FORMAL METHODS IN NETWORKING
COMPUTER SCIENCE 598D, SPRING 2010

PRINCETON UNIVERSITY

LIGHTWEIGHT MODELING
IN PROMELA/SPIN AND ALLOY

Pamela Zave
AT&T Laboratories—Research

Florham Park, New Jersey, USA

SIP VERSION 6 DOMAIN ASSUMPTION: a user

process does not end the session until it

bool userimod = false; has modified the session at least once
bool user2mod = false; :
proctype user1 (chan in, out) { proctype user2 (chan in, out) {
co.n.fi.rmed: do

:: in?invite; out!accept

:: in?bye; out!lbyeAck; goto end

:: outlinvite; goto relnviting

confirmed: do
:: in?invite; outlaccept
:: in?bye; out!byeAck; goto end
:: outlinvite; goto relnviting

POO0O0O0OCIOCOIOIOIOIOIOOIOIOIOIOIOIOSIOIOITS

;o userimod; scccccccccccccccccccccccccccccctocccccccccee :: user2mod;
out!bye; goto Byeing out!bye; goto Byeing
od; od;
relnviting: do relnviting: do
:: in?invite; out!race :: in?invite; out!race
:: in?accept; userimod = true; :: in?accept; user2mod = true;
goto confirmed goto confirmed
:: in?race; goto confirmed :: in?race; goto confirmed
:: in?bye; out!lbyeAck; goto end :: in?bye; out!lbyeAck; goto end
od; od;
Byeing: do Byeing: do
:: in?invite :: in?invite
:: in?bye; out!byeAck :: in?bye; out!byeAck
:: in?byeAck; goto end :: in?byeAck; goto end
od; od;

end: assert(userimod && user2mod)} end: _ assert(userimod && user2mod) }

user has modified the session at least once

SIP VERSION 6 DOMAIN ASSUMPTION: a user

process does not end the session until it

bool userimod = false; has modified the session at least once
bool user2mod = false; :
proctype user1 (chan in, out) { proctype user2 (chan in, out) {
co.n.fi.rmed: do

:: in?invite; out!accept

:: in?bye; out!lbyeAck; goto end

:: outlinvite; goto relnviting

confirmed: do
:: in?invite; outlaccept
:: in?bye; out!byeAck; goto end
:: outlinvite; goto relnviting

POO0O0O0OCIOCOIOIOIOIOIOOIOIOIOIOIOIOSIOIOITS

;o userimod; scccccccccccccccccccccccccccccctocccccccccee :: user2mod;
out!bye; goto Byeing out!bye; goto Byeing
od; od;
relnviting: do relnviting: do
:: in?invite; out!race :: in?invite; out!race
:: in?accept; userimod = true; :: in?accept; user2mod = true;
goto confirmed goto confirmed
:: in?race; goto confirmed :: in?race; goto confirmed
:: in?bye; out!lbyeAck; goto end :: in?bye; out!lbyeAck; goto end
od; od;
Byeing: do Byeing: do
:: in?invite :: in?invite
:: in?bye; out!byeAck :: in?bye; out!byeAck
:: in?byeAck; goto end :: in?byeAck; goto end
od; od;

end: assert(userimod && user2mod)} end: assert(userimod && user2mod) }

the assumption is not sufficient, because either user can end the
session unilaterally, and the other user may not have acted yet

SIP VERSION 7

bool userimod = false;

easily implemented in a distributed system

proctype user1 (chan in, out) {

confirmed: do
:: in?invite; outlaccept
:: in?bye; out!byeAck; goto end
:: outlinvite; goto relnviting
:: userimod && user2mod;
out!bye; goto Byeing
od;
relnviting: do
:: in?invite; out!race
:: in?accept; userimod = true;
goto confirmed
:: in?race; goto confirmed
:: in?bye; out!lbyeAck; goto end
od;
Byeing: do
:: in?invite
:: in?bye; out!byeAck
:: in?byeAck; goto end
od;
end: assert(userimod && user2mod) }

this version solves the
problem by strengthening
the domain assumption

they are used only to
check that the
specification satisfies a

---------------- conditional requirement,

so they will not be
implemented!

proctype user2 (chan in, out) {

confirmed: do
:: in?invite; outlaccept
:: in?bye; out!lbyeAck; goto end
:: outlinvite; goto relnviting
:: user2zmod && userimod;
out!bye; goto Byeing
od;
relnviting: do
:: in?invite; out!race
:: in?accept; user2mod = true;
goto confirmed
:: in?race; goto confirmed
:: in?bye; out!lbyeAck; goto end
od;
Byeing: do
:: in?invite
:: in?bye; out!lbyeAck
:: in?byeAck; goto end
od;
end: assert(userimod && user2mod) }

LIGHTNING OVERVIEW OF LINEAR-TIME TEMPORAL

LOGIC (LTL)

LTL IS A LOGIC, L.E., A LANGUAGE OF THE TRUTH OF AN LTL FORMULA IS
TRUTH-VALUED FORMULAS DEFINED WITH RESPECT TO A STATE
SEQUENCE (TRACE)

P state predicate not temporal P?... (P true of first state in trace)
Pand Qare 4 - : 2
PUQ P until Q mutua"y Q,PQ,P (Weak)
...... 2 . 2
exclusive Q?...;P...Q72... (strong)
P always P invariance P... (Pis true of every state in trace)
<P eventually P guarantee P?...;?2...P?... (Pis true of at
?2P? least one state)
(in every state,
OSPp always recurrence ?2...P?...P... -eventuallyP; if
eventually P ?2...P? P trace terminates, P
is true in final state)
OOP eventually stability ?2...P... (eventually, P becomes

always P invariantly true)

LTL AND SPIN

"SAFETY" PROPERTY

@® usually, an invariance

@ falsifiable by a finite trace prefix

LTL IS THE UNDERLYING MATHEMATICS OF SPIN

"LIVENESS" OR "PROGRESS" PROPERTY
@ contains a guarantee

@ not falsifiable by a finite trace prefix

note: all real-time deadlines
are safety properties

DEFAULT CHECKING IN SPIN

specific invariances

invalid end state:
[1! (terminal state &&
process not in "end")

assertion violation:

[! (program counter at
assertion && assertion
not true in current state)

requirement in SIP Versions 6
and 7 is a safety property, is not
good enough because a user
process could be starved forever

LTL CHECKING IN SPIN

@® can check any temporal formula,
including progress properties

@ the SIP requirements we really want
are:

[(useritried —> < userimod)
O (user2tried —> <> user2mod)

the respoﬁse pattern

SIP VERSION 8

SIP guarantees a response to the
caller (user1) by giving caller.,
static priority e

proctype user1 (chan in, out) {

confirmed: do
:: in?invite; out!accept
:: in?bye; out!lbyeAck; goto end
:: outlinvite; useritried = true;
goto relnviting
;- userimod && user2mod;
out!bye; goto Byeing
od;
relnviting: do
:: in?invite; out!race
:: in?accept; userimod = true;
goto confirmed
:: in?race; goto confirmed
:: in?bye; out!lbyeAck; goto end
od;
Byeing: do
:: in?invite
:: in?bye; out!byeAck
:: in?byeAck; goto end
od;
end: skip }

O (useritried —> < userimod)
now holds for all traces

proctype user2 (chan in, out) {

confirmed: do
:: in?invite; out!accept
:: in?bye; out!lbyeAck; goto end
:: outlinvite; user2tried == true;
goto relnviting
:: user2zmod && userimod;
out!bye; goto Byeing
od;
relnviting: do
-------- :: in?invite; outlaccept
:: in?accept; user2mod = true;
goto confirmed
:: in?race; goto confirmed
:: in?bye; out!lbyeAck; goto end
od;
Byeing: do
:: in?invite
:: in?bye; out!byeAck
:: in?byeAck; goto end
od;
end: skip }

SIP VERSION 8

SIP guarantees a response to the
caller (user1) by giving caller.,
static priority e

proctype user1 (chan in, out) {

confirmed: do
:: in?invite; out!accept
:: in?bye; out!lbyeAck; goto end
:: outlinvite; useritried = true;
goto relnviting
;- userimod && user2mod;
out!bye; goto Byeing
od;
relnviting: do
:: in?invite; out!race
:: in?accept; userimod = true;
goto confirmed
:: in?race; goto confirmed
:: in?bye; out!lbyeAck; goto end
od;
Byeing: do
:: in?invite
:: in?bye; out!byeAck
:: in?byeAck; goto end
od;
end: skip }

1 (user2tried —> < user2mod)
is not true for all traces, detectable
by means of a cycle in the
reachability graph

proctype user2 (chan in, out) {

confirmed: do
:: in?invite; out!accept
:: in?bye; out!lbyeAck; goto end
:: outlinvite; user2tried == true;
goto relnviting
:: user2zmod && userimod;
out!bye; goto Byeing
od;
relnviting: do
-------- :: in?invite; outlaccept
:: in?accept; user2mod = true;
goto confirmed
:: in?race; goto confirmed
:: in?bye; out!lbyeAck; goto end
od;
Byeing: do
:: in?invite
:: in?bye; out!byeAck
:: in?byeAck; goto end
od;
end: skip }

SIP VERSION 9

proctype user1 (chan in, out) {

confirmed: do
:: in?invite; out!accept;
user2accepted = true
:: in?bye; out!lbyeAck; goto end

outlinvite; useritried = true;
goto relnviting
:: userimod && user2mod;
out!bye; goto Byeing
od;
relnviting: do
:: in?invite; out!race;
user2lost = true
:: in?accept; userimod = true;
goto confirmed
:: in?race; goto confirmed
:: in?bye; out!lbyeAck; goto end
od;
Byeing: do
:: in?invite
:: in?bye; out!byeAck
:: in?byeAck; goto end
od;

end: skip }

now user1 lets
user? in if it has
lost a race

SIP implementations
use timers to achieve
specified behavior now both
processes are
guaranteed a

response

proctype user2 (chan in, out) {

K confirmed: do
:: luser2lost || user2accepted; -.--

:: in?invite; out!accept
:: in?bye; out!lbyeAck; goto end
:: outlinvite; user2tried == true;
goto relnviting
:: user2zmod && userimod;
out!bye; goto Byeing
od;
relnviting: do
:: in?invite; out!accept
:: in?accept; user2mod = true;
goto confirmed
:: in?race; goto confirmed
:: in?bye; out!lbyeAck; goto end
od;
Byeing: do
:: in?invite
:: in?bye; out!byeAck
:: in?byeAck; goto end
od;

end: skip }

OTHER SPIN OPTIONS

SEARCH FEATURES | HAVE LITTLE USE FOR
@ default search (traversal of @® random or manual simulation
reachability graph) is depth-first mode (simulation guided by an

error trail is essential!)
@® can search breadth-first

@ turning off partial order

@® can limit depth of search reduction (an optimization that
appears to have no
there is a default of 10K, disadvantages)

so you may have to increase limit

MEMORY—USUALLY THE SCARCEST
RESOURCE probably too weak to make

your model run correctly
® defaultis 128 Mb

@® weak fairness

how does an implementor

@® can increase it by factors of 2 implement a system whose
specification is only correct
@® compression saves memory with with fairness built in?
modest cost in time
strong fairness might make
@® supertrace saves a lot of memory, but your model run correctly, but it
search is no longer complete is too expensive for Spin to
offer

visited states are stored in a hash table, where
multiple states may be indistinguishable

TALES OF SIP (THE SESSION INITIATION PROTOCOL)

SIP IS THE DOMINANT SIGNALING
PROTOCOL FOR IP-BASED
MULTIMEDIA APPLICATIONS

® telecommunications

voice-over-IP
video chat
large-scale conferencing
telemonitoring

® computer-supported
cooperative work

embedded telecommunications
distance learning
emergency services
virtual reality

® computer-supported
cooperative play

multiplayer games
collaborative television
networked music performance

SIP IS STANDARDIZED BY THE INTERNET
ENGINEERING TASK FORCE (IETF)

® IETF philosophy is to standardize
based on "rough consensus and
working code"

® in the IETF, a finite-state machine is
exotic

® IETF culture supports ignoring
"corner cases”

a corner case is an unanticipated
and undesirable situation, which is
declared to be rare without evidence

® the IETF is dominated by equipment
manufacturers, who do not want
standards

they standardize only under pressure
from their customers, and
participate in the IETF as a
highly competitive game

TALES OF SIP: THE PROTOCOL SPECIFICATION

SIP HAS BEEN, AND IS BEING, DEFINED
BOTTOM-UP IN RESPONSE TO AN
ENDLESS SERIES OF NEW USE CASES

@® the base document (IETF RFC 3261)
is 268 pages

@® "A Hitchhiker's Guide to SIP" is a
snapshot of SIP RFCs and drafts . ..

... which lists 142 documents,
totaling many thousands of
pages

@® everyone wants "simple SIP", and
everyone has a different idea of
what it should be

@® opinions are based on a false
opposition between generality and
simplicity

no conception
that a protocol based on better
abstractions could be both
more general and simpler

@® message overhead is too high

THE DOCUMENTS

@® written in English, augmented only
by message sequence charts that
look like this (IETF macros):

user1 user2
L€ §

compare these to the charts
generated by Spin—
these are inviting, almost
forcing, you to think that
network communication
is instantaneous!

@® not surprisingly, the standard is
incomplete, inconsistent, or
ambiguous in places

TALES OF SIP: USING PROMELA/SPIN

MODELING
@® we have a collection of SIP models

@® we are gradually increasing their
scope (bigger subsets of protocol,
endpoint/server configurations)

UNDERSTANDING SIP

@® models show what an endpoint
must do to use and interpret the
protocol correctly—this is far more
complicated than previously
understood

® on TCP vs. UDP: with non-FIFO
communication, the reachability
graph is 100 times the size of the
FIFO reachability graph

® an RFC documents 7 race
conditions—our model reveals
those and 49 others of the same

type

DOCUMENTING SIP

® we annotate our models with

pointers to the relevant sections of
RFCs

@® as documentation, our models are

guaranteed to be complete,
consistent, and unambiguous

@ also, you know where to find the

answer to your question!

OTHER USES OF MODEL CHECKING

@® we verify the algorithms in our

tools for SIP service creation, e.g.,
showing that media channels are
controlled correctly

we have modified Spin to generate
test cases automatically; then we
subject SIP components to
thousands of tests with guaranteed
coverage

EVALUATION OF
PROMELA/SPIN

SPIN

@® a powerful, industrial-strength
tool

@® mostly easy to use, with a few bad
spots (horrible parser, false

negatives in reporting unreachable
code)

PROMELA

@® great for temporal modeling and
assertions

@® great for message channels

@® primitive data structures (bool,
byte, mtype, int, array)

@® primitive data assertions (==, <, <=,
>, >= on values)

A SUGGESTED CLASS

PROJECT

CREATE A MODEL OF TCP

@® SYN, FIN, ACK messages to create
and destroy connections

@® DATA messages with sequence
numbers

@® model out-of-order message
delivery

@® model how TCP provides FIFO
message streams in both directions,
and use Spin to verify correctness

IF THAT WAS TOO EASY ...

@® also model message loss, show
how TCP provides reliable,
duplicate-free message streams in
both directions, and use Spin to
verify correctness

