
A

A
A

A

A

A
A

A A

A A

A

FORMAL METHODS IN NETWORKING

COMPUTER SCIENCE 598D, SPRING 2010

PRINCETON UNIVERSITY

LIGHTWEIGHT MODELING

IN PROMELA/SPIN AND ALLOY

Pamela Zave

AT&T Laboratories—Research

Florham Park, New Jersey, USA

A

A
A

A

A

A
A

A A

A A

A

SIP VERSION 6

bool user1mod = false;
bool user2mod = false;

proctype user1 (chan in, out) {
 . . .
confirmed: do
 :: in?invite; out!accept
 :: in?bye; out!byeAck; goto end
 :: out!invite; goto reInviting
 :: user1mod;
 out!bye; goto Byeing
 od;
reInviting: do
 :: in?invite; out!race
 :: in?accept; user1mod = true;
 goto confirmed
 :: in?race; goto confirmed
 :: in?bye; out!byeAck; goto end
 od;
Byeing: do
 :: in?invite
 :: in?bye; out!byeAck
 :: in?byeAck; goto end
 od;
end: assert(user1mod && user2mod) }

proctype user2 (chan in, out) {
 . . .
confirmed: do
 :: in?invite; out!accept
 :: in?bye; out!byeAck; goto end
 :: out!invite; goto reInviting
 :: user2mod;
 out!bye; goto Byeing
 od;
reInviting: do
 :: in?invite; out!race
 :: in?accept; user2mod = true;
 goto confirmed
 :: in?race; goto confirmed
 :: in?bye; out!byeAck; goto end
 od;
Byeing: do
 :: in?invite
 :: in?bye; out!byeAck
 :: in?byeAck; goto end
 od;
end: assert(user1mod && user2mod) }

DOMAIN ASSUMPTION: a user
process does not end the session until it
has modified the session at least once

REQUIREMENT: in every end state, each
user has modified the session at least once

A

A
A

A

A

A
A

A A

A A

A

SIP VERSION 6

bool user1mod = false;
bool user2mod = false;

proctype user1 (chan in, out) {
 . . .
confirmed: do
 :: in?invite; out!accept
 :: in?bye; out!byeAck; goto end
 :: out!invite; goto reInviting
 :: user1mod;
 out!bye; goto Byeing
 od;
reInviting: do
 :: in?invite; out!race
 :: in?accept; user1mod = true;
 goto confirmed
 :: in?race; goto confirmed
 :: in?bye; out!byeAck; goto end
 od;
Byeing: do
 :: in?invite
 :: in?bye; out!byeAck
 :: in?byeAck; goto end
 od;
end: assert(user1mod && user2mod) }

proctype user2 (chan in, out) {
 . . .
confirmed: do
 :: in?invite; out!accept
 :: in?bye; out!byeAck; goto end
 :: out!invite; goto reInviting
 :: user2mod;
 out!bye; goto Byeing
 od;
reInviting: do
 :: in?invite; out!race
 :: in?accept; user2mod = true;
 goto confirmed
 :: in?race; goto confirmed
 :: in?bye; out!byeAck; goto end
 od;
Byeing: do
 :: in?invite
 :: in?bye; out!byeAck
 :: in?byeAck; goto end
 od;
end: assert(user1mod && user2mod) }

DOMAIN ASSUMPTION: a user
process does not end the session until it
has modified the session at least once

the assumption is not sufficient, because either user can end the
session unilaterally, and the other user may not have acted yet

A

A
A

A

A

A
A

A A

A A

A

this version solves the
problem by strengthening
the domain assumption

they are used only to
check that the
specification satisfies a
conditional requirement,
so they will not be
implemented!

SIP VERSION 7

bool user1mod = false;
bool user2mod = false;

these are global history variables—not
easily implemented in a distributed system

proctype user1 (chan in, out) {
 . . .
confirmed: do
 :: in?invite; out!accept
 :: in?bye; out!byeAck; goto end
 :: out!invite; goto reInviting
 :: user1mod && user2mod;
 out!bye; goto Byeing
 od;
reInviting: do
 :: in?invite; out!race
 :: in?accept; user1mod = true;
 goto confirmed
 :: in?race; goto confirmed
 :: in?bye; out!byeAck; goto end
 od;
Byeing: do
 :: in?invite
 :: in?bye; out!byeAck
 :: in?byeAck; goto end
 od;
end: assert(user1mod && user2mod) }

proctype user2 (chan in, out) {
 . . .
confirmed: do
 :: in?invite; out!accept
 :: in?bye; out!byeAck; goto end
 :: out!invite; goto reInviting
 :: user2mod && user1mod;
 out!bye; goto Byeing
 od;
reInviting: do
 :: in?invite; out!race
 :: in?accept; user2mod = true;
 goto confirmed
 :: in?race; goto confirmed
 :: in?bye; out!byeAck; goto end
 od;
Byeing: do
 :: in?invite
 :: in?bye; out!byeAck
 :: in?byeAck; goto end
 od;
end: assert(user1mod && user2mod) }

A

A
A

A

A

A
A

A A

A A

A

LIGHTNING OVERVIEW OF LINEAR-TIME TEMPORAL

 LOGIC (LTL)

P

P

P

always P

eventually P

always
eventually P

eventually
always P

invariance

guarantee

recurrence

stability

P U Q P until Q

P ? . . . ; ? . . . P ? . . .
? P ?

? . . . P ? . . . P . . .
? . . . P ? . . . P

P

LTL IS A LOGIC, I.E., A LANGUAGE OF
TRUTH-VALUED FORMULAS

THE TRUTH OF AN LTL FORMULA IS
DEFINED WITH RESPECT TO A STATE
SEQUENCE (TRACE)

P state predicate not temporal P ? . . .

Q ? . . . ; P . . . Q ? . . . , P . . . (weak)
Q ? . . . ; P . . . Q ? . . . (strong)

P . . . (P is true of every state in trace)

(in every state,
eventually P; if
trace terminates, P
is true in final state)

? . . . P . . .

(P true of first state in trace)

(P is true of at
least one state)

(eventually, P becomes
invariantly true)

P and Q are
mutually
exclusive

A

A
A

A

A

A
A

A A

A A

A

(user2tried —> user2mod)

(user1tried —> user1mod)

"SAFETY" PROPERTY "LIVENESS" OR "PROGRESS" PROPERTY

falsifiable by a finite trace prefix

LTL AND SPIN LTL IS THE UNDERLYING MATHEMATICS OF SPIN

DEFAULT CHECKING IN SPIN

specific invariances

usually, an invariance

invalid end state:
 ! (terminal state &&
 process not in "end")

assertion violation:
 ! (program counter at
 assertion && assertion
 not true in current state)

requirement in SIP Versions 6
and 7 is a safety property, is not
good enough because a user
process could be starved forever

contains a guarantee

not falsifiable by a finite trace prefix

LTL CHECKING IN SPIN

can check any temporal formula,
including progress properties

the SIP requirements we really want
are:

note: all real-time deadlines
are safety properties

the response pattern

A

A
A

A

A

A
A

A A

A A

A

(user1tried —> user1mod)
now holds for all traces

SIP VERSION 8

proctype user1 (chan in, out) {
 . . .
confirmed: do
 :: in?invite; out!accept
 :: in?bye; out!byeAck; goto end
 :: out!invite; user1tried = true;
 goto reInviting
 :: user1mod && user2mod;
 out!bye; goto Byeing
 od;
reInviting: do
 :: in?invite; out!race
 :: in?accept; user1mod = true;
 goto confirmed
 :: in?race; goto confirmed
 :: in?bye; out!byeAck; goto end
 od;
Byeing: do
 :: in?invite
 :: in?bye; out!byeAck
 :: in?byeAck; goto end
 od;
end: skip }

proctype user2 (chan in, out) {
 . . .
confirmed: do
 :: in?invite; out!accept
 :: in?bye; out!byeAck; goto end
 :: out!invite; user2tried == true;
 goto reInviting
 :: user2mod && user1mod;
 out!bye; goto Byeing
 od;
reInviting: do
 :: in?invite; out!accept
 :: in?accept; user2mod = true;
 goto confirmed
 :: in?race; goto confirmed
 :: in?bye; out!byeAck; goto end
 od;
Byeing: do
 :: in?invite
 :: in?bye; out!byeAck
 :: in?byeAck; goto end
 od;
end: skip }

SIP guarantees a response to the
caller (user1) by giving caller
static priority

A

A
A

A

A

A
A

A A

A A

A

(user2tried —> user2mod)
is not true for all traces, detectable
by means of a cycle in the
reachability graph

SIP VERSION 8

proctype user1 (chan in, out) {
 . . .
confirmed: do
 :: in?invite; out!accept
 :: in?bye; out!byeAck; goto end
 :: out!invite; user1tried = true;
 goto reInviting
 :: user1mod && user2mod;
 out!bye; goto Byeing
 od;
reInviting: do
 :: in?invite; out!race
 :: in?accept; user1mod = true;
 goto confirmed
 :: in?race; goto confirmed
 :: in?bye; out!byeAck; goto end
 od;
Byeing: do
 :: in?invite
 :: in?bye; out!byeAck
 :: in?byeAck; goto end
 od;
end: skip }

proctype user2 (chan in, out) {
 . . .
confirmed: do
 :: in?invite; out!accept
 :: in?bye; out!byeAck; goto end
 :: out!invite; user2tried == true;
 goto reInviting
 :: user2mod && user1mod;
 out!bye; goto Byeing
 od;
reInviting: do
 :: in?invite; out!accept
 :: in?accept; user2mod = true;
 goto confirmed
 :: in?race; goto confirmed
 :: in?bye; out!byeAck; goto end
 od;
Byeing: do
 :: in?invite
 :: in?bye; out!byeAck
 :: in?byeAck; goto end
 od;
end: skip }

SIP guarantees a response to the
caller (user1) by giving caller
static priority

A

A
A

A

A

A
A

A A

A A

A

now user1 lets
user2 in if it has
lost a race

SIP implementations
use timers to achieve
specified behavior now both

processes are
guaranteed a
response

SIP VERSION 9

proctype user1 (chan in, out) {
 . . .
confirmed: do
 :: in?invite; out!accept;
 user2accepted = true
 :: in?bye; out!byeAck; goto end
 :: !user2lost || user2accepted;
 out!invite; user1tried = true;
 goto reInviting
 :: user1mod && user2mod;
 out!bye; goto Byeing
 od;
reInviting: do
 :: in?invite; out!race;
 user2lost = true
 :: in?accept; user1mod = true;
 goto confirmed
 :: in?race; goto confirmed
 :: in?bye; out!byeAck; goto end
 od;
Byeing: do
 :: in?invite
 :: in?bye; out!byeAck
 :: in?byeAck; goto end
 od;
end: skip }

proctype user2 (chan in, out) {
 . . .
confirmed: do
 :: in?invite; out!accept
 :: in?bye; out!byeAck; goto end
 :: out!invite; user2tried == true;
 goto reInviting
 :: user2mod && user1mod;
 out!bye; goto Byeing
 od;
reInviting: do
 :: in?invite; out!accept
 :: in?accept; user2mod = true;
 goto confirmed
 :: in?race; goto confirmed
 :: in?bye; out!byeAck; goto end
 od;
Byeing: do
 :: in?invite
 :: in?bye; out!byeAck
 :: in?byeAck; goto end
 od;
end: skip }

A

A
A

A

A

A
A

A A

A A

A

OTHER SPIN OPTIONS

SEARCH

default search (traversal of
reachability graph) is depth-first

can search breadth-first

can limit depth of search

MEMORY—USUALLY THE SCARCEST
RESOURCE

default is 128 Mb

can increase it by factors of 2

compression saves memory with
modest cost in time

supertrace saves a lot of memory, but
search is no longer complete

visited states are stored in a hash table, where
multiple states may be indistinguishable

FEATURES I HAVE LITTLE USE FOR

random or manual simulation
mode (simulation guided by an
error trail is essential!)

turning off partial order
reduction (an optimization that
appears to have no
disadvantages)

weak fairness

there is a default of 10K,
so you may have to increase limit

probably too weak to make
your model run correctly

how does an implementor
implement a system whose
specification is only correct
with fairness built in?

strong fairness might make
your model run correctly, but it
is too expensive for Spin to
offer

A

A
A

A

A

A
A

A A

A A

A

TALES OF SIP (THE SESSION INITIATION PROTOCOL)

SIP IS THE DOMINANT SIGNALING
PROTOCOL FOR IP-BASED
MULTIMEDIA APPLICATIONS

telecommunications

computer-supported
cooperative work

computer-supported
cooperative play

voice-over-IP
video chat

large-scale conferencing
telemonitoring

multiplayer games
collaborative television

networked music performance

embedded telecommunications
distance learning

emergency services
virtual reality

SIP IS STANDARDIZED BY THE INTERNET
ENGINEERING TASK FORCE (IETF)

IETF philosophy is to standardize
based on "rough consensus and
working code"

in the IETF, a finite-state machine is
exotic

IETF culture supports ignoring
"corner cases"

a corner case is an unanticipated
and undesirable situation, which is

declared to be rare without evidence

the IETF is dominated by equipment
manufacturers, who do not want
standards

they standardize only under pressure
from their customers, and
participate in the IETF as a
highly competitive game

A

A
A

A

A

A
A

A A

A A

A

TALES OF SIP: THE PROTOCOL SPECIFICATION

SIP HAS BEEN, AND IS BEING, DEFINED
BOTTOM-UP IN RESPONSE TO AN
ENDLESS SERIES OF NEW USE CASES

"A Hitchhiker's Guide to SIP" is a
snapshot of SIP RFCs and drafts . . .

 . . . which lists 142 documents,
 totaling many thousands of
 pages

THE DOCUMENTS

no conception
that a protocol based on better

abstractions could be both
more general and simpler

the base document (IETF RFC 3261)
is 268 pages

everyone wants "simple SIP", and
everyone has a different idea of
what it should be

opinions are based on a false
opposition between generality and
simplicity

message overhead is too high

written in English, augmented only
by message sequence charts that
look like this (IETF macros):

user1 user2

compare these to the charts
generated by Spin—

these are inviting, almost
forcing, you to think that
network communication

is instantaneous!

not surprisingly, the standard is
incomplete, inconsistent, or
ambiguous in places

A

A
A

A

A

A
A

A A

A A

A

TALES OF SIP: USING PROMELA/SPIN

MODELING

we have a collection of SIP models

we are gradually increasing their
scope (bigger subsets of protocol,
endpoint/server configurations)

UNDERSTANDING SIP

models show what an endpoint
must do to use and interpret the
protocol correctly—this is far more
complicated than previously
understood

on TCP vs. UDP: with non-FIFO
communication, the reachability
graph is 100 times the size of the
FIFO reachability graph

an RFC documents 7 race
conditions—our model reveals
those and 49 others of the same
type

DOCUMENTING SIP

we annotate our models with
pointers to the relevant sections of
RFCs

as documentation, our models are
guaranteed to be complete,
consistent, and unambiguous

also, you know where to find the
answer to your question!

OTHER USES OF MODEL CHECKING

we verify the algorithms in our
tools for SIP service creation, e.g.,
showing that media channels are
controlled correctly

we have modified Spin to generate
test cases automatically; then we
subject SIP components to
thousands of tests with guaranteed
coverage

A

A
A

A

A

A
A

A A

A A

A

EVALUATION OF

PROMELA/SPIN

SPIN

a powerful, industrial-strength
tool

mostly easy to use, with a few bad
spots (horrible parser, false
negatives in reporting unreachable
code)

PROMELA

great for temporal modeling and
assertions

great for message channels

primitive data structures (bool,
byte, mtype, int, array)

primitive data assertions (==, <, <=,
>, >= on values)

A SUGGESTED CLASS

PROJECT

CREATE A MODEL OF TCP

SYN, FIN, ACK messages to create
and destroy connections

DATA messages with sequence
numbers

model out-of-order message
delivery

model how TCP provides FIFO
message streams in both directions,
and use Spin to verify correctness

IF THAT WAS TOO EASY . . .

also model message loss, show
how TCP provides reliable,
duplicate-free message streams in
both directions, and use Spin to
verify correctness

