
Requirements for Evolving Systems: A Telecommunications Perspective

Pamela Zave
AT&T Laboratories—Research
Florham Park, New Jersey, USA
pamela@research.att.com

http://www.research.att.com/info/pamela

Abstract

In many software application domains, constant evolu-
tion is the dominant problem, shaping both software design
and the software process. Telecommunication software is
the prototypical example of such an application domain.
This paper examines how requirements engineering, for-
mal description techniques, and formal methods should be
adapted to work well in these application domains.

1 Introduction

In many software application domains, constant evolu-
tion is the dominant problem, shaping both software design
and the software process. Telecommunication software is
the prototypical example of such an application domain.

This paper examines the early phases of software en-
gineering for application domains dominated by change.
What is the best form of software engineering for these do-
mains? Is it different from software engineering for other
domains? I shall attempt to answer these questions by draw-
ing on the history of software development in telecommu-
nications, and the challenges its developers face today.

This paper has a two-dimensional structure, displayed in
Table 1. Section 2 covers the state of practice in telecom-
munications, including both what people do and what they
need. Section 3 summarizes some relevant results from re-
search in formal methods. Section 4 combines the two in
suggestions for requirements analysis, formal description
techniques, and formal methods for validation and verifi-
cation.

The subsections of the paper follow two classic themes.
The first subsection of each section is concerned with ques-
tions of modularity: Why and how should formal descrip-
tions be decomposed into modules? What are the conse-
quences? The second subsection of each section is con-
cerned with questions of level of abstraction: Which phe-
nomena are described by a formal description, and which

are left out? How can the phenomena relevant to software
development be arranged in orderly layers? Ultimately I at-
tempt to weave all these subjects and themes into a coherent
whole.

2 The State of Practice in Telecommunica-
tions

The heart of telecommunications is real-time, person-
to-person communication at a distance (by electronic
means). Considering all its inter-operating parts together,
the telecommunication network is world-wide and approx-
imately 125 years old. Despite its venerable age, it is now
evolving even more rapidly than usual. The influence of the
Internet is bringing packet switching to compete with cir-
cuit switching. It is extending personal communication to
include media other than voice, such as text, images, and
video. It is also extending personal communication to in-
clude new modes of interaction such as mail and browsing.

2.1 Feature-Oriented Description

The behavior of telecommunication software is almost
always described in terms of features. A feature of a soft-
ware system is an optional or incremental unit of function-
ality. A feature-oriented description consists of a base de-
scription and feature modules, each of which describes a
separate feature. The set of possible system behaviors is
determined by applying a feature-composition operator to
the base description and these modules.

The big attraction of feature-oriented description is be-
havioral modularity, which makes it possible to change the
system’s behavior easily. With perfect behavioral modular-
ity, it would be possible to make any desired change to the
behavior of a system by composing a new feature module
with the existing system description; it would never be nec-
essary to change existing modules.

Even though perfect modularity will never be achieved,
it must be approximated to a significant degree. For ex-

modularity level of abstraction
2. The State of Practice 2.1. Feature-Oriented 2.2. Network-Independent

in Telecommunications Description Description
3. Formal Methods 3.1. Global Proof 3.2. Specification versus

for System Description Obligations Architectural Description
4. Prescriptions for 4.1. Feature 4.2. Component

Evolving Systems Engineering Architectures

Table 1. Sections and themes in this paper.

ample, it is extremely common to create an exception to
an existing feature by adding a new feature rather than by
changing the existing feature.

Such an exception is an example of a feature interac-
tion. A feature interaction is some way in which a feature
or features modify or influence another feature in describ-
ing the system’s behavior set. Formally this influence can
take many forms, depending on the nature of the feature-
description language and composition operator. A group
of logical assertions, composed by conjunction, can affect
each other’s meanings rather differently than a group of
finite-state machines, composed by event synchronization.

In general, features might interact by causing their com-
position to be incomplete, inconsistent, nondeterministic, or
unimplementable in some specific sense.1 Or the presence
of a feature might simply change the meaning of another
feature with which it interacts.

Feature-oriented description emphasizes individual fea-
tures and makes them explicit. It also de-emphasizes fea-
ture interactions, and makes them implicit in the effects of
the feature-composition operator.

Two points about feature interactions are frequently
misunderstood, despite extensive research on this subject
[6, 7, 8, 9, 17]. Since these misunderstandings make it im-
possible to talk about feature interaction clearly, let alone
formally, it is important to emphasize these points:

� While many feature interactions are undesirable, many
others are desirable or necessary. Not all feature inter-
actions are bad!

� Feature interactions are an inevitable by-product of be-
havioral modularity.

These points are exemplified by “busy treatments” in
telephony, which are features for handling busy situations.
Suppose that we have a feature-description language in
which a busy treatment is specified by providing an action,
an enabling condition, and a priority. Further suppose that
a special feature-composition operator ensures that, in any

1For example, in TLA [1] the result of feature composition could fail to
be machine-closed. The specification would be unimplementable because
it requires the system to control the environment’s choices.

busy situation, the single action applied will be that of the
highest-priority enabled busy treatment.

In a busy situation where two busy treatments
���

and
���

are both enabled, with
���

having higher priority, these fea-
tures will interact: the action of

���
will not be applied, even

though its stand-alone description says that it should be ap-
plied. This feature interaction is intentional and desirable.
It is a by-product of the behavioral modularity that allows
us to add busy treatments to the system without changing
existing busy treatments. Without the special composition
operator, when

� �
is added to the system, the enabling con-

dition � � of
� �

must be changed to � �
	�� � � .
Most feature-oriented descriptions are still informal—

the feature modules are written in natural language, and the
feature-composition operator is concatenation of the text.
Any desired change to system behavior is easy to make:
just describe the change in natural language, whatever it is.
On the other hand, the description is neither comprehensi-
ble nor analyzable overall. It rarely defines the system’s
behavior in a complete, consistent, and unambiguous man-
ner, especially since a feature-oriented style is an invitation
to ignore feature interactions altogether. This situation af-
fects all segments of the telecommunication industry, and is
the primary motivation for the industry’s interest in formal
methods.

The telecommunication industry needs feature-oriented
descriptions that are also formal. Telecommunication engi-
neers need formal methods that help them manage feature
interactions, rather than ignore them until they must be dealt
with in an ad hoc manner.

This has proven to be difficult, as behavioral modularity
and formality do not combine easily. The history of research
on description of telecommunication systems [6, 7, 8, 9, 17]
records many types of feature composition, each illustrated
with a handful of features, but few that seem applicable to
telecommunication systems of realistic size, with hundreds
or even thousands of features.

So far, consciousness of the feature-interaction problem
is largely confined to people with experience in circuit-
switched telephony. The IP community interested in
telecommunications [3, 18] tends to view the present and

future in terms of highly complex, yet stand-alone, services.
Due to the immaturity of IP telecommunications, not many
people have grappled with the realities that there is no such
thing as a stand-alone telecommunication service, and that
once people start using a service, it becomes a legacy whose
evolution must be managed.

2.2 Network-Independent Description

Even before packet switching became part of the pic-
ture, transmission technology for telecommunications was
evolving rapidly. Features were programmed into switches,
so that replacement of a switch entailed replacement of its
feature code. This was an untenable situation, and moti-
vated development of the Intelligent Network (IN) architec-
ture [10, 11, 16]. The IN architecture separates feature code
from switches, so that switches can be upgraded without al-
tering feature code; it has had a tremendous influence on the
telecommunication industry.

Behavioral description of telecommunication services is
concerned with such concepts as customer requirements,
endpoint device user interfaces, and telecommunication
customs. Networking is concerned with such concepts as
transmission technology, resource allocation, and distribu-
tion of data. The history of telecommunications shows
clearly that these concerns must be separated. There should
be a clean, robust interface between them, so that each can
continual evolving independently. Each is so complex, and
evolves so fast, that close coupling between them creates
insuperable problems.

The recent development of IP networks also supports this
conclusion. Current transmission technology is not stable,
and a mass conversion to optical networks is forseeable. Re-
source allocation for quality of service is an extremely con-
tentious issue. There is much research on the distribution,
replication, and synchronization of data. Thus it is more im-
portant than ever to describe the behavior observed by users
in ways that do not constrain or rely on network architec-
ture.

Although the IN architecture purports to define an inter-
face between service behavior and networking, it is too lim-
ited even for traditional telephony services [22], let alone
the multimedia, multimodal services of the future. Thus,
IN is not the solution to the pressing problem of network-
independent description.

3 Formal Methods for System Description

3.1 Global Proof Obligations

Among the major artifacts of software engineering [27]
are:

� Domain knowledge, which provides presumed facts
about the environment.

� Requirements, which indicate what the stakeholders
need from the system, described in terms of its desired
effect on the environment.

Software engineering also creates one or more descriptions
of the behavior of the required system. Some relationships
among these descriptions are illustrated by Figure 1.

W, R D

system
phenomena

hold becauseholds regardless
of the system of the system

phenomena

environment

Figure 1. Relationships among formal de-
scriptions. W (“world”) is domain knowledge,
R is requirements, and D is any description of
system behavior.

A recent reference model of the proof obligations for
formal methods of software development ([12], based on
[13, 15, 27]) proposes three proof obligations. The first
proof obligation, loosely paraphrased, says that the domain
knowledge must be consistent or satisfiable. Since the real
world cannot actually be inconsistent, this is a check on the
formalization of the system’s environment, rather than the
environment itself.

The second proof obligation, very loosely paraphrased,
says that for every possible behavior of the environment,
there must be a behavior of the system that is consistent
with the system description.2

The third proof obligation says that a description of the
system, in conjunction with the domain knowledge, must
imply the satisfaction of the requirements. This is the most
important proof obligation, and the one that receives the
most attention.

These proof obligations are relevant to modularity be-
cause they tell us what global relationships must hold

2The aspects of the proof obligation omitted by this paraphrase concern
logical quantification and control of events.

among descriptions, regardless of any modular decompo-
sition used in the descriptions.

For example, in telecommunications D is sure to be a
feature-oriented description. Yet W and R contain at least
some global constraints that apply to the composition of all
features. W must include the characteristics of telecom-
munication devices, which provide the user interface to all
features. R should include principles of telecommunica-
tion privacy, predictable billing, feature integration, and eti-
quette upon which all users can rely at all times.

3.2 Specification versus Architectural Descrip-
tion

There are two ways of writing a system description D.
The two ways are equivalent in the sense that the three proof
obligations can be stated formally for either of them [12].
They differ significantly in the phenomena they describe,
however, and in their practical advantages and disadvan-
tages.

As explained in Section 3.1, domain knowledge and
requirements are descriptions of environment phenomena.
Obviously a system description must be a description of
system phenomena. The interface between system and en-
vironment consists of shared phenomena that are visible to
both. A specification is a description of the system’s behav-
ior, written strictly in terms of shared phenomena. In other
words, a specification mentions no system phenomena that
are hidden from the environment (Figure 2).

of the system of the system

phenomena
system

holds regardless

S

phenomena

shared

hold because

W, R

phenomena

environment

Figure 2. Relationships among formal de-
scriptions. S is a specification.

The major advantage of a specification is that it tells re-
quirements engineers and stakeholders a minimum about
the system, and implementors a minimum about the envi-
ronment. It separates their concerns; it can act as a contract

or a firewall between them. On each side of the wall engi-
neers retain maximum freedom to do their job without con-
sulting the other side, and are distracted by a minimum of
information that is not significant to them.

The major disadvantage of specifications is that they are
difficult to write. For realistically complex systems, if not
for academically simple ones, the strict constraint on the
phenomena that can be used is a severe problem.

Consider the following trivial example. A telecommuni-
cation system receives an input event from a user, and re-
sponds with (let us say) one output event. The input and
output events are shared phenomena, being visible to users,
and therefore legitimate specification phenomena.

The specification must describe which output event is
stimulated by the input event. This choice, however, is ex-
tremely complex—it is determined by the composition of
all the features in the system. We might organize the feature
composition by means of a pipeline, where the input event�� stimulates the first feature. The first feature responds with
event � , reflecting its view of the situation; � then stimu-
lates the second feature, the second feature responds with
event � , and so on. The last feature responds with event�� , which now reflects the joint view of all the features, and
this becomes the output event �� .

Unfortunately, this useful description is not a legitimate
specification, because the events � through �� are not
shared phenomena. Rather, they are artifacts of our struc-
turing technique.

Many specification languages provide information hid-
ing to address this problem. Then specifiers can use extra
phenomena such as events, yet declare them to be optional
in an implementation. However, the information-hiding
approach imposes a heavy burden on formal methods: to
prove that a true implementation is behaviorally equivalent
to the pseudo-implementation in the specification.

The second way of writing a system description employs
two other familiar artifacts of software engineering [12]:
� A programming platform provides the basis for pro-

gramming a system to satisfy the requirements.

� A program implements the requirements on the pro-
gramming platform.

These descriptions are not confined to system phenomena
that are shared with the environment. Because a program-
ming platform is often referred to as an architecture, their
combination can be termed an architectural description.
Their relationships are illustrated by Figure 3.

The major advantage of architectural descriptions is that
they are easier to write and implement than specifications.
Writers of architectural descriptions can invent any extra
phenomena that they find convenient, for organizational or
other purposes. And an architectural description is inher-
ently executable.

W, R

system

phenomena

P, M

of the system
hold because

of the system
hold regardless

phenomena

environment

Figure 3. Relationships among formal de-
scriptions. P is a program or programs, and
M (“machine”) is a programming platform.

The major disadvantage of architectural descriptions is
that they do not have the implementation-independence
of specifications. The disadvantage is particularly seri-
ous if the programming platform is low-level and general-
purpose: it will be difficult to program for and reason about.

It is possible to alleviate this disadvantage by describing
a more abstract, idealized, domain-specific programming
platform. Not only will such a platform be easier to pro-
gram for and reason about, but it can also separate imple-
mentation concerns into orderly layers.

Continuing with the example introduced earlier in this
section, a programming platform for telecommunications
might support the simple feature-composition mechanism
proposed above by letting features run as concurrent pro-
cesses, and turning the internal events into some appro-
priate kind of asynchronous interprocess communication.
Such a platform would be feature-oriented and distributable.
It could also be made network-independent by abstracting
away from lower-level networking concerns.

Even in a distributable platform, many lower-level net-
working concerns can be ignored by eliminating the con-
cept of location. Then there will be no formal represen-
tation of which node of a network is running a process or
storing some data, let alone where the network nodes are
located geographically. Because resource consumption and
performance in networks are heavily dependent on location,
it is impossible to determine them from a location-free de-
scription. Quite separately from the description of system
behavior, engineers can study the consequences of various
location alternatives on transmission technology, resource
consumption, performance, and data consistency.

4 Prescriptions for Evolving Systems

4.1 Feature Engineering

Verification, as an approach to establishing the adequacy
of a system description, is only as good as the requirements
provided. Requirements for evolving systems present sig-
nificant difficulties, which can only be overcome with spe-
cial techniques.

One difficulty is obvious: the behavior of a feature-
oriented system changes, sometimes radically, with the ad-
dition of every feature. An assertion that is true of today’s
system but not true of tomorrow’s has little value. The grav-
ity of this situation cannot be overestimated. Taking into ac-
count all the features of the public switched telephone net-
work (PSTN) that I have seen proposed or implemented, I
have not been able to think of a single interesting assertion
that would be true of a system incorporating all of them.

Of course, the proper attitude toward this difficulty is
equally obvious. The PSTN has been shaped by 125 years
of technological improvements, most of which were not an-
ticipated when earlier decisions were being made. As a
result, it has no inherent behavioral principles. We must
use our contemporary knowledge to find behavioral abstrac-
tions that will stand the test of time, and use them to define
behavioral principles supporting such properties as privacy,
predictable billing, feature integration, and telecommunica-
tion etiquette. Then we must find ways of encapsulating the
legacy features, so that their ability to compromise these
principles is contained, and eventually withers away.

A closely related difficulty is that of interoperation: Just
as principled features must interoperate with legacy fea-
tures, a principled system must interoperate with other
telecommunication systems over which it has no control.
Once again, it is critical to distinguish between what can
be proven of a known system, and what can be proven of
a known system interacting with an unknown (or partially
known) system.

Even the best general principles will constrain a system’s
behavior only loosely, providing a structure within which
feature designers can offer whatever they want. The second
requirements difficulty concerns specific feature behavior.
To write complete requirements, it would be necessary to
state formally and explicitly exactly how all features inter-
act. This is something people tend to do poorly [20], and
it is exactly the chore that feature-oriented description was
invented to avoid.

A possible solution to this difficulty is a formal method
for feature-oriented descriptions that we might call feature
engineering. Feature engineering is a process of engineer-
ing features and feature interactions for maximum user sat-
isfaction and system integrity. Feature engineering works
from partial requirements, and develops the missing system

requirements from the bottom up.
Figure 4 is a simple picture of feature engineering. It as-

sumes that a base description and old features already exist,
and that the goal is to add new features to the system.

understand all

decide which interactions

adjust features and composition operator

plus decisions

describe new features

composition parameters

as if they were independent

potential feature interactions

are desirable and which are not

so features interact in only the desirable ways

interactions
plus potential

plus new features,

old features
base description,

Figure 4. Feature engineering.

In the first step of the process, new feature requirements
are added to R, and new features are described. To as great
an extent as possible, each feature is described as if it were
independent of all others. People will want to do this any-
way, as there is a strong human tendency to ignore feature
interactions. They will be able to do it only if the descrip-
tion technique has sufficient behavioral modularity.

In the second step of the process, engineers must come to
understand all potential feature interactions. Feature com-
position must be structured well enough so that “all poten-
tial feature interactions” is a meaningful concept. There
must also be automated analysis to detect their presence in
a feature set.3

For example, consider the following two PSTN features.
Call Blocking (CB) is subscribed to by subscriber � , who
has configured it to reject all calls from � . Unconditional
Call Forwarding (UCF) is also subscribed to by subscriber
� , who has configured it to forward all his calls to � .

3Note that the feature-composition operator might be parameterized, in
which case parameter values might also be fed into the analysis.

Formal description and structured feature composition
should reveal that these features have several possible in-
teractions. If CB is given precedence, then all calls from �
to � will be blocked, and UCF will not forward all calls to
� , but rather only those calls to � that do not come from � .
If UCF is given precedence, then all calls to � while UCF is
active will be redirected to � , and CB will not reject all calls
from � to � , but rather only those calls from � to � placed
while UCF is not active.

In the third step of the process, engineers classify po-
tential interactions as bad or good. This step is primarily
manual. As engineers gain experience and insight, they
might discover general principles that govern some of their
choices. Such principles can feed into automated assistance
for this step, or even be elevated to the status of require-
ments.

Concerning the PSTN example, most engineers would
probably conclude that the first feature interaction is good
and the second is bad. This is by no means certain, however,
as there are many factors to take into account [24].

In the fourth step of the process, feature descriptions
are adjusted so that all of the good feature interactions are
present and none of the bad ones are. If the description tech-
nique has sufficient behavioral modularity, only the compo-
sition parameters or descriptions of new features need be
changed, and all the old features can remain untouched. If
all its steps are sound, the result of feature engineering is
that the requirements governing how features interact have
been elicited, and the final behavioral description of the sys-
tem is guaranteed to satisfy them.

4.2 Component Architectures

To summarize the conclusions so far, telecommunica-
tion systems need behavioral descriptions that are formal,
feature-oriented, and network-independent. In addition to
whatever general-purpose formal methods these descrip-
tions support, they must support feature engineering by of-
fering structured feature composition and a useful degree of
behavioral modularity.

The best way to achieve all these goals is with formal
system descriptions that are both feature-oriented and ar-
chitectural. More specifically, they should be based on a
component architecture, which is an architecture in which
new functions can be added freely by adding component
programs. As Figure 5 shows, feature modules and compo-
nent programs can be the same things.

The first reason for this recommendation is that, within
the research community studying feature interaction, there
is a definite trend toward architectural descriptions [2, 5,
10, 11, 16, 14, 19, 21, 23, 25, 26]. They are by far the most
successful in delivering behavioral modularity. This is not
surprising; as the example in Section 3.2 shows, one of the

architecture
component

description
feature−oriented

description
base

feature

composition
feature

interface
platform

programs
component

modules

platform
programming

Figure 5. The same system description can
be viewed as both feature-oriented and archi-
tectural.

helpful structures that can be created with a free choice of
internal system phenomena is behavioral modularity.

A second reason for the recommendation is that the ar-
chitectural structure that defines and constrains feature com-
position (component interaction) also provides a basis for
enumerating, classifying, and detecting potential feature in-
teractions. This is essential for feature engineering.

Despite its positive qualities, architectural description
should not be recommended without at least considering its
drawbacks, in particular the lack of separation between be-
havioral and implementation concerns.

There are many reasons why this drawback has little sig-
nificance in the context of evolving systems, particularly
telecommunication systems. To begin with, it is clear from
Section 3.2 that implementation-dependence need not ex-
tend all the way down to network-dependence.

It is also important to consider the process of developing
and managing an evolving system. One of the best ways to
achieve timely evolution is to maintain an open system—
one to which many parties contribute. Contributors to an
open system are likely to be doing both requirements engi-
neering and implementation, so they don’t need a separa-
tion of those concerns. They do need a well-defined plat-
form on which to program, one that elucidates the seman-
tics of each component, helps different components coop-
erate within the overall system structure, and protects the
integrity of the system from errant components.

These observations apply directly to telecommunica-
tions. For many years, providers of telecommunication ser-
vices have been frustrated with the slow pace of feature
development in vendors’ proprietary equipment. Because

they want to speed up the process by developing their own
features or getting third parties to do it, they have been de-
manding from the vendors of telecommunication equipment
that their systems be open.

5 Conclusion

All of these ideas are embodied in the Distributed Fea-
ture Composition architecture [14, 21, 23, 25, 26], which is
a component architecture for the description of telecommu-
nication services, designed for generality, feature modular-
ity, structured feature composition, and analysis of feature
interactions. An IP implementation of DFC [4] provides an
existence proof for the plausibility of these ideas.

I have attempted to justify the conclusions of this pa-
per with well-established observations about the telecom-
munication industry and telecommunication software. The
intention is to provide plenty of background information—
enough so that others can decide whether the recommenda-
tions apply to software development for other application
domains dominated by change.

References

[1] Martín Abadi and Leslie Lamport. Composing spec-
ifications. ACM Transactions on Programming Lan-
guages and Systems XV(1):73-132, January 1993.

[2] Pansy K. Au and Joanne M. Atlee. Evaluation of a
state-based model of feature interactions. In [9], pages
153-167.

[3] Greg Bond and Eric Cheung, editors. Proceedings
of the IP Telecom Services Workshop 2000. Atlanta,
Georgia, September 2000.

[4] Greg Bond, Eric Cheung, Andrew Forrest, Michael
Jackson, Hal Purdy, Chris Ramming, and Pamela
Zave. DFC as the basis for ECLIPSE, an IP communi-
cations software platform. In [3].

[5] Kenneth H. Braithwaite and Joanne M. Atlee. To-
wards automated detection of feature interactions. In
[6], pages 36-57.

[6] L. G. Bouma and H. Velthuijsen, editors. Feature In-
teractions in Telecommunications Systems. IOS Press,
Amsterdam, 1994.

[7] M. Calder and E. Magill, editors, Feature Interactions
in Telecommunications and Software Systems VI., IOS
Press, Amsterdam, 2000.

[8] K. E. Cheng and T. Ohta, editors, Feature Interactions
in Telecommunications Systems III., IOS Press, Ams-
terdam, 1995.

[9] P. Dini, R. Boutaba, and L. Logrippo, editors. Feature
Interactions in Telecommunication Networks IV. IOS
Press, Amsterdam, 1997.

[10] José M. Duran and John Visser. International stan-
dards for intelligent networks. IEEE Communications
XXX(2):34-42, February 1992.

[11] James J. Garrahan, Peter A. Russo, Kenichi Kitami,
and Roberto Kung. Intelligent Network overview.
IEEE Communications XXXI(3):30-36, March 1993.

[12] Carl A. Gunter, Elsa L. Gunter, Michael Jackson,
and Pamela Zave. A reference model for require-
ments and specifications. IEEE Software XVII(3):37-
43, May/June 2000.

[13] Michael Jackson and Pamela Zave. Deriving specifica-
tions from requirements: An example. In Proceedings
of the Seventeenth International Conference on Soft-
ware Engineering, pages 15-24. ACM Press, ISBN 0-
89791-708-1, 1995.

[14] Michael Jackson and Pamela Zave. Distributed feature
composition: A virtual architecture for telecommuni-
cations services. IEEE Transactions on Software En-
gineering XXIV(10):831-847, October 1998.

[15] Michael Jackson and Pamela Zave. Domain descrip-
tions. In Proceedings of the IEEE International Sym-
posium on Requirements Engineering, pages 56-64.
IEEE Computer Society Press, ISBN 0-8186-3120-1,
1992.

[16] Jalel Kamoun and Luigi Logrippo. Goal-oriented fea-
ture interaction detection in the Intelligent Network
model. In [17], pages 172-186.

[17] K. Kimbler and L. G. Bouma, editors. Feature Inter-
actions in Telecommunications and Software Systems
V. IOS Press, Amsterdam, 1998.

[18] Henning Schulzrinne, editor. Proceedings of the Sec-
ond IP-Telephony Workshop. Columbia University,
New York, New York, April 2001.

[19] Greg Utas. A pattern language of feature interaction.
In [17], pages 98-114.

[20] Hugo Velthuijsen. Issues of non-monotonicity in
feature-interaction detection. In [8], pages 31-42.

[21] Pamela Zave. An architecture for three challenging
features. In Proceedings of the Second IP Telephony
Workshop, Columbia University, New York, New
York, April 2001.

[22] Pamela Zave. ‘Calls considered harmful’ and other ob-
servations: A tutorial on telephony. In Tiziana Mar-
garia, Bernhard Steffen, Roland Rückert, and Joachim
Posegga, editors, Services and Visualization: Towards
User-Friendly Design, pages 8-27. Lecture Notes in
Computer Science 1385, Springer-Verlag, 1998.

[23] Pamela Zave. An experiment in feature engineering. In
Essays by the Members of the IFIP Working Group on
Programming Methodology, Springer-Verlag, to ap-
pear.

[24] Pamela Zave. Secrets of call forwarding: A specifi-
cation case study. In Formal Description Techniques
VIII (Proceedings of the Eighth International IFIP
Conference on Formal Description Techniques for
Distributed Systems and Communications Protocols),
pages 153-168. Chapman & Hall, ISBN 0-412-73270-
X, 1996.

[25] Pamela Zave and Michael Jackson. DFC modifica-
tions I (Version 2): Routing extensions. AT&T Lab-
oratories Technical Report, January 2000.

[26] Pamela Zave and Michael Jackson. DFC modifi-
cations II: Protocol extensions. AT&T Laboratories
Technical Report, November 1999.

[27] Pamela Zave and Michael Jackson. Four dark corners
of requirements engineering. ACM Transactions on
Software Engineering and Methodology VI(1):1-30,
January 1997.

