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Abstract. This paper shows how an engineer could write a full formal description of the
service layer of &lecommunication system, organized according to the Distributed Feature
Composition virtual architectureDescriptionsn Promela and Z can be composed using a
joint semantics based on the transition-axiom meth@te described system can be
reasoned about in severalays, including use of tools developed for the individual
languages.

1. TheDistributed Feature Composition virtual architecture

Distributed Feature Composition (DFC) is a nawhitecture for the description of
telecommunication service©neof its primary design goals was featunedularity. The
other ofits primary design goals was abstraction away from most implementation detail
(hence the term "virtual").As it appears to achieve these goals to a useful degree,
provides a good foundation for the application of formal methods to telecommunications.

DFC was developed by Michael Jacksand myself. A full definition of the
architecture, along with motivations, intuitive explanatiosusg examples, can be found
elsewhere [6,13].We are currently exploring various extensiora)alysis/verification
techniques, and implementation strategies.

The goal of this paper is to provide a means by which an engineevritana full
formal description of the "service layer" [12] af particular telecommunication system
(excluding "business processestich as billing, provisioning, marketing, and customer
care), and apply formal reasoning to Becausesucha description will be organized
according to the DFC architecture, it will have virtual components as shown in Figure 1.

In Figure 1 the doubleectangles are repositories of global data, to which access is
restricted by the architectureSomedata repositories span the system boundary because
they are given their initial values by the environment, not by the system.

Squares in Figure 1 are DHfdxes,and can be thought of as concurrent processes
with local stateand ports (ports are represented by black circle$he virtual network
establishes featureless voicalls between portsWhena call is established between two
ports, those ports camommunicate by means of a signaling channel in each direction and a
voice channel ireach direction.Externallines and trunks also carry voice and messages in
both directions, and are thmeans by which telecommunication services are delivered to
telephones and other telecommunication systems, respectively.

Each box is either a line interface, a trunk interfacether implementation of a
particular feature Whena box attempts to place a new call, its request goes froboite
port to therouter in the virtual network.The router determines a box destination for the
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Figure 1. Component®f the DFC architecture.

call basedon feature-related criteria and also on the configuration of the system’s
environment. Thelestination box may accept or reject the call; if the &mepts the call
it must name one of its own idle ports as the call’'s second endpoint.

The primary obstacléo reaching our goal is the fact that no single specification
language is convenient enough to cover all aspects of Figure 1 on a large scale.

Jackson and | have used Promela [3],protocol description language, very
successfully to describihe protocols of the virtual network [6] and the control structures
of boxes [15]. It has been used subsequently to describevkeall configuration of the
virtual network. Being designed for model checking, however, Promieés minimal
capabilities for representing systestate. It is hopelessly inadequate for describing and
manipulating the global data, which is richly structured relational informatiorexipainds
and contracts in size.

Jackson andl have also used Z [11] very successfully to describe the routing data [6].
Z has beerused subsequently to describe the routing algorithm and sample operational
data. Yetwe are extremely reluctant to undertake the arduous task of describing protocols
and control-intensive boxes in Z, in which each control state must be nanted
manipulated explicitly.In a control-oriented language such as Promela, oottie hand,
many convenient control abstractions are available, and most control states can be implicit.

In the rest of this paper | show how the goal can be achieved using Prome&la and
together, with each languadpeing employed to describe those aspects of the system for
which it is best suited.Sections2 and 3 define the compositiclechnique and its
semantics. Sectiod gives examples of the use this technique in DFC descriptions.
Section 5 discusses reasoning about descriptionthisn form, while Section 6 gives
reasoning examplesA discussion of related work can be found in Section 7.



2. Formal foundation

The formal foundation of thig/ork is Lamport’s transition-axiom method [9}t the
heart of this method is a set of functions on the states of a prospective system
implementation. Asystem specification gives an initial value for each state function.

A system specification also has a sétactions. Eachaction is characterized by an
enabling predicate on the values state functions and by a rule constraining how the
values of state functions change when the action occurs.

This is all that is needed ftine specification of safety propertie&n implementation
satisfies a safety specification if and onlythiere exist functions on its state space that
conform to the specification, in the sense that their initial valagee with the
specification’s initial values, and they change only in accordancethetispecification’s
actions.

Liveness properties are added to a safety specifichfiahe addition of formulas in
temporal logic. The temporal operators operate on predicates over the values of state
functions, and specify how these values must eventually chaBgee no notion of
fairness is built in, the temporal formulas must be satisfied by all safe schedules.

The safety part of the transition-axiom method is not a specification language, but is
rather a means of associating a semantics with a specifidaiignage. The particular
advantage of this style of semantics, accordingL&nport, is that it answers the
fundamental question of what it means for an implementation to satisfy a specification.

It is straightforward to give a transition-axiom semantics Poomela. The state
functions of a Promela specificatioonsist of each global variable, the local variables and
parameters ofach process, and the control pointer of each process (message channels are
global variables). Variablesthat are not initialized explicitly receive initial values by
default.

Each statement ia Promela specification, except for the unique process-initialization
statement, definean action. For an action to be enabled, all of the following must hold:
(1) the control pointer of some process points to the state®nf, the statement is a
predicate, it is true ithe name scope of the same process, (3) if the statement is a channel
write, the channel is not full, and (4) if the statement ¢hannel read, the channel has a
message in it that satisfies the statement’s consti@srnesaluated in the name scope of the
process. Executioaf a predicate action simply changbe control pointer of the process.
Execution of any other action changhls control pointer of the process, and also updates
the values of other state functions in the obvious way.

The treatment of liveness properties in Promela is a penf@atth to Lamport’s
approach. Thereare formulas in linear-time temporal logfor specifying liveness
properties, and there are no built-in fairness constraints on process scheduling.

Z has a well-known operationaliterpretation, although this interpretation is not part
of its set-theoretic formal semanticH. is also straightforward to give teansition-axiom
semantics for this operational viesd Z. The state functions of a Z specification are its
variables. Thenitial values of state functions aggven by Init schemas. Actionsre
defined by operation schemad.he enabling predicate of aaction is the computed
precondition of the operation schemthe condition that ensurdglat all invariants will
still hold after the operation occurZ expresses safety properties only.

The transition-axiom method distinguishes actigesformed by the system from
actions performed by thenvironment.In both Promela and Z, this distinction can only be
made informally. This distinction is extremely important, but it is not discussed further
here because the composition of Promela and Z does not introduce any new issues.

3. Language composition

This section concerns how two descriptions, one in Proraeth one in Z, are
coordinated so thatogether they describe a telecommunication syst&ection5 will
cover much of the same ground, but waildifferent emphasis: how the two descriptions
can be understood and reasoned about separately.

There are three coordination mechanisrfer eachl give syntax in Promela and Z,
and semantics the transition-axiom style, augmenting the separate semantics for Promela



and Z in Section 2.
3.1. Sharedstate functions

A state function in Promela and a state functioZ can beshared. Before going into
the composition semantics, let us consider the syntax of sharingiave.an engineer
specifies which state functions are shar€uliite simply, state functionsn Promela and Z
are shared if they have the same nambis rule is easilyapplied to Z because all state
functions (variables) in Z have names.

Name matching seems harder to apply to Prorhetause naming is less universal.
State functions thaare control pointers do not have explicit namé&amesof local
variables and parameters can only be understood in the context of their processes.

These gaps are not really a problem, however, because nastekestunctions are
never shared wit. Controlpointers are not shared because introducing that much control
information into Z would defeat the purpose of using both langudgesal variables that
need to beshared are turned into global variabld®arametersre shared in an indirect
way, as explained in Section 3.3.

Two state functions are shared when both Promela and Z need accessdméhe
underlying state informationThe values of the two functions must gearanteed by the
specifier to maintain agiven invariant relationship.Thus sharing is a hint to the
implementer that both state functions candog@ported by one state component in the
implementation. Fromthis perspective, one of the strengths of thensition-axiom
method is that it allows multiple statanctions to be implemented by the same state
component.

Since the type system of Promela is strictly less expressive thyptheystem of Z,
invariants betweeshared state functions can usually be written in Z (see Section 4.2 for
the exception).Sometimeghe invariant is a projection of Z values onto Promela values,
specifically because of the weakness of Promela in representing state.

There are two ways for thgpecifier to guarantee that the invariant between shared
state functions is maintainedt can be maintainemanually" by updating both state
functions in tandem (Section 3.2 explains how to synchronize the updateb), praving
that the synchronizedipdates maintain the invariant when all the relevant enabling
predicates are true.

The easiest way for the specifier to achieve an invariant relatiorishwegver, is to
update the state function in ofeguage only, and to assume that the non-updated state
function gets its values "automatically” from the updated state function, thrinegh
mediation of the invariant.Thus the non-updating descriptios using the shared state
function in a "read-only" fashion.

Despite the many advantages of automatic update, it cannot bewrssd the
updating description is in Promeémd the invariant between shared state functions is a
projection. Obviouslyunder these circumstances, a value produced by Praarefet be
translated by the invariant to a unique value in Z.

Table 1 summarizes the modes in which state functions can be shared between
Promela and Z.An A entry in the table indicates that the read-only description is being
updated automaticallyAn X entry in the table indicates an impossible combinatian.
constant state function is understood to be "written" only at its initializatfom language
requires that the valuef an automatically updated state function that is declared in the
language be initialized, then the initial value miave the invariant relationship with the
initial value in the updating language.
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Table 1. A classification of shared state functions.
3.2. Sharedctions

An action in Promela and an action incan beshared. Before going into the
composition semantics, let us consider Hymtax of sharing.As with state functions,
actions in Promela and Z are shared if they have the same name.

This rule is easily applied to Z because all actions (operation schemashaneZ
names. Actiongstatements) in Promelare usually not named, but they can be given
names when needed by means of the macro fachity.example, if a use of th&tatement
skip needs an action name, we can write

#define Route_Call skip

and use the macro name instead of the statement at the desired place in the Promela code.

Two actionsare shared when they need to be synchronized in Promela and Z.
Synchronization means that tleae action occurs when and only when the other action
occurs. Inthe transition-axiom semanticshared actions are composed into one action
whose enablingredicate is the conjunction of the Promela and Z enabling predicates, and
whose state-update rule is the conjunction of the Promela and Z update rules.

Table 2 gives a@lassification of shared actions, based primarily on whether they have
nontrivial enabling predicates irither language.An extremely important poiptnot
emphasized in Tabl2—is that a Promela action is never enabled unless a control pointer
points to it (this isthe significance of the asterisk on "always enabled" Promela actions).
Indeed, theprincipal reason that Z actions are shared with Promela actions is to put the Z
actions under Promela controrhe marked places ifable 2 are the ones that are used in
the DFC description.

() H Promela 1]
H always enabled* H potentially disabled %
(] Mskip Oassignmentd predicatél channehd/writefn
il i i i il
O always 0 data 0 0 O
Ty U enabled [y update 0 O i
] Hpotentially [0 data O g O synchronized [{
disabled qguery update
L1 ;

Table 2. A classification of shared actions.

Z data is updatednder Promela control by sharing a nam&d p action in Promela
with an updating action in ZAs for querying Z data, consider the shared action Q, defined
as skip in Promela and aa predicate® on the current state in Zn Z, P is both the
computed precondition and the enabling predicatgpefationQ. If its value is false, then
the statemenp in Promela cannot be executethe effect in Promela is exactly the same
as if statemenp had been a falspredicate on some Promela variables, in which case
would also benon-executableThe only difference between the two cases is whether the
relevant state information is represented in Z or Promela, a distinction we arettrying
ignore for these immediate purposes.

It is important to note thap must bea guard in a guarded command with other



executable alternativedf Q is not a guard, or if it is a guard in a statemeith no other
true guards, then execution @fis mandatory—Promela has no othehoice. This would
be an inconsistency introduced by language composition.

Finally, when sharedtate functions are updated in both languages, the updates must
be synchronized bgharing the update actionSynchronizedupdates are listed under
"potentially disabled" by both languages, becaudmih languages the same preconditions
(such as that an empty channel cannot be read) apply.

3.3. Argument$o Z operations

Descriptions in Z areopen in the limited sense that Z operations can have input
arguments, the values of which are not provided by Z, and can produce output arguments,
the values of which are not used by Whena Z operation occurs under Promela control,
it can often beconvenient to pass information between the shared Promela action and Z
through the operation’s argumentSince the type system of Promela is strictly less
expressive than the type systenZoPromela-supplied values always make sense in Z, and
Z-supplied values must be limited to those that make sense in Promela.

Promela constraints make the syntax a bit awkwéarsliggestthe following syntax
for naming the Promela action and specifying the actual arguments:

#define Port_Send_to_Switch__p_ m

Here the actual arguments to the Z operatiopa®ed m; a double underscore seetose
the only marker availablefor delimiting arguments. In the Z operation
Port_ Sendto_Switch actual arguments are matched to formal arguments accaling
ordering.

For the composed descriptions to be consistenttyihe of a formal argument in Z
must be the same as the type of the corresponding actual argument in Promela.

4. Examples of language composition

The following examples indicate all of the ways in which Promela zamdust be
coordinated to describe DFC systeni$ieyalso cover all of the difficulties in detail.

4.1. Voiceprocessing

Voice processing concerns what usershef telecommunication system hear and say.
Within boxes of the DFC architecture, plaiinansmission can be augmented by
conferencing, broadcasting, wiretapping, playing tones, playing recordings, making
recordings, and monitoring for recognizable sounds such as touch flhélse important
issues can be illustrated, however, without tones or recordings.

Figure 2 shows a dynamically assembled configuratiodinas, line interfaces,
feature boxes, and calls, referred to asagein the DFC architectureLinesA andB are
connected to customers Alice and Bdbne Sis connected to a service representative of a
company, and lin€ is connected to a coach who is training the service representative.

The usage arrived at the state shown in Figure lksvs. Alice called Bob, then
placed a conferenced call tile company’s toll-free number; the feature box on the left is
an implementation of Three-Way Calling, the feature ubgdAlice to make the
conference. Theoll-free call was routed to the service representaliyeway of the
coaching feature boxyhich automatically called a coach for help. The coach can listen to
the entire conversation between the customers and the service represeamrtdtalep talk
to the service representative without being heard by the customers.

Our goal in this subsection is to describe whatlmameard by the user on each line.
This description depends @wo kinds of information:whatis happening to voice signals
inside the boxes, and what virtual calls are established outside the boxes.

The state of virtual calls is capturembmpletely by the Promela state function
ex_con (for external connection declared and initialized as follows:
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Figure 2. A snapshot of a usagesmall boxes are line interfaceshile large boxes are
feature boxes.Double-headecarrows represent virtual callsyhile single-headed arcs
represent voice transmission in one direction only.

#define Psize
byte ex_con[Psize] = Psize

Psize is a constant state function giving the number of ports irsysem, and ports are
identified in Promela by naturaumbers from O t®size-1. Array ex_con of natural
numbers is indexed from O ksize-1. ex_con[p] = g if and onlyif there is an
established calbetween portsp andg, in which case alscex_con[gq] = p. If portp
is not currently engaged in an established call, then con [p] = Psize. Initially all
ports are idle, and all array values are setdaze. Thereafterthe value ofex_con is
maintained by thewitch process in the Promela description of the virtual network.

The Z description needs access to the valuihis state function.This effect can be
achieved bydeclaring a shared state function in Z that gets its values automatically from
the Promela state functiohn Z its declaration is:

ex_con: port -+ port

with no initial value in Z.To write the invariant for this shared state function,alg® need
to share the constant state function

Psize:N

with aninvariant of identity. Thenthere is a bijection mapping ports to their identifiers in
Promela:

p_to_id: port >— 0..Psize-1

Finally, the invariant forex con which determines a unique Z value for each Promela
value and vice-versa, is:

[p, q: porte
(ex_conz(p) =q) = Oj, ki N+ (p_to_id(p) =) Op_to_id(q) = kOex_conp(j) =Kk)

Note that the Z expressiaex_conp () =Kk is treating the Promela arrayx_con as a
function, which seems perfectly reasonable in this context.

Voice processing inside the boxes is representediomdy by the value of the relation
in_con Thedomain and range of this relation are defined elsewhere as:

port, line, trunk:P Appendage

appendage == portl line O trunk



The relation itself is described:
InternaI_Connection§

Configuration ;
in_con: appendage- appendage
U
[v,w: appendage
(v,w)[Jin_con - [Ob:boxe attachedto(v,b)attachedto(w,b)

where the constraint saythat in_con only connects appendages of the same box (this
makes sense because each appendage belongs uniquely to a box).

If (v,w)is inin_con,then the voice signahto the box at appendagélows out of the
box at appendage;, this is pictured as a directed arc in Figurel2more tharmone arc is
directed to an appendagden the voice signal leaving the box at the appendage is the
mixture (normalized sumdf the signals from all the arc sourcdsiitially there are no
internal connections.

Many possible operationsan be defined to updata_con as needed.Hereis a
simple example, an operation that makes a two-way internal connection between two ports.

Port_Talk =

[
Configuration ;
A Internal Connection ;
b?: 0..Bsize-1 ;
p?, g?: 0..Psize-1

attachedto(p_to_id"(p?),b to_id"(b?)) X
attachedto(p_to_id"(g?),b to_id"(b?)) X
in_con’ =in_con {(p_to_id"(p?),p_to_id"(q?))} )

HAAAD

The actual arguments? (the box identifier)p?, andq? (the connected ports) are supplied
by the synchronized Promela action, for example:

fdefine Two_Talk_ b__p_g skip

The types of albf them are subranges of the naturals, which are legitimate in both Promela
and Z. Theoperation precondition requires that pgrgsandq? both be attached to bd?.

To describe what can be heard by the user on lgaghwe need to define a function
that maps each bappendage to the set of original (from lines and trunks) incoming voice
signals that areurrently being mixed to produce the appendage’s outgoing voice signal.
In Z this function is defined axiomatically as:

[
O

]

The transitive closure oh_con[J ex condescribes all current one-way voice patfis
relation may have cycles, but they do nwdtter because of the attenuation produced by
mixing. Itsdefinition removes ports becausey are intermediate transmission points, not
original voice sourcesln the state depicted by Figure 2 we have

voice sources: appendage P (line [J trunk)

voice sources(v) =dom(port < (in_conO ex_con)™ & {v})

voice sources(A) = {B, S}
voice sources(B) = {A, S}
voice sources(S) = {A, B, C}



voice sources(C) ={A, B, S}

The descriptions in this subsection are not partictdaany feature set, and would
appear in all DFC formalizations.

4.2. Configuration

In DFC each port is attacheshiquely and permanently to a bobn Z this aspect of
the system configuration is represented by the value of the relation

attachedto: appendage— box

when domain-restricted to ports.

Attachment is crucial, global information, and mbst shared with PromelaThe
problem is that, in Promela, there is no constantasiable containing this information.
Rather, it is embedded in the process strucagrereated by theinit statement. We
have already seen thabxes and processes are identified by natural numbers in Promela.
As anexample of how the process structure is created in Promela, let a system contain a
box implementing the CaForwarding on Busy feature, with box identifier 44, and with
attached ports identified as 4hd 45. The Promela process corresponding to the box is
created by the clause

run CFB_box(44,44,45)

in the Promela nit statement.

Thus the attachment stageboth read and written by both Promela and Z, but it is not
written in Promela as a value of any tygeor this reason, the invariafdr the shared state
function attachedto cannot be written completely in4it must have informal partsA
partial invariant might look something like this, where box#s mapped to natural
identifiers byb_to id:

If bis a CFB box such that
Opl,p2: porte Ojk,I: N o
pl#p2L[
(attachedto(pl,b)0attachedto(p2,b)
b to_id(b,)) Op_to_id(pl,k)dp_to_id(p2,l)
then and only then thenit statement contains the clause
run CFB_box(j,k,1)

4.3. Signaling

Signaling is by far the most difficulthallenge for language composition, because
signaling has different aspects that are best represented in different languages.

Figure 3 shows the signaling channels and message types usedfaunication, in
Promela, between a typical box procass the centralswitch process. Eachport uses a
pair of channels (one shared and one private) for participetioglls. The box itself also
uses a pair of channels (one shared and one private) for acceptigjgcting new calls,
and for designating portfor the accepted callsThe protocols used on these channels
determine all of the control flow within thewitch process, and most die control flow
in a typical box process.

The one aspect of signaling that is missing from the Promela descripti@nvarious
data fields of messages, particularly setup messafjesetup message has several data
fields, some of which are lists or seS8ucha nested data structure cannot be represémted
Promela, but it can easily be represented inBécausethe data fields of each type of
message are different, the message type is defined as a free type in Z:

mtype; ::=
setup,<<DN x seq DTMF_char x DN x commandk seq box zonex ...>> [J
quickbusy<<DN>> [1... [
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{pk}x mtype

{pl}x mtyp P_to_S
S_to_Plpk]
mtype
« yp x
box bj switch
pl
mtype </
S_to_Plpl]
mtype B_to_S
S_to_Bl[bijl

{bj}x mtype

Figure 3. Signalingchannels used by a typical box to communicate with the central virtual
switch.

downack

where a directorjmumber(DN) is a restricted sequence of DTMF (touch-tone) characters, a

commands one of four possibilities, ando@x zoneis a pair. _
There is also a message typePromela; its values are projectionsnatypevalues in

Z:

mtype = { setup, quickbusy, ..., downack }

The counterpart of this, expressed within the Z type system, is:

mtypes ;=
setup Oquickbusy (... Odownack

For the sake of a future invariant, we ndeddefine a projection function from Z
messages to Promela messaggss function can be defined axiomatically as:

[ .
mtype proj: mtype, — mtype
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(  Om: mtype » mOran setup, [0 mtype proj(m) = setup )
( Om: mtype « mOran quickbusy [ mtype proj(m) = quickbusy )
( .. )
( Om: mtype » mOran downack [1 mtype proj(m) = downack )

]

It is very important that the Promela description contain channel values, reads, and
writes—they are at thdneart of the protocols, and process descriptions would be useless
without them. At the same time, the value of a channel variable in Prometaly a
projection of its true value, which can orhg represented in ZTable1 shows us that
automatic update is impossible in this situation, so it followsdhahnel variables must be
shared state functions that are updated in tandem in both languages.

As an example of how this is done, consider the channel variables_s and
S_to_P. Theseshared state functions are declared in Promela as:

chan P_to_S = [...] of {byte,mtype}

chan S_to_P[Psize] = [...] of {mtype}
S_to_P is an array of channels, one read by each port, while all portstatge channel
P_to_S. The ellipses concern only maximum sizedll channelsare automatically
initialized by Promela semantics to the empty sequence.

In Z the shared state functions are:

P_to_S:seq (0..Psize-1x mtype)

S to P: 0..Psize-1- seq mtype

The initial value ofP_to Sis [M The nitial value of S to P maps every member of its
domain tollll Theinvariant betweeR_to_Sp andP_to_S; is simply:

P _to Sp=P_to S proj(P_to_S;)
whereP_to_S proj is defined axiomatically as:

[
P_to_S proj: seq (0..Psize-1x mtypey) — seq (0..Psize-1x mtype)

P_to_S proj (Iy = 0T )d
P_to S proj ([{p,mYI1" s) = [{p,mtypeproj(m))d”~ P_to_ S proj(s) )

—_— O

The invariant betwee8 to_Pp andS_to_ P is similar.

For exactly the same reasons that channel-valued variables need to bestdtared
functions updated in tandem in both languages, message-valued vaaiablesed to be
shared state functions updated in tandéormally message-valuedariables in Promela
would be local variables of the various processtiacelocal naming introduces problems,
however, | use a global array of message variablég.array is declarednd initialized in
Promela as follows:

mtype mvars[Msize] = downack
In Z it is declared as:

mvars: 0..Msize-1. mtype
and initialized correspondingly.

The Msize distinct message variables are identified by indiitesn O to Msize-1
Each Promela process has exclusive use of some number of variables froatigbtgon,
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and gets the indices of these variables through formal argunfémtexample, ifthe Call
Forwarding on Busy boxmentioned above needs two message variables, its program
declaration would be:

proctype CFB_box (byte b,pl,p2,ml,m2)

where formal argumenb is the box identifier (as before)pl and p2 are the port
identifiers (as before), andml and m2 are the message variable identifierShe
association between boxes and message variables need not bensthatteel Z description
in any way. It is only necessary that, in tReomelainit statement, each process is given
message identifiers that are not given to any other processes.

Finally we come tothe actions that update message and channel variables.
Promela, an action that a box executeseilod a message to the switch on behalf of a port,
and anaction that a box executes to receive a message from the switch on behalf of a port,
respectively, could be named as follows:

#define Port_Send_to_Switch__pl_ ml P_to_S!pl,mvars([ml]
#define Port_Recv_from_Switch__pl_ ml
S_to_P[pl]?mvars[ml]

In the corresponding Z operatidtort Sendto_Switchwith input argumentp? and m?,
the channel update is described:

P to S=P_to S~ (p?,mvars(m?))

In the operatiorPort_Recv from_Switchwith input argumentp? andm?, thechannel and
message-variable updates are described:

Sto PP=S to PO (p?, tail Sto_P(p?))
mvars’ = mvars] (m?, head So P(p?))

The head message is removed from sequénte P(p?) and it also becomethe new
value ofmvars(m?)destroying its previous value.

This method of describing signaling is annoyingly redundiaunt, necessary in this
style of language compositionThe good news is that theedundant Z description of
signaling isinfrastructure that can be written once and then used by all features in all DFC
systems.

4.4. Accessingperational data

Consider a CFB box that has received a setup megsiaga variable known locally
asml. This box hasbeen routed to because the target of the call subscribes to CFB.
However, the target subscriber may hawaned the feature off temporarilyrhusthe first
thing that the box program must do is to ascertain whether or not thefeafBe is
currently active for this subscriber.

The activation information is contained in the operational data foCHie feature. It
can be accessed through a Z opera@&iB_active with two inputarguments, the first of
type 0..Bsize-lidentifying which box invoked the operatioand the second of type
0..Msize-lidentifying which message variable has the tafgdt to be examined.The
body ofthe Z operation is a predicate that is true if and only if the relevant target field
names a subscriber whose CFB feature is currently acfigeexplained in Section 3.2,
this predicate acts as the enabling condition of the Z operation.

In Promela the named action is defined as follows:

#define CFB_active__b__ ml skip

and used in a guarded command as follows:
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if

CFB_active_ _b_ ml;
:: _CFB_active_ _b_ ml;
fi;

where the ellipses indicate further actions to be takeither guard is executabléf the
enabling condition of the sharexttionCFB_active__b_ ml is false in Z, then the
action is not executable in either language.

The semantics of a Promela statement demands that exactly aiternative be
executed. Sthat there will be an executable alternativeFB_active__b__ ml is also
defined asskip in Promela, and is also a shared action whéseperation has the
complementary enabling condition.

4.5. Routing

As mentioned in Section 1, the router determines a box destirfati@ach internal
call. Thelogical routerdecides which additional feature boxes belong in the usage, and
updates a routing list in the call's setup message accordifglyexample, Figure 4 shows
a simple usage containing feature boxes Spontaneous Messaging on Busy @&adl Set
Forwarding on Busy becauske source telephone subscribes to them, containing feature
boxes Call Forwarding on Busy and CBalbrwarding on No Answer because the target
telephone subscribes to them, and also containing a @antitCalling box because of the
exact form of the dialed digits.

r-————-—-—-—-—-=-=-= a1 || r-————-—-—-—-—-=-=-= a1
@ LI %SMB %SCF% ‘ CCC : %CFB %%FNA& : LI @
(d1) | L i | (d2)
| L o |
| | | | | |
! source | dialed | | target !
L zone _,  zone ; zone |

Figure 4. Routingzones in a simple usage.

The positional routerreturns theidentifier of a specific destination boXf more
feature boxes are still needed in the usage, the destination is typically an interchangeable
instance of a featurbox of the correct typelf no more feature boxes are needed, the
destination is typically amterface box through which the target directory number can be
reached.

The router and its routing data are all specified in Z as shown previouslyjié].
action of routing a call is a Z operatiperformed under Promela control, and thus shared
with a namedk ip action in Promela.

The identifier of the message variable holding the setup message to be examined and
modified is passed to tleoute Call operation in Z asn input argument. Theidentifier
of the destination box is passed from Beute Call operation as an output argument
Thus the actual naming of the action in Promela is performed by:

#define Route_Call__m_ Db skip

It is interesting to note th&oute Call updates the Z state functiomvars whichin
turn is shared withhe Promela state functionrars, which is not automatically updated
by virtue of the Z operationWhy is the invariant between the sharsthte functions
maintained? Simplypecausdhe change tonvarsis in the data fields of a setup message,
and it does not show up in the projected values foungréirs .

5. Language decomposition
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This section concerns hoavtelecommunication system can be reasoned about despite
the fact that it is described in two different formal languages, Promela and Z.

5.1. Jointexecution

Probably the most commamay to reason about a system description is to simulate
the system by executing tloescription. This can be done in an exploratory, opportunistic
fashion, or as part of a well-organized program of testing.

Promela descriptions can be executedpyn [3]. Z is much harder to executeeven
impossible in some casedut there are now multiple tools for executidgscriptions
written in varioussubsets of Z [2,5,7,8].Clearly, to be useful for the purpose of
coordinating with Spin, a Z execution tool must operate in interactive mode.

There is no question that Spin aad& execution tool would both have to be changed
to accomplish joint executionOn the other hand, the changes seem to be peripheral rather
than central.Also, it may not be necessary to suppait the options shown in Tables 1
and 2. The DFC description, for example, does not use automatic updating of Promela
state functions.

Thus a Z execution tool neetts be augmented only with automatic update of some
state variablesAs shown in Table 1, the translation frdAmtomela values to Z values is
guaranteed to be one-to-one, with no type incompatibilities.

A Z execution tool also needs to receive operatmvocations and input arguments
from Promela.Any Z execution tool, however, must be desigfadcexternal invocation of
operations, since there is no concept of this internal tdhdisinvocation of Zoperations
by Promela should be achievable without changing the Z tool itself.

Spin needs to be augmented with the ability to invoke operationsgasgjng input
argument valueso Z and receiving output argument values fromAdso, if the invoked
operation is not executable in Z becaitseenabling predicate (computed precondition) is
false, then the shared action in Promela must be regarded by Spin as nonexecutable.

5.2. Modelchecking

Spin is primarily a model checkerfFrom the perspective of decomposition, the
prerequisite formodel checking is meaningful execution of the Promela description in
isolation. Modelchecking is simply an exhaustive search of the Promela exesyizae,
which is known to be finite.

Working in isolation, Spin has no way to obtain values for oudpgtiments from Z
of shared actionsThesevalues must be supplied by some additional Promela code.

Working in isolation, Spin never has axecutable action rendered nonexecutable
because of a shareakction in Z. This is particularly significant for proving liveness
properties, because it means that the isolated Promela desccgtidrave more possible
behaviors than thdescribed systemThus,the isolated Promela description might satisfy
liveness constraints that the actual system fails to satisfy.

As with output arguments, the deficiency in timmela description must be rectified
before model checkingThis sounds difficult, but it is notAs Section 6 will showthe use
of this composition capability is typically so limited amsttuctured that it is not an
impediment to model checking.

5.3. Modelenumeration

Nitpick [5] is primarily a tool for model enumeratiohis new analysis technique
automatically finds counterexamplesésserted properties of specifications in a relational
subset of Z. The inability of Nitpick to find a counterexample is not a proof of the
property, because the size of models enumeratedited, but it is powerful evidence that
the property holds.

The temporalkcope of Nitpick analysis is one operatiofhis must be the case for
any analysis of pure Z, because pure Z has nothing even remotely teexmept the
suggestive prime notation, which is usually used to distinguish the pre- and postifstates
one operation.

As with modelchecking, the prerequisite for meaningful model enumeration is that
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the Z descriptionmakes sense in isolationFortunately, this is always true.A Z
description separated from its corresponding Promela description is nosgyngpdates
to its read-only shared state functions, if any.

Obviously the missing update operations cannot be analyzed using Nitpick, but their
absence does not prevent Nitpick from analyzing any other opera@ioead-only shared
state function is known within Z by its type declaration dydits invariants. Those
invariants should be made strong enough to establish the correctness of the operations that
depend on them.

5.4. Generalerification

General verification requires that lemmas altbet Promela description and lemmas
about the Z description be combined to prove theoramosit the description as a whole.
This shouldnot be difficult because the semantics of the transition-axiom method, where
they meet, is simple and straightforward.

6. Examples of language decomposition

At the architectural level of ®FC description, there are several different kinds of
property worth proving.In this section | assume that all descriptions have been statically
type-checked.

First of all, there are properties establishing the internal consistnay single-
language descriptionLogic-basedformalisms such as Z can easily express inconsistent
assertions. Iran operational language such as Promela, inconsistencies take the form of
problems that abort execution, such as out-of-boands/ indices or type errors detected
at runtime.

Secondly, there are properties establishing consistesizyeen two languagedVith
the composition technique presented here, consistency fails only (1)infvamant on
shared state functions is not preserv@l,if Promela passes Z an input argument of the
wrong type, (3) if Z passes Promela amtput argument of the wrong type, or (4) if a
mandatory Promela action is shared with a Z operation having a false enabling predicate.

Finally, there may be requirements or specificatitmsatisfy. Theseare properties
expressible strictly in terms of the system’s environment or its intenate the
environment [16]. For example, a trunk interfac@ust send signals on its trunk only in
accordance with the protocol specified for that truflor another examplehere may be
"rules of telephone etiquette" that all features and services should observe.

6.1. Model-checkinthe protocols

| have used Spin model checkiegtensively to establish that tkevitch process
and protocols of thevirtual network never deadlockThis is a form of intra-Promela
consistency, since a deadlock is an abnormal termination of a Promela program.

The only difficulty, that of making the Promela descriptmxecute meaningfully in
isolation, proved minor.To see why, consider the box configuration in Figure 5,
containing three line interfaces and a Call Waiting feature box assowiditedine 0. The
parenthesized numbers are box identifiers, while the numbees ports are port
identifiers. Arrowsshow the source and target boxes of possible calls.

It takes eight Promela processes to represenctmfguration fully: the four boxes,
the switch process, and a telephone process driving each line interfdeeswitch
process manages six portstomthe perspective of the protocols it is a powetdsit; from
the perspective of model checking it is a big job.

Nevertheless, model-checking this configuration requuexy little ad hocPromela
code. Thereare no shared actions thaate potentially disabled by ZThereis only one
output argument from Z, carrying the identifier of the destination box from the routing
operation in Z to the invokingwitch process. Irthis configuration, as Figure 5 shows,
the destination boxf a call is almost completely determined by its origin b®kus,the
extra code to enable tlevitch process to do its own routing is trivial.
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Figure 5. A box configuration for model checking.

6.2. Routinganalysis

The routing algorithm and routing data atescribed entirely in Z, with no shared
state functions.Thusthe description of routing is completely independent of Promela.

Routing is complex, and there are many theoremswmeéd like to prove about it,
particularly that italways succeeds in finding a suitable destination Qadmnsis a matter of
inter-language consistency, because if routing failsthis way then the computed
precondition of the Z routing operation is false, and the mandatory stoart@ty action in
Promela is blocked.

Using atheorem prover for Z is probably the best reasoning choice, but it is tempting
to consider model enumeration wasll. Currently Nitpick cannot handle the relations on
relations needed for routing, butwtould be interesting to investigate whether there are
abstractions of routing that can be checked for meaningful propertiesndael
enumeration.

7. Reated work

Jackson presents a method @wganizing a Z specification into multiple views [4].
Shared state functionasnd shared actions are essentially the same as his two primary
structuring mechanismde does not make special use of operation arguments, as they are
a means by which a Z description communicates with its environment.

The differences between this composition/decomposition techniquelaokdon’s
arise from the fact that he is workimgthin one language while I am trying to utilize two.

He does not need a separate composgamantics (the transition-axiom method) because
composition of Z views can be expressed withinH& does not need thnd the common
ground between two typsystems, nor does he need to consider changes to existing
language-based tools.

Fischer compares a number of different methods for combining Z wloeess
algebra [1]. Although there are somsuperficial similarities between his methods and the
technique presented here, the similarities are misleading becaudwahthings are
actually fundamentally different.

All of the methods surveyed by Fischer are identifying span# of a Z description,
for example an object in Object-Z, with a process in a process alg&€heaalgebraic
process provides an operational semantics foZthenswering such questions as in which
states can an operation occur and in which states must it o€ocunmunicationamong
these process/objects is describetina ways. Synchronizatiorand routing are described
within the process algebraDatavalues communicated, and their types, are expressed in Z.
Finally, since process algebras have no explicit states, there are no shared state functions.

| am using a completely different decomposition'tbie things that need to be said"
into the things expressed in Z atind things expressed in a process-oriented formalém.
is given a particular operational semantigsassumption, not by explicit description in a
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process-oriented formalisnThereis no structured relationship between Promela processes
and Z fragmentsZ input and output are used for communication between Z and Promela,
not for communication among differeobjects described in 4n effect, my Z description
operates as a big process on its own that interactstmetiPfromela processes at various
points. Anda Promela process hago mechanisms for interacting with the "Z process":
shared actions and shared state functions.

Earlier work of ours [17] presents yet a different technique for composing Z
descriptions withdescriptions in other languages, particularly control-oriented notations
such as automatarhat earlier technique is more similar to this later work tkt@a work
surveyed by Fischer is, but there are still many differences.

Like this later work, that earlier technique Ha® major mechanisms through which
languages can interacOneof them isshared state functionsn the earlier technique each
shared state function is written within exaadlye language, and read only by all the other
languages that share This later technique would adopt the same happy simplification,
except that the signaling problem discussed in Section 4.3 does not allow it.

In sharing state functions, the earlier technique mattjpss by requiring a much
deeper, more detailed translation of each notation into a conseroantics [14].Thus
dealing with types across languages is more genaralthe earlier technique,
accommodating manjanguages instead of just our specific two, but also requires more
work.

The second interactiomechanism in the earlier technique is "event classification,"
which allows one language to define a context-sensitive dassvents that another
language can respond t&ventclassification could be used to achieve roughly the same
kind of Promela-to-Z operation invocation achievede by shared action§haredactions
are superior irhandling output arguments and disabling of Promela actions by Z far more
elegantly. Eventlassification is superior in avoiding the problem discussed in Section
4.3. Aswith state functions, that earlier work requisedeeper, more complete translation
of each language’s syntax into a common semantics [14] ithaaquired by this later
work.

Now that the earlier and later techniques have both bgertised on large examples
and are thoroughly understood, it may be possible to revise one of them to thbtain
advantages of both.

Taking all together the technique presented in this paper,three approaches
discussed above, and nemultiprogramming languages such as Seuss [10], there is now
quite a variety of wide-spectrum formalisms within which one might plausibly hope to
describe and reason abotwmplex systems such as DFC telecommunication systems.
What we do not yet have is any indication of which works betterthisror any other
application. Thigs the most important direction for future research on this subject.

Currently there is rapidly growing interest in the subjeftcombining model
checking with theorem provindt should be noted that the issues of languzayeposition
and decomposition discussed in this paper are directly relevant tprésising subject,
because model checking is the natural waye@son about a Promela description, and
theorem proving is the natural way to reason about a Z description.
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Appendix: A box program for the Call Forwarding on Busy feature

The ultimate purposef all the infrastructure presented in the body of the paper is to
make it possible to describe feature boxes conveniertfreis an examplef how the
Promela part of deature box program built on this infrastructure looks; it is the Call
Forwarding on Busy programluded to several times alread€ommentsan be found at
the end, linked to the program by line numbers.

01 #define CFB_active__b_ml skip

02 #define _CFB_active__b_ml skip

03 #define CFB_forward__b__ ml skip

04 #define Box_Recv__b_ ml S_to_B[b]?mvars[ml]
05 #define Box_Send_b_ m2 B_to_S!b,mvars[m2],pl
06 proctype CFB_box (byte b,pl,p2,ml,m2)

07 {

08 BGN: Box_Recv_ _b_ ml;

09 m2 = reserve; Box_Send__b_ m2;
10 Recv_Up_ _pl_ m2; Send_Down__ _p2_ ml;
11 if

12 :: CFB_active_ _b_ ml; goto AWT
13 :: _CFB_active_ _b_ _ml; goto PWT
14 fi;

15 AWT: Recv_Down__ p2_ m2;

16 if

17 :: m2 == upack; goto PRE

18 :: m2 == quickbusy; goto FWD

19 fi;



20 PRE:

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
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48
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55
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57
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72
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76
77

78 CL2:

FWD:
CLF:

PWT:

LNK:

CL1:
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do
:: Recv_Down__p2_ m2;
if
:: m2 == busy; m2 = teardown; Send_Down__p2__ m2;
goto CLF
m2 == alerting; Send Up_ pl__m2; goto LNK
m2 == teardown; Send_Up_ pl_m2; m2 = downack;
Send_Down__p2__ _m2; goto CL1
!((m2==busy)||(m2==alerting)||(m2==teardown);
Send_Up_ _pl_ _m2
fi
Recv_Up_ pl_ m2;
if
m2 == teardown; Send_Down__p2_ m2; m2 = downack;
Send_Up_ _pl_ m2; goto CL2
! (m2 == teardown); Send_Down__ p2_ m2
fi
od;

CFB_forward__b_ ml; Send Down__p2__ml; goto PWT;
do
Recv_Down__p2_ m2;

if
m2 == teardown; m2 = downack; Send_Down__ p2_ m2
m2 == downack; goto FWD
! ((m2 == teardown) | | (m2 == downack))
fi
od;
Recv_Down_ p2_ m2;
if
m2 == upack; goto LNK
m2 == quickbusy; m2 = busy; Send_Up_ pl_ m2;
m2 = teardown; Send Up_ pl_ m2; goto CL1
fi;
do
Recv_Down_ p2_ m2;
if
:: m2 == answered; Two_Talk__b_ pl_ p2;
Send_Up_ pl_ _m2
m2 == teardown; Send_Up_ pl_m2; m2 = downack;
Send_Down__p2_ m2; Two_Untalk__b_ pl_p2; goto CL1
! ((m2 == teardown) | | (m2 == downack));
Send_Up_ _pl_ m2
fi
Recv_Up_ pl_ m2;
if
m2 == teardown; Send_Down__p2_ m2; m2 = downack;
Send_Up_ _pl_ m2; Two_Untalk__b_ pl_ p2; goto CL2
! (m2 == teardown); Send_Down__ p2_ m2
fi
od;
do
Recv_Up_ pl_ m2;
if
m2 == teardown; m2 = downack; Send_Up_ pl_ m2
m2 == downack; goto END
! ((m2 == teardown) | | (m2 == downack))
fi
od;
do
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01
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15

20

38
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47
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Recv_Down_ p2_ m2;
if
m2 == teardown; m2 = downack; Send_Down__ p2_ m2
m2 == downack; goto END
! ((m2 == teardown) | | (m2 == downack))
fi
od;
END: skip
}
See Section 4.4.

The Z operation shared with this action replaceddhgetfield of the setup message
indexed bym1 with anew target, namely the directory number that the original target
is forwarded to.

This shared action is vernjike Port_Recv_from_Switch__pl__ml as
presented in Section 4.3The phrasefrom_Switch is redundant, as boxes never
communicate directly with any Promela process excepithie ch process.

This shared action is very lik@ort_Send_to_Switch__pl__ml as presented

in Section 4.3.However,the actual transmittethessage contairenotherfield: the
identifier of the port that the box has selected for receiving this Gdlis field is
completely invisibleto Z. So the description as a whole contaithsee message
abstractions, one private to each language andammmon denominator” for shared
use.

This statementeceives a setup messag#his original setup message is storednin

and stays there, being modified thdréorwarding becomes necessaryhe message
variable indexed byw2 is used for everything else.

See note to Line 05.

These shared actiomse used by many boxes, and are defined elsewhere fdn all.
box with two ports, we refer to the one that receivemanming call as thapstream
port, andthe one that places an outgoing call asdihnenstreanport. Boxessend and
receive messages at both portierethe box receives an initialization message on the
upstream port, and places a downstream call udiagsame setup message that it
received.

Having attempted a downstream cdhe box is waiting for its outcomelf the
subscriber has activated thHeature, the box goes to an active waiting state, in which
it may do something specialf the subscriber has not activated this feattire,box
goes to a passive waiting statewhich its behavior is transparent to all other boxes
in the usage Seealso the note to Line 47.

In a waiting statea box is waiting to find out whether a call it attempted succeeds or
not. An upack means it succeededA gquickbusy means it failed because the
destination box is busy (has no free ports), in which case this box is definitely going to
forward.

In the "pre" state it has not ykeéen determined whether the outgoing call will alert or
will suffer from a busy condition.In this state the box is waiting to find ouf. the

call turns out tosuffer from a busy condition, then the box is going to forward, but
first it must clean up the remnants of the downstream dhlthe call results in
alerting a telephone, then no forwardingl be needed, and the job of this box is
effectively over.

This is where the box forwardS.he shared operation is explained in the note to Line
03.

This state cleans up a downstream call, then goes to the forwarding state.

This line begins the "transparent zone" of tex program (note that once control
reaches this line or a lower one, it never agamps back above this line)n this
zone the box is behaving transparentlg,, it is behaving in such a way that it is
unobservable byther boxes in the usagéike all feature boxes, whenever this box
reaches a point where no particular functions will againel@ired of it, it transfers
control to the appropriate point in the transparent zone.

In this linked state, there are established calls at both p&stsoonas amranswered
message comes from downstreathe ports are voice-connected internally (see
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Section 4.1). Statusmessages are forwarded in either directigvheneither call is
torn down, the box acknowledges the teardown, disconnectsntémal voice
connection, and initiates teardown of the other call.

This state presides over the final cleanup of the call atipseream port.Cleanupis
completely routine, and could Beandled implicitly by a more application-specific
language.



