Figure 5: A finite-state machine showing the states
and events of an active dialog in StratoSIP. This is
not a StratoSIP program, although it uses similar
notation.

4.2 Guards that create dialogs

rcv(dialogVar) is an input predicate that is made
true by an initial invite message in the box’s router
input queue. As side-effects of this input predicate, a
new dialog is created, the dialog enters the Incoming
state, and the dialog’s identifier is assigned to the
dialog variable dialogVar.

Almost all StratoSIP programs have a transition
with a rcv input predicate coming out of their initial
states. (The exceptions are programs instantiated by
non-SIP messages, as discussion in Section 3.2.)

Each initial or stable state without an explicit
transition guarded by rcv has the following implicit
transition:

transition

state -> rcv(unwanted)/end(unwanted) -> state ;

This transition rejects an invite without affect-
ing the box state in any way. Without it, the box
might not be input-enabled.

A rcv guard can be followed by an optional mes-
sage predicate, which can refer to fields of the invite
message. If the message predicate is not satisfied by
the invite message, then the invite message does not
make the overall guard true. If the invite message
does not make any other explicit guard true, it is
handled by the implicit transition above.

For SIP experts:

7

Another side-effect of rcv is to send a SIP 183 mes-
sage to establish the dialog.

4.3 Actions that create dialogs

A new dialog enters the Outgoing state as a result of
one of these actions, all of which create and send an
initial invite message:
• dialogVar2 = new(URI)
• dialogVar2 = ctu(dialogVar1)
• dialogVar2 = rev(dialogVar1)
In each case, dialogVar2 points to the new dialog.

The functions new, ctu, and rev all tell the im-
plementation something about the role of the new
dialog with respect to other dialogs being handled by
the box. This information helps to determine some of
the fields of the initial invite message. It also guides
application routing and, if it is being used, applica-
tion composition (see Section 9). Examples of the
use of the three functions will be given shortly.

Each use of new requires an argument of type URI
that will be the destination of the new dialog. This
argument can also be written in a named style as
dest = URI. A new can also have an optional src
argument of type URI that will be the source of the
new dialog.

Each use of ctu or rev requires a “seed” dialog
whose invite is used to make the invite for the new
dialog. This argument can also be written in a named
style as seed = dialogVar1. A ctu or rev can also
have optional src and/or dest arguments of type
URI. If either of these optional arguments is not
present, then the corresponding source or destina-
tion field of the invite message will be copied from
the seed dialog.

The function ctu (continue) is the most common of
the three functions. It is used to create a dialog that
is continuing a chain of dialogs from caller to callee,
such as the chain in Figure 1, in a normal way. When
the chain in Figure 1 was assembled, each B2BUA
used its incoming dialog as a seed for its outgoing
dialog.

The use of ctu is illustrated by the Attended Trans-
fer (AT) program in Figure 6. This application en-
ables a trainee agent in a customer-service center to
transfer a customer call to a more experienced agent.
A consult command from a non-SIP interface causes
the program to put the customer on hold and con-
nect the trainee with an expert. From the consulting
state, the trainee can resume talking to the customer
or transfer the customer to the expert.

On receiving a dialog from the customer in its ini-
tial state, the program continues the dialog; this is
transparent behavior for the call as a whole. The

SettingUp

Talking

c < > t

c < > t

rcv(c) /
t = ctu(c)

Consulting
c, e < > t

TransferredAbandoned

succeeded(t) /
<*ui.talking
(c.getSrc())*>

ui?Consult /
e = rev(t,
dest=<*expertURI*>)

ended(e)

ui?Resume /
 end(e)

e < > t c < > e

ended(c)/
<* ui.
abandoned()
*> ui?Transfer

/ end(t)

ended(t)

Figure 6: StratoSIP program for the Attended Trans-
fer (AT) application.

program will remain transparent unless and until it
gets a consult command from the trainee, who is its
subscriber.

The function new is used to create a dialog that
is a new branch of the assembled graph of applica-
tions, with little relationship to existing dialogs. new
is usually used to reach a media server, and is also in
common use.

For example, the QT program (Figure 4) uses new
to create a dialog to a VoiceXML server, which is a
server that participates in interactive voice-response
sessions, following a script written in VoiceXML. This
server will be connected to the caller, and will use
announcements, prompts, and touch-tone recognition
to discover whether the caller thinks the call is urgent
or not. The program uses new because the server is a
temporary part of the call, with no real relationship
to the caller or callee. In QT the dialog made with
new has a placeholder source URI, first because there
is no obvious candidate to be the source, and second
because there is no need to route the dialog to any

8

applications on behalf of a source URI.
The function rev (reverse) is used least often. It

is used to create a dialog that is continuing a dialog
chain from the seed dialog, but in doing so is reversing
the source and destination roles.

The use of rev is also illustrated by the AT pro-
gram. If and when the program gets a consult com-
mand, it must connect the trainee to an expert. To
do this, it creates a dialog seeded by dialog t, which
is the dialog that connects AT to the trainee. How-
ever, in t the trainee is playing the destination role,
while in the created dialog e the trainee must play
the source role. For this reason, rev rather than ctu

is used.
One of the effects of using rev is that the source

and destination fields, which are taken by default
from the seed dialog, are swapped. By default this
would make the customer the destination of dialog e.
This default is over-ridden by the optional argument
dest = <*expertURI*>, so that the destination URI
of the created invite message will be the expert’s URI.

Because the functions new, ctu, and rev all cre-
ate messages, each call can be followed by a message
modifier that modifies the invite before it is sent. Of-
ten, the purpose of the message modifier is to add
fields. For example, new in the QT program (Fig-
ure 4) has a message modifier (pointed to by the vari-
able QTscript) that adds a field passing a VoiceXML
script to the server.

In StratoSIP the operations that create dialogs all
appear to be atomic and instantaneous. In partic-
ular, the implementations of the dialog-creating ac-
tions send the invite, but do not wait for a final re-
sponse. Atomic, instantaneous operations keep pro-
gramming simple, because the programmer does not
need to think about concurrency.

For SIP experts:
The SIP signaling compiled from new, ctu, and

rev assumes that a final response to the initial in-
vite message may come slowly, because it may entail
getting a response from a person.

In some cases the programmer knows that the ini-
tial invite message is being sent to a machine such as
a media server, so that the response will come quickly
or not at all. In these cases, the programmer can use
an optional fastResponse argument with this syn-
tax:

r = new(<*VXMLresource*> ,

fastResponse = <*true*>)

This tells the compiler to generate a different and
more efficient signal sequence that assumes a fast re-
sponse. For example, the dialog to the media server
in the QT program could be a fast-response dialog.

4.4 State annotations for media con-
trol

As mentioned in Section 4.1, active dialogs are so im-
portant that the dialog variable for each active dialog
must be listed in the annotation of each stable state.
The form of the annotation controls media flow.

The annotation consists of comma-separated
clauses. The most common form of clause is i < > o,
which is called a flowlink, and can be found in ev-
ery example program. It means that the endpoint
reached by dialog i and the endpoint reached by di-
alog o should be connected by whatever media chan-
nels the endpoints desire. If, on the other hand, a di-
alog variable is by itself in an annotation, that means
that the dialog should be on hold, with no media flow.

For example, in the AT Talking state (Figure 6),
the customer c is media-connected to the trainee t.
In the Consulting state the customer is on hold and
and the trainee is media-connected to the expert e.
In the Abandoned state the expert is media-connected
to the trainee, and in the Transferred state the cus-
tomer is media-connected to the expert.

Conferences are built from these two-way media
connections, as shown in the program for the Trainee
Monitoring (TM) application (Figure 7). This appli-
cation enables the supervisor of a trainee agent in a
customer-service center to monitor the performance
of the trainee. When the application subscribed to by
the trainee receives a dialog from the supervisor while
the trainee is talking to a customer, the application
forms a conference. When the application needs to
form a three-way conference, it initiates three new di-
alogs to a conference server. It then uses flowlinks to
connect each of the three external dialogs to a dialog
leading to the conference server. The server mixes
the incoming media channels and sends the correct
mix on each of the outgoing media channels.

Dialogs might become flowlinked at a time when
their protocol states do not match. The StratoSIP
programmer need not worry about this, as the im-
plementation will take the necessary steps to bring
the dialogs to matching protocol states.

Each of AT and TM has its own view of the correct
media paths in each of its states. These views are
relative rather than absolute, however, because when
applications are composed, the correct media paths
are determined by the composition of the relevant
applications. Figure 8 shows the runtime composition
of these applications, in which external dialogs reach
the customer, trainee, expert, and supervisor, while
t in AT and c in TM refer to the same dialog. This
composition is discussed in detail in [12], including
how global media paths are determined by the states

9

NotMonitored
c < > t

rcv(c) /
t = ctu(c)

rcv(s)[<*fromSupervsr(s)*>] /
cc = new(<*conference*>);
tc = new(<*conference*>);
sc = new(<*conference*>)

Monitored
c<>cc, t<>tc,

s<>sc

PostMortem
s < > t

ended(s) /
 end(cc);
 end(tc);
 end(sc)

ended(c) /
end(cc);
end(tc);
end(sc)

Figure 7: StratoSIP program for the Trainee Moni-
toring (TM) application.

of both applications.
For SIP experts:
Sometimes, when two dialogs become flowlinked,

their SIP protocol states do not match. Their
SIP protocol states include their states with respect
to initial invite transactions, re-invite transactions,
and offer-answer negotiations. In these cases the
StratoSIP runtime library works to make their states
match as soon as possible. More particularly, it works
to set up a media channel or channels between the
endpoints to which the dialogs lead, unless one or
both endpoints is unwilling.

When the states of the dialogs match, messages
of invite transactions (initial or re-invite) can travel
end-to-end, without any modification by the applica-
tion except for the necessary change in dialog iden-
tification. StratoSIP preserves this end-to-end trans-
parency whenever possible, so that conversations be-
tween endpoints using proprietary headers are not
disrupted.

StratoSIP media control is implemented using
third-party call control in SIP [1]. Although the
declarative style of media control in StratoSIP light-
ens the burden of application programming enor-

Customer Trainee

Expert Supervisor

TT
AT TM

Figure 8: The runtime composition of Attended
Transfer (AT) and Trainee Monitoring (TM) appli-
cations.

mously, it may hide too much in some cases.
For example, consider a Music on Hold application

that is supposed to detect when one endpoint puts
the other endpoint on hold, and connect the other
endpoint to a source of music. Because the end-to-
end hold signal is a re-invite, and StratoSIP hides
re-invites from programmers, it is not possible to im-
plement this application in StratoSIP 1.0.

4.5 The Succeeded state

An active dialog reaches the Succeeded state when
its far end is first connected to a desired party. As
Figure 5 shows, once a dialog succeeds it remains
succeeded, regardless of whether it is put on hold
later or not.1

An outgoing dialog (created by new, ctu, or rev)
succeeds when it receives the right SIP messages from
its far end. An incoming dialog (created by rcv) suc-
ceeds when it becomes flowlinked to a dialog that has
succeeded. The caller at the far end of the incoming
dialog has been waiting to be connected to a desired
party, and when the incoming dialog is flowlinked to
a dialog with a desired party at the other end, then
the semantics of the flowlink ensure that the caller
will be connected to the desired party.

For an outgoing dialog t, succeeded(t) is an in-
put predicate made true by the input message that
causes t to succeed. The AT program in Figure 6
uses this input predicate simply to trigger an action
that notifies a Web user interface. Because incoming
dialog c is flowlinked to t in the target state of the
transition, c also succeeds as soon as the program en-
ters the target state Talking. However, succeeded
cannot be used as an input predicate on an incoming
dialog such as c.

Simply connecting a caller to some source of me-
dia is not enough for the caller’s dialog to succeed,

1Succeeded does not correspond directly to any SIP concept.
See below for details.

10

because the media may come from a server used to
implement a service rather than from a real desired
party. For example, consider the Quiet Time appli-
cation in Figure 4. In its Prompting state, the QT
application is connecting the caller to a VoiceXML
server for the purpose of finding out from the caller
whether the call is urgent. The media server is not
the caller’s desired party.

In Figure 4, the media linkage between the caller
dialog i and the server dialog r is written with a
tilde between the arrowheads. This indicates that
it is a pre-flowlink rather than a flowlink. A pre-
flowlink controls media in exactly the same way as
a flowlink. The difference between a flowlink and a
pre-flowlink is that the pre-flowlink will not propagate
the succeeded state from r to i, as a flowlink would.

To understand why this matters, we need to con-
sider Figure 12, which shows the application composi-
tion of QT with Redirect to Voice Mail, and Figure 3,
which shows the program for RVM. RVM makes its
decision on whether to redirect or do nothing based
on whether outgoing dialog o succeeds or not. Fig-
ure 12 shows that o in RVM is the same dialog as i

in QT. If QT allowed i to succeed simply because it
is connected to a VoiceXML server, and if the caller
indicated that the call is not urgent, then the caller
would not be redirected to voice mail by RVM. So the
purpose of StratoSIP’s Succeeded state is to help dif-
ferent applications integrate and interact in the best
way.

“Interacting in the best way” is necessarily some-
what subjective, which is why StratoSIP gives
the programmer control over it. Note that the
Redirected state in RVM uses a flowlink rather than
a pre-flowlink, even though the caller is connected to
a server. This reflects the programmer’s judgment
that a person’s voice mail is a good proxy for the
person.

Imagine, for example, that there is a Call Forward-
ing on Failure (CFF) application to the left of RVM
in Figure 12. If RVM used a pre-flowlink for the
Redirected state, then while the caller was record-
ing a long voice message, RVM dialog i would not
have succeeded. The CFF program could decide that
the call is taking too long to succeed, time out, break
the connection between the caller and voice mail, and
forward the call elsewhere. This is not a good way
for the applications to interact.

For any dialog dlg, succeeded(dlg) can be used
as a state predicate, which means that it can be used
as a guard on a transition out of a transient state.

For SIP experts:

No SIP concept corresponds exactly to the Suc-
ceeded state in StratoSIP, which is an abstraction de-

fined to facilitate good integration and interaction
among applications. It is implemented by adding
special tags to SIP messages. A succeeded input
predicate can be made true by a re-invite, by a suc-
cessful response to an initial invite (Invite 200), or
by a successful response to a re-invite.

A dialog in the Succeeded state is always confirmed
in the usual SIP sense, although a confirmed dialog is
not always Succeeded. In cases where it is absolutely
necessary to know whether a dialog is confirmed or
not, preSucceeded(dlg) can be used as either an
input predicate on an outgoing dialog, or as a state
predicate. A preSucceeded input predicate can only
be made true by a successful response to an initial
invite (Invite 200).

4.6 Guards and actions that destroy
dialogs

The operations that destroy active dialogs are all
atomic and instantaneous from the program perspec-
tive.

The input predicate ended(dlg) is made true by
a received message indicating that the other end of
dlg wants it to end. The guard can include a message
predicate that must also be true of the input message.

The action end(dlg) ends an active dialog. The
action can include a message modifier that will be ap-
plied to whatever message the StratoSIP implemen-
tation generates to carry out the action.

If a stable state with active dialog dlg has no out-
transition guarded by ended(dlg), then it has an im-
plicit transition with this guard, entering a terminal
state. In other words, any external dialog end that is
not explicitly handled causes the box to terminate.

A terminal state has no active dialogs. To en-
force this, when a program enters a terminal state,
all remaining active dialogs are ended automatically.
These implicit transitions and actions explain why
most of the example programs have no explicit ter-
minal states.

For SIP experts:
An ended input predicate can be made true by a

failure response to the initial invite, a Cancel, a Bye
or a 408 response to a mid-dialog request. StratoSIP
automatically generates all necessary responses and
waits for all necessary acknowledgments. Although
StratoSIP is designed to hide the distinctions among
these forms of dialog teardown, they can be probed
or manipulated if necessary by message predicates or
message modifiers.

Just as invite transactions are handled in an end-
to-end manner, with the application being transpar-
ent, whenever possible (Section 4.4), bye transactions

11

are also handled in an end-to-end manner whenever
possible.

For end-to-end treatment to be possible, two di-
alogs dlg1 and dlg2 must be flowlinked, and both
must be confirmed, so that each is torn down with a
bye transaction. Furthermore, there must be a transi-
tion between two stable states that is (1) guarded by
ended(dlg1) and (2) includes the action end(dlg2).
This transition could be the implicit transition ap-
plicable if there is no explicit transition with guard
ended(dlg1). If explicit, the transition would most
commonly look like this:

stable state Linked { dlg1 < > dlg2 };

transition Linked -> ended(dlg1) /

end(dlg2) -> Gone;

but it could also look like this:

transition Linked -> ended(dlg1) /

dlg2!Info; end(dlg2) -> Gone;

or even this:

transition Linked -> ended(dlg1) -> Going;

transient state Going;

transition Going -> [<*overLimit(x)*>] /

end(dlg2) -> Gone;

transition Going -> [!] -> HoldingState;

In this last example the transition from stable state
Linked to stable state Gone passes through the tran-
sient state Going.

4.7 Assignments to dialog variables

There are two invariants that dialog variables must
satisfy:
• Every active dialog must have a dialog variable

pointing to it.
• No two dialog variables ever have the same value

unless their value is -, which means “no dialog”.
Box initialization, dialog creation, and dialog de-
struction all satisfy these invariants, provided that
the variable used in dialog creation does not already
point to an active dialog.

Although an active dialog must have a variable
pointing to it, a dialog variable need not point to
an active dialog or -. If the variable pointing to a
dialog is not re-used after the dialog ends, then the
history of the dialog can still be accessed through the
variable. Section 8 gives the interface for accessing
dialog history through the Java Dialog object.

The actions that create dialogs (see Section 4.3)
are assignment statements to dialog variables. It

is also possible to have assignment statements that
swap the values of dialog variables, for the purpose of
changing the relationship between active dialogs and
the roles they are playing in the program. Because
these assignments must preserve the invariants, they
take the general form of a multi-way swap such as

d1, d2 = d2, d1

d1, d2 = d2, -

d1, d2, d3 = d3, ctu(d3), -

The general rules for ensuring that a multi-way as-
signment preserves the invariants are:

• Dialog expressions (new(...), ctu(...),

rev(...), -) must not appear to the left of the
=. These denote values, not variables.

• No variable appears more than once to the left of
the = or more than once to the right of the =. Note
that an expression such as ctu(dlg) does not count
as an “appearance” of dlg, because using the value
of dlg as a seed does not affect the variable or its
value.

• If a dialog variable appears to the right of the =, it
must also appear to the left of the =. Otherwise,
two dialog variables will have the same value. It
does not matter whether the variable points to an
active or inactive dialog.

• If a dialog variable appears to the left of the =,
and it points to an active dialog, then it must also
appear to the right of the =. Otherwise, after the
assignment, no variable will point to that active di-
alog. This rule does not apply to variables pointing
to inactive dialogs, because inactive dialogs need
not be the values of dialog variables.

The use of dialog variables to denote roles is illus-
trated by the Call Waiting (CW) application in Fig-
ures 9 and 10 (at end of manual). CW is programmed
as a bound box, and is subscribed to in both source
and destination regions (see Section 2.2). In CW the
dialog in variable subs always connects the box to its
subscriber, and the dialog in variable far connects
the box to a far party. Because the initial dialog that
instantiates the program may have the subscriber as
its source (source region) or as its destination (desti-
nation region), the message predicates with the rcv

input predicates coming from the initial state ensure
that the incoming and outgoing dialogs are assigned
to the correct dialog variables. See Section 8 for more
details on these predicates.

CW is transparent unless and until its subscriber
is connected to a desired party, and a new call comes
for the subscriber. The new dialog is assigned to the
variable wait, and receives a Ringing signal from

12

rcv(subs)[<*isSrcRegion(subs)*>]
/ far = ctu(subs)

rcv(far)
[<*isDestRegion(far)*>]
/ subs = ctu(far)

Waiting
subs <> far

Transparent
subs <> far

succeeded(subs) /
<*ui.succeeded()*>

succeeded(far) /
<*ui.succeeded()*>

rcv(wait) /
<* ui.
cwIndicator()
*>;
wait!Ringing

CallWaiting
subs<>far,

wait

ended
(wait)

ui?Switch /
far, wait =
wait, far

ui?Switch /
far, wait =
wait, - ended(far)ended(subs)

CallHeld
subs, wait

ended(subs) / end(far)

CallSubscriber

[<*isSrcRegion
(wait)*>] /

far, wait = wait, -;
 subs = rev(far)[!] /

far,wait = wait, -;
subs = ctu(far)

Figure 9: StratoSIP program for the Call Waiting (CW) application, graphical form. The small circle is a
transient state.

CW (see Section 5.1). At the same time, CW signals
to the user interface that a call is waiting.

If and when the subscriber commands CW to
switch calls, CW puts the current far party on hold
and connects the subscriber to the waiting call. The
switch is programmed simply by swapping the values
of far and wait, and returning to the CallWaiting

state. The implementation of StratoSIP does all the
rest.

CW enters the transient CallSubscriber state
when its subscriber has disconnected and there is
still a call waiting. In this case CW must call the
subscriber back. You might think that the wait-
ing dialog must have the subscriber as its destina-
tion, but this is not necessarily so. The waiting di-
alog may have been an original dialog in far with
the subscriber as its source; this dialog may have
then been assigned to wait when the subscriber an-
swered another call. Thus the state predicates in the
CallSubscriber state check the direction of wait

before deciding whether to continue or reverse it to
reach the subscriber.

5 Dialog signaling

5.1 Explicit handling of status
messages

As Section 4 has shown, StratoSIP conceals from the
programmer most aspects of the SIP messages that
create and destroy dialogs and control media. There
are other SIP messages that a StratoSIP program-
mer can handle directly, because their use is more
application-specific. In StratoSIP these messages go
by the general name of status messages.

The current types of status message are:

Ringing

Forwarded

Queued

Info

InfoSuccess

InfoFailure

InfoResponse

The first three are used to indicate progress in con-
necting a caller to a desired party, and are called
provisional responses in SIP. For example, the CW
program in Figure 9 illustrates the use of Ringing

to signal progress to the caller of a waiting call. On

13

receiving a Ringing message,2 a SIP device will gen-
erate a ringback tone for the caller to hear.

An Info message is a general-purpose request that
can be given application-specific content by means of
a message modifier. For example, the QT program in
Figure 4 assumes that the VoiceXML server uses an
Info request to convey the result of the VoiceXML
script execution. The StratoSIP program is required
to send a response to the request, the two possible
responses being InfoSuccess and InfoFailure.

A status message can be received from a dialog and
handled explicitly by means of an input predicate of
the form dialogVar ? messageType, with an optional
message predicate. For example, in the QT program
transitions with r?Info input predicates use message
predicates to check the content fields of the message,
and have different results based on them.

The message type InfoResponse can be used in
input predicates only. It matches either InfoSuccess
or InfoFailure.

There are two basic ways to create and send a
status message:

dialogVar ! messageType
dialogVar ! messageVar

In both cases the message is sent through the
dialog identified by dialogVar. In the first case, a
plain, generic message of the named type is created.
In the second case, the message is created as a copy
of the status message stored in messageVar; it has
the type of the stored message and as many of the
stored headers as possible. As a side-effect of either
action, the sent message is stored in the built-in
variable msgOut of type Message.

The general forms of message expressions are:

messageType(messageVar2)[messageModifier]

messageVar1(messageVar2)[messageModifier]

where either the argument or message modifier
is syntactically optional. The message modifier, if
present, can modify the created message before it is
sent and stored.

The argument messageVar2 is required only
for creating messages of types InfoSuccess and
InfoFailure. Its value must be the message to which
the created message is a response. So if the second
form of message expression is used and both mes-
sage variables are present, messageVar1 holds a mes-
sage of type InfoSuccess or InfoFailure, and mes-

2This only works if the device is in the correct state, see
notes for experts below.

sageVar2 holds a message of type Info.
The QT application shows how to receive and re-

spond to an Info message. To send an Info message,
when the response to the message is important, use
the following action sequence:

. . . / dlg!Info[<*myMsgModifier*>];

<* infoSent = msgOut; *>

Note that assignments to variables of type Message,
such as infoSent, must be written as embedded Java
code. Then the response can be handled explicitly
using a transition with the following guard:

dlg?InfoResponse

[<*msgIn.answers(infoSent)*>] / . . .

The boolean Java method answers returns true if
and only if msgIn is a response to the particular Info
message in infoSent.

For SIP experts:
Although the message types Ringing, Forwarded,

and Queued correspond to the SIP provisional re-
sponses 180, 181, and 182, they are not always im-
plemented by the corresponding SIP messages. In
SIP these messages can be sent only by the callee end
of a dialog, and only before the dialog is confirmed.
Many applications interact in ways that make these
rules overly restrictive [9].

When they cannot be implemented with SIP pro-
visional responses, StratoSIP implements them with
SIP Info messages. StratoSIP handles all conversions
and responses automatically. On the other hand, if
a StratoSIP program sends Ringing, Forwarded, or
Queued to a SIP device, and if it is legal in the cur-
rent dialog state to send a provisional response, then
the StratoSIP implementation will send a provisional
response.

For further information about application interac-
tions related to audio tones such as ringback, and
how they can best be managed, see [9].

5.2 Status linkages

This section describes implicit handling of received
status messages. If a received status message makes
the guard of an out-transition from the current state
true, then that explicit transition handles the mes-
sage. Otherwise, the message is handled implicitly.

We first consider provisional responses and Info

requests, which are handled implicitly by status link-
ages. There are two forms of status linkage. By anal-
ogy with media linkages, a status-flowlink relates two
dialogs. If two dialogs are status-flowlinked, then a
request or provisional response received from one is
immediately forwarded to the other.

14

By analogy with media linkages, if a dialog is not
status-flowlinked, then it is status-held. If a dialog
is status-held, then a request or provisional response
received from it is stored in a status queue associated
with the dialog.

When two dialogs become status-flowlinked, if ei-
ther has a nonempty status queue because it has been
status-held, then the contents of that queue are im-
mediately sent to the other dialog. If this is not the
desired application behavior, then the queue can be
emptied under program control, by means of the ac-
tion clearQueue(dialogVar). This clears the current
contents of the dialog’s status queue.

In most states of StratoSIP programs, the config-
uration of status linkages is exactly the same as the
configuration of media linkages. This is the default
for status linkages, and there is no need for any ad-
ditional annotation.

In some situations, however, the programmer may
need to override this default. In these cases the sta-
tus linkages are listed separately following the media
linkages. They use the same syntax as media linkages
(except that tilde between < > is not used), and are
separated from media linkages by a slash. If there are
status linkages, every variable pointing to an active
dialog must appear in them.

For example, in the prompting state of the QT pro-
gram, dialogs i and r are media-flowlinked but not
status-flowlinked. The media connection is necessary
for voice-based interaction between the caller and the
VoiceXML server. However, these two dialogs have
no relationship that would justify forwarding status
messages from one to the other. In the QT program,
Info requests are handled explicitly because they are
the means of communication between the server and
the program. If the server happens to send some
other kind of status message, it will be absorbed by
QT rather than being forwarded to the caller.

Finally, we consider implicit handling of responses
InfoSuccess and InfoFailure. This handling is in-
dependent of status linkages. If the received message
responds to a request generated by this box, then it
is dropped. If the received message responds to a re-
quest received and forwarded by this box, then the
response is sent to the dialog from which the request
was received, if it is still active, and dropped oth-
erwise. If a dialog is ending with a request pending,
then StratoSIP automatically generates a response to
clean up the transaction before the dialog ends.

6 Timers

As with dialogs, each distinct active timer is the value
of a variable. Each variable of type Timer must be
declared.

A timer is set with an action timerVar!TimerSet.
A TimerSet action must have one named argument
with a Java integer value. The argument name is
sec or msec, depending on whether the desired time
unit is seconds or milliseconds. After this action, the
timer pointed to by timerVar is active.

TimedWait
naTimer,
 i < > o

i < > o
Transparent

rcv(i) / o = ctu(i);
naTimer!TimerSet(sec=<*60*>)

succeeded(o) /
naTimer!TimerCancel

naTimer?Timeout

Figure 11: StratoSIP program for the No-Answer
Timeout (NATO) application.

A timer becomes inactive in one of two ways. It can
generate a timeout, which is received with an input
predicate of the form timerVar?Timeout. Or it can
be canceled by the action timerVar!TimerCancel.
An inactive timer can be reset and reused. Note that
the Timeout input predicate is exceptional in not as-
signing a new value to msgIn.

An active timer is similar to an active dialog in
that any stable state with an active timer must be
annotated with the timer variable. This is illustrated
by Figure 11, which is a program for a No-Answer
Timeout (NATO) application. If the outgoing dialog
o does not succeed within 60 seconds, this application
will cause it to fail so that other applications can take
over.

NATO is useful as an auxiliary to other applica-
tions. For example, it could be placed after RVM,
QT, and other applications as in Figure 12. This
would have two benefits: (1) Even though each appli-
cation could have its own no-answer timeout function
built in, NATO can supply that function once for all

15

of them. (2) If each other application had its own
no-answer timeout function built in, the times might
be different, causing unexpected interactions among
the applications. If there is one centralized function,
then behavior is easily predictable. After a timeout
forces failure, the failure propagates leftward. First
the application just to the left of NATO has a chance
to handle failure of its outgoing dialog. Eventually it
either generates success or propagates failure to the
application on its left, and so forth up the chain [10].

If a state is annotated with an active timer tmr,
then it must have an out-transition guarded by
tmr?Timeout. Timer and dialog variables can be
placed in the annotation in any order.

7 Non-SIP interfaces

As with dialogs and timers, each distinct non-SIP
interface is the value of a variable. Each variable of
type NonSipInterface must be declared. Non-SIP
interfaces differ from dialogs and timers in that they
have no pre-defined active state and therefore do not
appear in the annotations of stable StratoSIP states.

A “message” received through a non-SIP interface
can be of any Java object type. In the syntax, the ob-
ject type is used instead of the usual message type.
For example, the AT application (Figure 6) uses a
non-SIP interface ui to communicate with a Web-
based user interface. The command types Consult,
Resume, and Transfer are object types, and a com-
mand is received by means of an input predicate such
as ui?Resume. Although the built-in variable msgIn

usually has type Message, after this input predicate
has been made true, it will have type Resume.

Non-SIP interfaces are input-only—they can be
used to receive messages, but not to send them. On
the output side, an application can use the E4SS con-
vergence API ([3], Chapter 9) to interact with the
Java environment by means of a SipToJava interface.
If this API is used, then a NonSipInterface object will
support method calls declared in that interface. For
example, the AT application invokes methods of the
ui object in the following Java actions:

<* ui.talking(c.getSrc()) *>

<* ui.abandoned() *>

where the method talking has as its argument the
source URI of the dialog from the customer.

8 Java object classes

In this section we document some of the most impor-
tant programmer interfaces to the Java object classes

URI, Dialog, Message, and MessageModifier. How-
ever, the most complete and up-to-date version of
this information can be found in the Javadoc files.

URI object class:
Each box has a built-in variable subscriber of

type URI. This variable holds the URI of the sub-
scriber on behalf of whom the box was instantiated.
It is initialized when the box is created.

Note that SIP addresses are URIs, but some ad-
dress fields in SIP messages (such as the From field
of an initial Invite message) may also contain op-
tional display names. So it is necessary to exercise
caution in equality checks between SIP address fields
and URIs.

Dialog object class:
Methods of the Dialog class make it possible to

access the history of the dialog. Most of the history
of the dialog comes from the initial invite message,
including its source address, destination address, and
the region in which it was routed to or from the box
(see Section 2.2). This interface includes the methods
used in this manual:

public class Dialog {

URI getSrc();

URI getDest();

SipServletRoutingRegion getRegion();

StratoSIPMessage getInitialRequest();

StratoSIPMessage getFinalResponse();

}

Note that the StratoSIP compiler translates the na-
tive type “Message” to the Java type ”StratoSIPMes-
sage.” getInitialRequest returns the whole initial
invite message, so the programmer can extract addi-
tional information from it (for example, the display
name in the From field). getFinalResponse returns
the message that is the final response to the initial
invite.

The nature and use of the type SipServletRouting-
Region can be seen from the following excerpts from
the CW application (Figure 10):

private boolean isSrcRegion(Dialog dialog)

{ return dialog.getRegion() ==

SipApplicationRoutingRegion.

ORIGINATING_REGION;

}

private boolean isDestRegion(Dialog dialog)

{ return dialog.getRegion() ==

SipApplicationRoutingRegion.

TERMINATING_REGION;

}

These methods are used by the application to deter-
mine whether a dialog was routed in the source or
destination region.

16

Message object class:
This method of the class is applied to find out if

a message is a response to a particular sent message,
as explained in Section 5.1:

public class StratoSIPMessage

extends SipServletMessage {

boolean answers(SipServletRequest req);

}

MessageModifier object class:
StratoSIP is designed to hide most aspects of SIP

signaling from the programmer. This can include
both what SIP message is sent to carry out a desired
action, and when it is sent.

However, sometimes a programmer needs to ma-
nipulate some part of the content of a SIP message
sent by the program. To achieve both goals, an
object in type MessageModifier has a distinguished
method modify that takes a SIP message as an ar-
gument and modifies it. If a message modifier is at-
tached to a StratoSIP action such as end, whenever
the StratoSIP runtime environment creates an outgo-
ing SIP message to satisfy that action, the environ-
ment will apply the modify method of the message
modifier before it sends the message.

Because a modify method is general Java code, it
can have side-effects such as saving the message in
another place.

public class MessageModifier {

void modify(SipServletMessage m);

}

9 Application composition

In Section 2.2, Figure 1 shows two applications, one
fulfilling all the requirements of caller A, and one ful-
filling all the requirements of callee B.

The SIP Servlet standard also provides for appli-
cation composition, which makes it possible to imple-
ment a complex application in multiple, independent
modules. These modules are automatically composed
at runtime by the application router in a SIP servlet
container. For example, in Figure 12 the application
of callee B has been decomposed into two applica-
tions, Redirect to Voice Mail (RVM) and Quiet Time
(QT). The figure shows how these two applications
are composed at runtime.

Application composition is an optional capability
of the SIP Servlet standard. StratoSIP programs
run equally well with or without application com-
position, so the StratoSIP programmer can choose
freely whether or not to use it. The remainder of

endpoint
device

endpoint
device

dialog dialogdialog
A BQT

B
RVM

B

Figure 12: The runtime composition of two StratoSIP
programs.

this section provides information about how to use
application composition, when it is desired.

Application composition in the SIP Servlet stan-
dard is based on Distributed Feature Composition
(DFC) [5]. This section documents the behavior
of the DFC application router, which is powerful
and general-purpose, and is available as part of the
E4SS environment. Note, however, that the stan-
dard allows the use of any application router, so other
routers might compose applications in somewhat dif-
ferent ways.

Zones:
The source zone of a subscriber URI is a sequence

of applications. These are the applications that the
subscriber wishes to use in calls for which the sub-
scriber is playing the source role. The order of the
sequence is determined by precedence constraints. In
the same way, a subscriber has a destination zone of
applications to be used when the subscriber is playing
the destination role.

The new function:
If an initial invite message is created with the new

function, it is routed to a box of the first application
in its source field’s source zone, if any. Otherwise
it is routed to a box of the first application in its
destination field’s destination zone, if any. Otherwise
it is routed to the destination.

The ctu function, no optional arguments:
To explain the effect of ctu, we first assume that

the function is given no optional src or dest argu-
ments.

If the seed dialog of a ctu was routed to an ap-
plication in a subscriber’s source zone (which is the
application executing the ctu), then both the seed
invite and the created invite have the same source
field. The initial invite message created by the ctu

is routed to the next application in the subscriber’s
source zone, if any. Otherwise it is routed to a box
of the first application in its destination field’s des-
tination zone, if any. Otherwise it is routed to the
destination.

Similarly, an invite created by a ctu in a sub-
scriber’s destination zone is routed to the next ap-
plication in the subscriber’s destination zone, if any.

17

Otherwise it is routed to the destination.
The ctu function, optional arguments, and

regions:
If an application in a source zone uses a ctu with

an optional dest argument, this has no immediate
effect on routing (eventually it will affect which sub-
scriber’s destination zone is used). If an application
in a destination zone uses a ctu with an optional src
argument, this has no effect on routing.

If an application in a source zone uses a ctu with an
optional src argument, then the created invite will
be routed to the first application in the new source’s
source zone, if any. Otherwise it is routed to a desti-
nation zone or destination as above. One effect will
be to truncate the source zone of the original source,
unless this application is the last one in the zone. An-
other effect will be to create a source region consisting
of multiple source zones, unless the new source does
not subscribe to any source applications.

Similarly, if an application in a destination zone
uses a ctu with an optional dest argument, then the
created invite will be routed to the first application
in the new destinations’s destination zone, if any. It
may truncate the original destination’s zone, and it
may create a destination region with multiple desti-
nation zones.

Free and bound boxes:
If an invite is routed to a free application, then the

box is a new instance of its application.
At any one time, there can be at most one instance

of a bound application per subscriber. If an invite is
routed to a bound application, and the subscriber al-
ready has a box that is an instance of this application,
the invite is routed to this existing box.

Note that bound applications such as CW often
appear in both a subscriber’s source and destination
zones. The same box is routed to in both zones.

The rev function:
The rev function can only be used by an applica-

tion that appears in both its subscriber’s source zone
and its subscriber’s destination zone. The seed dialog
was routed to the application in one of these zones.

The rev function swaps the source and destination
fields from the seed. It also inverts the zone (source
or destination) in which routing is taking place. It
also over-rides the source and destination fields with
optional arguments, if any. After these transforma-
tions, the created invite is routed as if it were created
by ctu.

As an example, say that the seed argument to a
rev was routed to its application in the source zone,
and that there are no optional arguments. Then the
created invite’s destination is the same as the seed
invite’s source. The created invite will be routed to

the next application in its destination’s destination
zone. Thus the reason that a rev can only be used
by an application subscribed to in both zones is that
it must have a well-defined place in the application
ordering of each zone.

Examples:
For concise, well-focused examples of DFC routing,

see [6]. For insight into how DFC routing organizes
and composes a large set of applications, see [11].

References

[1] Eric Cheung and Pamela Zave. Generalized
third-party call control in SIP networks. In
Proceedings of the 2nd International Confer-
ence on Principles, Systems and Applications of
IP Telecommunications, pages 45–68. Springer-
Verlag LNCS 5310, 2008.

[2] S. Donovan. The sip info method. IETF Network
Working Group Request for Comments 2976,
2000.

[3] ECharts for SIP Servlets (E4SS) man-
ual. http://echarts.org/ECharts-for-

SIP-Servlets-Manual.html, 2009.

[4] Gerard J. Holzmann. The Spin Model Checker:
Primer and Reference Manual. Addison-Wesley,
2004.

[5] Michael Jackson and Pamela Zave. Distributed
Feature Composition: A virtual architecture for
telecommunications services. IEEE Transac-
tions on Software Engineering, 24(10):831–847,
October 1998.

[6] JSR 289: SIP Servlet API Version 1.1. Java
Community Process Final Release, http://www.
jcp.org/en/jsr/detail?id=289, 2008.

[7] J. Rosenberg. A hitchhiker’s guide to the Session
Initiation Protocol (SIP). IETF Network Work-
ing Group Request for Comments 5411, 2009.

[8] J. Rosenberg, H. Schulzrinne, G. Camarillo,
A. Johnston, J. Peterson, R. Sparks, M. Han-
dley, and E. Schooler. SIP: Session Initiation
Protocol. IETF Network Working Group Re-
quest for Comments 3261, 2002.

[9] Pamela Zave. Audio feature interactions in
voice-over-IP. In Proceedings of the 1st Inter-
national Conference on Principles, Systems and
Applications of IP Telecommunications, pages
67–78. ACM SIGCOMM, 2007.

18

[10] Pamela Zave. Modularity in Distributed Feature
Composition. In Bashar Nuseibeh and Pamela
Zave, editors, Software Requirements and De-
sign: The Work of Michael Jackson, pages 267–
290. Good Friends Publishing, 2010.

[11] Pamela Zave. Mid-call, multi-party, and multi-
device telecommunication features and their in-
teractions. In Proceedings of the 5th Interna-
tional Conference on Principles, Systems and
Applications of IP Telecommunications. ACM
Digital Library, 2011.

[12] Pamela Zave, Gregory W. Bond, Eric Cheung,
and Thomas M. Smith. Abstractions for pro-
gramming SIP back-to-back user agents. In
Proceedings of the 3rd International Conference
on Principles, Systems and Applications of IP
Telecommunications. ACM SIGCOMM, 2009.

Appendix: Grammar in EBNF

// NAME SPACES

boxName : Identifier ; // capitalized

stateName : Identifier ; // capitalized

varName : Identifier ; // not capitalized

fieldName : Identifier ; // not capitalized

// Comments on name spaces are lexical

// conventions only.

// Reserved variable names are "msgIn" and

// "msgOut" of type Message, "region" of

// type Region, and "subscriber" of type

// URI. These variables are built-in and

// given their values automatically.

// BEGINNING A PROGRAM

prog : packageDef? imports? boxType boxName

boxParams? inheritance? section+

;

packageDef : ’package’ qualifiedName ’;’ ;

qualifiedName :

Identifier (’.’ Identifier)* ;

imports: hostCode ;

hostCode : ’<*’ JavaCode ’*>’ ;

// Host code can refer to Dialog and

// Message variables, but not to Timer or

// NonSipInterface variables.

boxType : ’free’ ’box’ | ’bound’ ’box’ ;

boxParams : ’(’ hostCode ’)’ ;

inheritance : hostCode ;

// PROGRAM SECTIONS

section : declarations

| initialization

| graph

;

declarations :

’declarations’ ’{’ decl+ ’}’ ;

decl

: ’Dialog’

dialogVar (’,’ dialogVar)* ’;’

| ’Timer’ timerVar (’,’ timerVar)* ’;’

| ’NonSipInterface’

(’,’ interfaceVar)* ’;’

| ’Message’

messageVar (’,’ messageVar)* ’;’

| hostCode ’;’

;

dialogVar : varName ;

timerVar : varName ;

interfaceVar : varName ;

messageVar : varName ;

initialization :

’initialization’ ’{’ initAct+ ’}’ ;

initAct : hostCode ’;’ ;

graph : ’graph’ ’{’ graphObject+ ’}’ ;

graphObject : state | transition ;

// GRAPH STATES

state : ’initial’ ’state’ stateName

(’{’ ’}’)? ’;’

| ’stable’ ’state’ stateName

’{’ stateLinkages ’}’ ’;’

| ’terminal’ ’state’ stateName

(’{’ ’}’)? ’;’

| ’transient’ ’state’ stateName

19

(’{’ ’}’)? ’;’

;

stateLinkages :

(mediaLinkage (’,’ mediaLinkage)*)?

(’/’ statusLinkage (’,’ statusLinkage)*)?

;

mediaLinkage

: v1=dialogVar mediaLinkType v2=dialogVar

| dialogVar

| timerVar

;

mediaLinkType : ’<’ ’>’ | ’<~>’ ;

statusLinkage

: v1=dialogVar ’<’ ’>’ v2=dialogVar

| dialogVar

;

// GRAPH TRANSITIONS

transition :

’transition’ s1=stateName ’->’ arcBody

’->’ s2=stateName ’;’

;

arcBody : responsiveArcBody

| transientArcBody

;

responsiveArcBody :

responsiveGuard (’/’ actionSeq)? ;

responsiveGuard :

inputPredicate

(’[’ messagePredicate ’]’)? ;

actionSeq : action (’;’ action)* (’;’)? ;

transientArcBody :

transientGuard (’/’ actionSeq)? ;

transientGuard : ’[’ statePredicate ’]’

| ’[’ ’!’ ’]’

;

// INPUT PREDICATES

inputPredicate

: ’rcv’ ’(’ argList ’)’

| ’ended’ ’(’ argList ’)’

| timerVar ’?’ ’Timeout’

| interfaceVar ’?’ interfaceType

| dialogVar ’?’ messageType

| ’succeeded’ ’(’ argList ’)’

| ’preSucceeded’ ’(’ argList ’)’

;

messageType

: ’Ringing’

| ’Forwarded’

| ’Queued’

| ’Info’ | ’InfoResponse’

| ’InfoSuccess’ | ’InfoFailure’

;

timerType

: ’TimerSet’ | ’TimerCancel’ | ’Timeout’;

interfaceType : Identifier ;

// ACTIONS

action

: ’end’ ’(’ argList ’)’

(’[’ messageModifier ’]’)?

| ’clearQueue’ ’(’ argList ’)’

| timerVar ’!’ ’TimerSet’ ’(’ argList ’)’

| timerVar ’!’ ’TimerCancel’

| interfaceVar ’!’ hostCode

| dialogVar ’!’ messageExp

| assignment

| hostCode

;

messageModifier : hostCode ;

messageExp

: messageType (’(’ argList ’)’)?

(’[’ messageModifier ’]’)?

| messageVar (’(’ argList ’)’)?

(’[’ messageModifier ’]’)?

;

assignment

: dialogVar (’,’ dialogVar)* ’=’

dialogExp (’,’ dialogExp)* ;

dialogExp

: (’new’ | ’ctu’ | ’rev’)

’(’ arglist ’)’

(’[’ messageModifier ’]’)?

| dialogVar

| ’-’

;

20

// PREDICATES

statePredicate

: ’succeeded’ ’(’ argList ’)’

| ’preSucceeded’ ’(’ argList ’)’

| hostCode

;

messagePredicate : hostCode ;

// ARGUMENT LISTS, IN GENERAL

argList : requiredArgs ’,’ optionalArgs

| requiredArgs

| optionalArgs

;

requiredArgs :

positionalArg (’,’ positionalArg)* ;

optionalArgs : namedArg (’,’ namedArg)* ;

positionalArg : valExp | namedArg ;

// For definition of valExp, see below.

namedArg : fieldName ’=’ valExp ;

// For definition of fieldName

// and valExp, see below.

// SPECIFIC ARGUMENT LISTS AND VALUE

// EXPRESSIONS

// This is in the form of a table rather

// than a grammar.

| fieldName | valExp

INPUT PREDICATES

’rcv’

required

’dialog’ dialogVar

’ended’

required

’dialog’ dialogVar

’succeeded’

required

’dialog’ dialogVar

’preSucceeded’

required

’dialog’ dialogVar

ACTIONS

’end’

required

’dialog’ dialogVar

’clearQueue’

required

’dialog’ dialogVar

CONSTRUCTORS USED IN ACTIONS

timerType ’TimerSet’

required one of

’sec’ hostCode(int)

’msec’ hostCode(int)

interfaceType

see individual interface types

messageType ’Ringing’

no arguments

messageType ’Forwarded’

no arguments

messageType ’Queued’

no arguments

messageType ’Info’

no arguments

messageType ’InfoSuccess’

required

’request’ messageVar

messageType ’InfoFailure’

required

’request’ messageVar

dialogExp ’new’

required

’dest’ hostCode(URI)

optional

’src’ hostCode(URI)

’fastResponse’ hostCode(boolean)

dialogExp ’ctu’

required

’seed’ dialogVar

optional

’src’ hostCode(URI)

’dest’ hostCode(URI)

’fastResponse’ hostCode(boolean)

dialogExp ’rev’

required

’seed’ dialogVar

optional

’src’ hostCode(URI)

’dest’ hostCode(URI)

’fastResponse’ hostCode(boolean)

STATE PREDICATES

’succeeded’

required

’dialog’ dialogVar

’preSucceeded’

required

’dialog’ dialogVar

21

bound Box CallWaiting

declarations {

Dialog subs, far, wait;

NonSipInterface ui;

<* private boolean isSrcRegion(Dialog dialog) {

return dialog.getRegion() == SipApplicationRoutingRegion.ORIGINATING_REGION;

}

private boolean isDestRegion(Dialog dialog) {

return dialog.getRegion() == SipApplicationRoutingRegion.TERMINATING_REGION;

}

*> }

graph {

initial state Init;

transition Init -> rcv(subs)[<* isSrcRegion(subs) *>] /

far = ctu(subs) -> Waiting;

transition Init -> rcv(far)[<* isDestRegion(far) *>] /

subs = ctu(far) -> Waiting;

stable state Waiting { subs < > far };

transition Waiting -> succeeded(subs) / <* ui.succeeded() *> -> Transparent;

transition Waiting -> succeeded(far) / <* ui.succeeded() *> -> Transparent;

stable state Transparent { subs < > far };

transition Transparent -> rcv(wait) /

<* ui.cwIndicator() *>; wait!Ringing -> CallWaiting;

stable state CallWaiting { subs < > far, wait };

transition CallWaiting -> ended(wait) -> Transparent;

transition CallWaiting -> ended(far) -> CallHeld;

transition CallWaiting -> ended(subs) / end(far) -> CallSubscriber;

transition CallWaiting -> ui?Switch /

far, wait = wait, far -> CallWaiting;

stable state CallHeld { subs, wait };

transition CallHeld -> ui?Switch / far, wait = wait, - -> Transparent;

transition CallHeld -> ended(subs) -> CallSubscriber;

transient state CallSubscriber;

transition CallSubscriber -> [<* isSrcRegion(wait) *>] /

far, wait = wait, -; subs = rev(far) -> Waiting;

transition CallSubscriber -> [!] /

far, wait = wait, -; subs = ctu(far) -> Waiting;

}

Figure 10: StratoSIP program for the Call Waiting (CW) application, textual form.

22

