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Abstract. This paper shows how an engineer could write a full formal description of the
service layer of a telecommunication system, organized according to the Distributed Feature
Composition virtual architecture. Descriptions in Promela and Z can be composed using a
joint semantics based on the transition-axiom method. The described system can be
reasoned about in several ways, including use of tools developed for the individual
languages.

1. The Distributed Feature Composition virtual architecture

Distributed Feature Composition (DFC) is a new architecture for the description of
telecommunication services. One of its primary design goals was feature modularity. The
other of its primary design goals was abstraction away from most implementation detail
(hence the term "virtual"). As it appears to achieve these goals to a useful degree, it
provides a good foundation for the application of formal methods to telecommunications.

DFC was developed by Michael Jackson and myself. A full definition of the
architecture, along with motivations, intuitive explanations, and examples, can be found
elsewhere [6,13]. We are currently exploring various extensions, analysis/verification
techniques, and implementation strategies.

The goal of this paper is to provide a means by which an engineer can write a full
formal description of the "service layer" [12] of a particular telecommunication system
(excluding "business processes" such as billing, provisioning, marketing, and customer
care), and apply formal reasoning to it. Because such a description will be organized
according to the DFC architecture, it will have virtual components as shown in Figure 1.

In Figure 1 the double rectangles are repositories of global data, to which access is
restricted by the architecture. Some data repositories span the system boundary because
they are given their initial values by the environment, not by the system.

Squares in Figure 1 are DFCboxes,and can be thought of as concurrent processes
with local state and ports (ports are represented by black circles). The virtual network
establishes featureless voicecalls between ports. When a call is established between two
ports, those ports can communicate by means of a signaling channel in each direction and a
voice channel in each direction. External lines and trunks also carry voice and messages in
both directions, and are the means by which telecommunication services are delivered to
telephones and other telecommunication systems, respectively.

Each box is either a line interface, a trunk interface, or the implementation of a
particular feature. When a box attempts to place a new call, its request goes from the box’s
port to therouter in the virtual network. The router determines a box destination for the
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Figure 1. Components of the DFC architecture.
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call based on feature-related criteria and also on the configuration of the system’s
environment. The destination box may accept or reject the call; if the box accepts the call
it must name one of its own idle ports as the call’s second endpoint.

The primary obstacle to reaching our goal is the fact that no single specification
language is convenient enough to cover all aspects of Figure 1 on a large scale.

Jackson and I have used Promela [3], a protocol description language, very
successfully to describe the protocols of the virtual network [6] and the control structures
of boxes [15]. It has been used subsequently to describe the overall configuration of the
virtual network. Being designed for model checking, however, Promela has minimal
capabilities for representing system state. It is hopelessly inadequate for describing and
manipulating the global data, which is richly structured relational information that expands
and contracts in size.

Jackson and I have also used Z [11] very successfully to describe the routing data [6].
Z has been used subsequently to describe the routing algorithm and sample operational
data. Yet we are extremely reluctant to undertake the arduous task of describing protocols
and control-intensive boxes in Z, in which each control state must be named and
manipulated explicitly. In a control-oriented language such as Promela, on the other hand,
many convenient control abstractions are available, and most control states can be implicit.

In the rest of this paper I show how the goal can be achieved using Promela and Z
together, with each language being employed to describe those aspects of the system for
which it is best suited. Sections 2 and 3 define the composition technique and its
semantics. Section 4 gives examples of the use of this technique in DFC descriptions.
Section 5 discusses reasoning about descriptions in this form, while Section 6 gives
reasoning examples. A discussion of related work can be found in Section 7.
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2. Formal foundation

The formal foundation of this work is Lamport’s transition-axiom method [9]. At the
heart of this method is a set of functions on the states of a prospective system
implementation. A system specification gives an initial value for each state function.

A system specification also has a set of actions. Each action is characterized by an
enabling predicate on the values of state functions and by a rule constraining how the
values of state functions change when the action occurs.

This is all that is needed for the specification of safety properties. An implementation
satisfies a safety specification if and only if there exist functions on its state space that
conform to the specification, in the sense that their initial values agree with the
specification’s initial values, and they change only in accordance with the specification’s
actions.

Liveness properties are added to a safety specification by the addition of formulas in
temporal logic. The temporal operators operate on predicates over the values of state
functions, and specify how these values must eventually change. Since no notion of
fairness is built in, the temporal formulas must be satisfied by all safe schedules.

The safety part of the transition-axiom method is not a specification language, but is
rather a means of associating a semantics with a specification language. The particular
advantage of this style of semantics, according to Lamport, is that it answers the
fundamental question of what it means for an implementation to satisfy a specification.

It is straightforward to give a transition-axiom semantics for Promela. The state
functions of a Promela specification consist of each global variable, the local variables and
parameters of each process, and the control pointer of each process (message channels are
global variables). Variables that are not initialized explicitly receive initial values by
default.

Each statement in a Promela specification, except for the unique process-initialization
statement, defines an action. For an action to be enabled, all of the following must hold:
(1) the control pointer of some process points to the statement, (2) if the statement is a
predicate, it is true in the name scope of the same process, (3) if the statement is a channel
write, the channel is not full, and (4) if the statement is a channel read, the channel has a
message in it that satisfies the statement’s constraints as evaluated in the name scope of the
process. Execution of a predicate action simply changes the control pointer of the process.
Execution of any other action changes the control pointer of the process, and also updates
the values of other state functions in the obvious way.

The treatment of liveness properties in Promela is a perfect match to Lamport’s
approach. There are formulas in linear-time temporal logic for specifying liveness
properties, and there are no built-in fairness constraints on process scheduling.

Z has a well-known operational interpretation, although this interpretation is not part
of its set-theoretic formal semantics. It is also straightforward to give a transition-axiom
semantics for this operational view of Z. The state functions of a Z specification are its
variables. The initial values of state functions are given by Init schemas. Actions are
defined by operation schemas. The enabling predicate of an action is the computed
precondition of the operation schema—the condition that ensures that all invariants will
still hold after the operation occurs. Z expresses safety properties only.

The transition-axiom method distinguishes actions performed by the system from
actions performed by the environment. In both Promela and Z, this distinction can only be
made informally. This distinction is extremely important, but it is not discussed further
here because the composition of Promela and Z does not introduce any new issues.

3. Language composition

This section concerns how two descriptions, one in Promela and one in Z, are
coordinated so that together they describe a telecommunication system. Section 5 will
cover much of the same ground, but with a different emphasis: how the two descriptions
can be understood and reasoned about separately.

There are three coordination mechanisms. For each I give syntax in Promela and Z,
and semantics in the transition-axiom style, augmenting the separate semantics for Promela
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and Z in Section 2.

3.1. Shared state functions

A state function in Promela and a state function in Z can beshared. Before going into
the composition semantics, let us consider the syntax of sharing, i.e., how an engineer
specifies which state functions are shared. Quite simply, state functions in Promela and Z
are shared if they have the same name. This rule is easily applied to Z because all state
functions (variables) in Z have names.

Name matching seems harder to apply to Promela because naming is less universal.
State functions that are control pointers do not have explicit names. Names of local
variables and parameters can only be understood in the context of their processes.

These gaps are not really a problem, however, because nameless state functions are
never shared with Z. Control pointers are not shared because introducing that much control
information into Z would defeat the purpose of using both languages. Local variables that
need to be shared are turned into global variables. Parameters are shared in an indirect
way, as explained in Section 3.3.

Two state functions are shared when both Promela and Z need access to the same
underlying state information. The values of the two functions must be guaranteed by the
specifier to maintain a given invariant relationship. Thus sharing is a hint to the
implementer that both state functions can be supported by one state component in the
implementation. From this perspective, one of the strengths of the transition-axiom
method is that it allows multiple state functions to be implemented by the same state
component.

Since the type system of Promela is strictly less expressive than the type system of Z,
invariants between shared state functions can usually be written in Z (see Section 4.2 for
the exception). Sometimes the invariant is a projection of Z values onto Promela values,
specifically because of the weakness of Promela in representing state.

There are two ways for the specifier to guarantee that the invariant between shared
state functions is maintained. It can be maintained "manually" by updating both state
functions in tandem (Section 3.2 explains how to synchronize the updates), and by proving
that the synchronized updates maintain the invariant when all the relevant enabling
predicates are true.

The easiest way for the specifier to achieve an invariant relationship, however, is to
update the state function in one language only, and to assume that the non-updated state
function gets its values "automatically" from the updated state function, through the
mediation of the invariant. Thus the non-updating description is using the shared state
function in a "read-only" fashion.

Despite the many advantages of automatic update, it cannot be used when the
updating description is in Promela and the invariant between shared state functions is a
projection. Obviously, under these circumstances, a value produced by Promela cannot be
translated by the invariant to a unique value in Z.

Table 1 summarizes the modes in which state functions can be shared between
Promela and Z. An A entry in the table indicates that the read-only description is being
updated automatically. An X entry in the table indicates an impossible combination. A
constant state function is understood to be "written" only at its initialization. If a language
requires that the value of an automatically updated state function that is declared in the
language be initialized, then the initial value must have the invariant relationship with the
initial value in the updating language.
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Table 1. A classification of shared state functions.

3.2. Shared actions

An action in Promela and an action in Z can beshared. Before going into the
composition semantics, let us consider the syntax of sharing. As with state functions,
actions in Promela and Z are shared if they have the same name.

This rule is easily applied to Z because all actions (operation schemas) in Z have
names. Actions (statements) in Promela are usually not named, but they can be given
names when needed by means of the macro facility. For example, if a use of the statement
skip needs an action name, we can write

#define Route_Call skip

and use the macro name instead of the statement at the desired place in the Promela code.
Two actions are shared when they need to be synchronized in Promela and Z.

Synchronization means that the one action occurs when and only when the other action
occurs. In the transition-axiom semantics, shared actions are composed into one action
whose enabling predicate is the conjunction of the Promela and Z enabling predicates, and
whose state-update rule is the conjunction of the Promela and Z update rules.

Table 2 gives a classification of shared actions, based primarily on whether they have
nontrivial enabling predicates in either language. An extremely important point—not
emphasized in Table 2—is that a Promela action is never enabled unless a control pointer
points to it (this is the significance of the asterisk on "always enabled" Promela actions).
Indeed, the principal reason that Z actions are shared with Promela actions is to put the Z
actions under Promela control. The marked places in Table 2 are the ones that are used in
the DFC description.
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Table 2. A classification of shared actions.

Z data is updated under Promela control by sharing a namedskip action in Promela
with an updating action in Z. As for querying Z data, consider the shared action Q, defined
asskip in Promela and as a predicateP on the current state in Z. In Z, P is both the
computed precondition and the enabling predicate of operationQ. If its value is false, then
the statementQ in Promela cannot be executed. The effect in Promela is exactly the same
as if statementQ had been a false predicate on some Promela variables, in which caseQ
would also be non-executable. The only difference between the two cases is whether the
relevant state information is represented in Z or Promela, a distinction we are trying to
ignore for these immediate purposes.

It is important to note thatQ must be a guard in a guarded command with other
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executable alternatives. If Q is not a guard, or if it is a guard in a statement with no other
true guards, then execution ofQ is mandatory—Promela has no other choice. This would
be an inconsistency introduced by language composition.

Finally, when shared state functions are updated in both languages, the updates must
be synchronized by sharing the update actions. Synchronized updates are listed under
"potentially disabled" by both languages, because in both languages the same preconditions
(such as that an empty channel cannot be read) apply.

3.3. Arguments to Z operations

Descriptions in Z are open in the limited sense that Z operations can have input
arguments, the values of which are not provided by Z, and can produce output arguments,
the values of which are not used by Z. When a Z operation occurs under Promela control,
it can often be convenient to pass information between the shared Promela action and Z
through the operation’s arguments. Since the type system of Promela is strictly less
expressive than the type system of Z, Promela-supplied values always make sense in Z, and
Z-supplied values must be limited to those that make sense in Promela.

Promela constraints make the syntax a bit awkward. I suggest the following syntax
for naming the Promela action and specifying the actual arguments:

#define Port_Send_to_Switch__p__m ...

Here the actual arguments to the Z operation arep and m; a double underscore seems to be
the only marker available for delimiting arguments. In the Z operation
Port_Send_to_Switch, actual arguments are matched to formal arguments according to
ordering.

For the composed descriptions to be consistent, the type of a formal argument in Z
must be the same as the type of the corresponding actual argument in Promela.

4. Examples of language composition

The following examples indicate all of the ways in which Promela and Z must be
coordinated to describe DFC systems. They also cover all of the difficulties in detail.

4.1. Voice processing

Voice processing concerns what users of the telecommunication system hear and say.
Within boxes of the DFC architecture, plain transmission can be augmented by
conferencing, broadcasting, wiretapping, playing tones, playing recordings, making
recordings, and monitoring for recognizable sounds such as touch tones. All  the important
issues can be illustrated, however, without tones or recordings.

Figure 2 shows a dynamically assembled configuration of lines, line interfaces,
feature boxes, and calls, referred to as ausagein the DFC architecture. LinesA andB are
connected to customers Alice and Bob. Line S is connected to a service representative of a
company, and lineC is connected to a coach who is training the service representative.

The usage arrived at the state shown in Figure 2 as follows. Alice called Bob, then
placed a conferenced call to the company’s toll-free number; the feature box on the left is
an implementation of Three-Way Calling, the feature used by Alice to make the
conference. The toll-free call was routed to the service representative by way of the
coaching feature box, which automatically called a coach for help. The coach can listen to
the entire conversation between the customers and the service representative, and also talk
to the service representative without being heard by the customers.

Our goal in this subsection is to describe what can be heard by the user on each line.
This description depends on two kinds of information: what is happening to voice signals
inside the boxes, and what virtual calls are established outside the boxes.

The state of virtual calls is captured completely by the Promela state function
ex_con (for external connection), declared and initialized as follows:
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Figure 2. A snapshot of a usage. Small boxes are line interfaces, while large boxes are
feature boxes. Double-headed arrows represent virtual calls, while single-headed arcs
represent voice transmission in one direction only.
_ _________________________________________________________________________

#define Psize ...

byte ex_con[Psize] = Psize

Psize is a constant state function giving the number of ports in the system, and ports are
identified in Promela by natural numbers from 0 toPsize­1. Array ex_con of natural
numbers is indexed from 0 toPsize­1. ex_con[p] = q if and only if there is an
established call between portsp andq, in which case alsoex_con[q] = p. If portp
is not currently engaged in an established call, thenex_con[p] = Psize. Initially all
ports are idle, and all array values are set toPsize. Thereafter the value ofex_con is
maintained by theswitch process in the Promela description of the virtual network.

The Z description needs access to the value of this state function. This effect can be
achieved by declaring a shared state function in Z that gets its values automatically from
the Promela state function. In Z its declaration is:

ex_con: port → + − port

with no initial value in Z. To write the invariant for this shared state function, we also need
to share the constant state function

Psize:N

with an invariant of identity. Then there is a bijection mapping ports to their identifiers in
Promela:

p_to_id: port > → → 0..Psize-1

Finally, the invariant forex_con, which determines a unique Z value for each Promela
value and vice-versa, is:

∀p, q: port•
(ex_conZ(p) = q) ⇔ ∃ j, k: N • (p_to_id(p) = j ∧ p_to_id(q) = k ∧ ex_conP(j) = k)

Note that the Z expressionex_conP ( j ) = k is treating the Promela arrayex_con as a
function, which seems perfectly reasonable in this context.

Voice processing inside the boxes is represented only in Z, by the value of the relation
in_con. The domain and range of this relation are defined elsewhere as:

port, line, trunk:P Appendage

appendage == port∪ line ∪ trunk
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The relation itself is described:

Internal_Connection=̂
[

Configuration ;
in_con: appendage↔ appendage


∀v,w: appendage•
(v,w)∈ in_con→ ∃ b:box• attached_to(v,b)∧ attached_to(w,b)

]

where the constraint says that in_con only connects appendages of the same box (this
makes sense because each appendage belongs uniquely to a box).

If (v,w) is in in_con,then the voice signal into the box at appendagev flows out of the
box at appendagew; this is pictured as a directed arc in Figure 2. If more than one arc is
directed to an appendage, then the voice signal leaving the box at the appendage is the
mixture (normalized sum) of the signals from all the arc sources. Initially there are no
internal connections.

Many possible operations can be defined to updatein_con as needed. Here is a
simple example, an operation that makes a two-way internal connection between two ports.

Port_Talk =̂
[

Configuration ;
∆ Internal_Connection ;
b?: 0..Bsize-1 ;
p?, q?: 0..Psize-1


( attached_to(p_to_id˜(p?),b_to_id˜(b?)) )∧
( attached_to(p_to_id˜(q?),b_to_id˜(b?)) )∧
( in_con’ = in_con∪ {(p_to_id˜(p?),p_to_id˜(q?))} )
]

The actual argumentsb? (the box identifier),p?, andq? (the connected ports) are supplied
by the synchronized Promela action, for example:

#define Two_Talk__b__p__q skip

The types of all of them are subranges of the naturals, which are legitimate in both Promela
and Z. The operation precondition requires that portsp?andq?both be attached to boxb?.

To describe what can be heard by the user on each line, we need to define a function
that maps each box appendage to the set of original (from lines and trunks) incoming voice
signals that are currently being mixed to produce the appendage’s outgoing voice signal.
In Z this function is defined axiomatically as:

[
voice_sources: appendage→ P (line ∪ trunk)


voice_sources(v) =dom(port <− (in_con∪ ex_con) + > {v})

]

The transitive closure ofin_con∪ ex_condescribes all current one-way voice paths. This
relation may have cycles, but they do not matter because of the attenuation produced by
mixing. Its definition removes ports because they are intermediate transmission points, not
original voice sources. In the state depicted by Figure 2 we have

voice_sources(A) = {B, S}
voice_sources(B) = {A, S}
voice_sources(S) = {A, B, C}
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voice_sources(C) = {A, B, S}

The descriptions in this subsection are not particular to any feature set, and would
appear in all DFC formalizations.

4.2. Configuration

In DFC each port is attached uniquely and permanently to a box. In Z this aspect of
the system configuration is represented by the value of the relation

attached_to: appendage→ → box

when domain-restricted to ports.
Attachment is crucial, global information, and must be shared with Promela. The

problem is that, in Promela, there is no constant or variable containing this information.
Rather, it is embedded in the process structure as created by theinit statement. We
have already seen that boxes and processes are identified by natural numbers in Promela.
As an example of how the process structure is created in Promela, let a system contain a
box implementing the Call Forwarding on Busy feature, with box identifier 44, and with
attached ports identified as 44 and 45. The Promela process corresponding to the box is
created by the clause

run CFB_box(44,44,45)

in the Promelainit statement.
Thus the attachment state is both read and written by both Promela and Z, but it is not

written in Promela as a value of any type. For this reason, the invariant for the shared state
function attached_to cannot be written completely in Z—it must have informal parts. A
partial invariant might look something like this, where boxes are mapped to natural
identifiers byb_to_id:

If b is a CFB box such that
∃ p1,p2: port• ∃ j,k,l: N •
p1 ≠ p2 ∧
(attached_to(p1,b)∧ attached_to(p2,b)∧
b_to_id(b,j) ∧ p_to_id(p1,k)∧ p_to_id(p2,l)

then and only then theinit statement contains the clause
run CFB_box(j,k,l)

4.3. Signaling

Signaling is by far the most difficult challenge for language composition, because
signaling has different aspects that are best represented in different languages.

Figure 3 shows the signaling channels and message types used for communication, in
Promela, between a typical box process and the centralswitch process. Each port uses a
pair of channels (one shared and one private) for participating in calls. The box itself also
uses a pair of channels (one shared and one private) for accepting or rejecting new calls,
and for designating ports for the accepted calls. The protocols used on these channels
determine all of the control flow within theswitch process, and most of the control flow
in a typical box process.

The one aspect of signaling that is missing from the Promela description is the various
data fields of messages, particularly setup messages. A setup message has several data
fields, some of which are lists or sets. Such a nested data structure cannot be represented in
Promela, but it can easily be represented in Z. Because the data fields of each type of
message are different, the message type is defined as a free type in Z:

mtypeZ ::=
setupZ<<DN × seq DTMF_char × DN × command× seq box_zone× ... >> 
quickbusyZ<<DN>>  ... 
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Figure 3. Signaling channels used by a typical box to communicate with the central virtual
switch.
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downackZ

where a directory number(DN) is a restricted sequence of DTMF (touch-tone) characters, a
commandis one of four possibilities, and abox_zoneis a pair.

There is also a message type in Promela; its values are projections ofmtypevalues in
Z:

mtype = { setup, quickbusy, ..., downack }

The counterpart of this, expressed within the Z type system, is:

mtypeP ::=
setupP  quickbusyP  ...  downackP

For the sake of a future invariant, we need to define a projection function from Z
messages to Promela messages. This function can be defined axiomatically as:

[
mtype_proj: mtypeZ → mtypeP


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( ∀ m: mtypeZ • m ∈ ran setupZ ⇒ mtype_proj(m) = setupP )∧
( ∀ m: mtypeZ • m ∈ ran quickbusyZ ⇒ mtype_proj(m) = quickbusyP )∧
( ... )∧
( ∀ m: mtypeZ • m ∈ ran downackZ ⇒ mtype_proj(m) = downackP )
]

It is very important that the Promela description contain channel values, reads, and
writes—they are at the heart of the protocols, and process descriptions would be useless
without them. At the same time, the value of a channel variable in Promela is only a
projection of its true value, which can only be represented in Z. Table 1 shows us that
automatic update is impossible in this situation, so it follows that channel variables must be
shared state functions that are updated in tandem in both languages.

As an example of how this is done, consider the channel variablesP_to_S and
S_to_P. These shared state functions are declared in Promela as:

chan P_to_S = [...] of {byte,mtype}

chan S_to_P[Psize] = [...] of {mtype}

S_to_P is an array of channels, one read by each port, while all ports write to one channel
P_to_S. The ellipses concern only maximum sizes. All  channels are automatically
initialized by Promela semantics to the empty sequence.

In Z the shared state functions are:

P_to_S: seq (0..Psize-1× mtype)

S_to_P: 0..Psize-1→ seq mtype

The initial value ofP_to_S is 〈〉. The initial value ofS_to_P maps every member of its
domain to〈〉. The invariant betweenP_to_SP andP_to_SZ is simply:

P_to_SP = P_to_S_proj(P_to_SZ)

whereP_to_S_proj is defined axiomatically as:

[
P_to_S_proj: seq (0..Psize-1× mtypeZ) → seq (0..Psize-1× mtypeP)


( P_to_S_proj (〈〉) = 〈〉 )∧
( P_to_S_proj (〈(p,m)〉 ˆ s) = 〈(p,mtype_proj(m))〉 ˆ P_to_S_proj(s) )
]

The invariant betweenS_to_PP andS_to_PZ is similar.
For exactly the same reasons that channel-valued variables need to be shared state

functions updated in tandem in both languages, message-valued variables also need to be
shared state functions updated in tandem. Normally message-valued variables in Promela
would be local variables of the various processes. Since local naming introduces problems,
however, I use a global array of message variables. The array is declared and initialized in
Promela as follows:

mtype mvars[Msize] = downack

In Z it is declared as:

mvars: 0..Msize-1→ mtype

and initialized correspondingly.
The Msize distinct message variables are identified by indices from 0 to Msize-1.

Each Promela process has exclusive use of some number of variables from this collection,
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and gets the indices of these variables through formal arguments. For example, if the Call
Forwarding on Busy box mentioned above needs two message variables, its program
declaration would be:

proctype CFB_box(byte b,p1,p2,m1,m2)

where formal argumentb is the box identifier (as before),p1 and p2 are the port
identifiers (as before), andm1 and m2 are the message variable identifiers. The
association between boxes and message variables need not be shared with the Z description
in any way. It is only necessary that, in the Promelainit statement, each process is given
message identifiers that are not given to any other processes.

Finally we come to the actions that update message and channel variables. In
Promela, an action that a box executes to send a message to the switch on behalf of a port,
and an action that a box executes to receive a message from the switch on behalf of a port,
respectively, could be named as follows:

#define Port_Send_to_Switch__p1__m1 P_to_S!p1,mvars[m1]

#define Port_Recv_from_Switch__p1__m1
S_to_P[p1]?mvars[m1]

In the corresponding Z operationPort_Send_to_Switchwith input argumentsp? and m?,
the channel update is described:

P_to_S’ = P_to_S ˆ (p?,mvars(m?))

In the operationPort_Recv_from_Switchwith input argumentsp? andm?, the channel and
message-variable updates are described:

S_to_P’ = S_to_P ⊕ (p?, tail S_to_P(p?))

mvars’ = mvars⊕ (m?, head S_to_P(p?))

The head message is removed from sequenceS_to_P(p?), and it also becomes the new
value ofmvars(m?), destroying its previous value.

This method of describing signaling is annoyingly redundant, but necessary in this
style of language composition. The good news is that the redundant Z description of
signaling is infrastructure that can be written once and then used by all features in all DFC
systems.

4.4. Accessing operational data

Consider a CFB box that has received a setup message into a variable known locally
as m1. This box has been routed to because the target of the call subscribes to CFB.
However, the target subscriber may have turned the feature off temporarily. Thus the first
thing that the box program must do is to ascertain whether or not the CFB feature is
currently active for this subscriber.

The activation information is contained in the operational data for the CFB feature. It
can be accessed through a Z operationCFB_activewith two input arguments, the first of
type 0..Bsize-1identifying which box invoked the operation, and the second of type
0..Msize-1identifying which message variable has the target field to be examined. The
body of the Z operation is a predicate that is true if and only if the relevant target field
names a subscriber whose CFB feature is currently active. As explained in Section 3.2,
this predicate acts as the enabling condition of the Z operation.

In Promela the named action is defined as follows:

#define CFB_active__b__m1 skip

and used in a guarded command as follows:
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if
:: CFB_active__b__m1; ...
:: _CFB_active__b__m1; ...
fi;

where the ellipses indicate further actions to be taken if either guard is executable. If the
enabling condition of the shared actionCFB_active__b__m1 is false in Z, then the
action is not executable in either language.

The semantics of a Promelaif statement demands that exactly one alternative be
executed. So that there will be an executable alternative,_CFB_active__b__m1 is also
defined asskip in Promela, and is also a shared action whose Z operation has the
complementary enabling condition.

4.5. Routing

As mentioned in Section 1, the router determines a box destination for each internal
call. The logical router decides which additional feature boxes belong in the usage, and
updates a routing list in the call’s setup message accordingly. For example, Figure 4 shows
a simple usage containing feature boxes Spontaneous Messaging on Busy and Set Call
Forwarding on Busy because the source telephone subscribes to them, containing feature
boxes Call Forwarding on Busy and Call Forwarding on No Answer because the target
telephone subscribes to them, and also containing a Credit Card Calling box because of the
exact form of the dialed digits.
_ _________________________________________________________________________

t1 t2

LI
(d1 )

SMB SCFB CCC CFB CFNA
LI

(d2 )

source
zone

dialed
zone

target
zone

Figure 4. Routing zones in a simple usage.
_ _________________________________________________________________________

The positional routerreturns the identifier of a specific destination box. If more
feature boxes are still needed in the usage, the destination is typically an interchangeable
instance of a feature box of the correct type. If no more feature boxes are needed, the
destination is typically an interface box through which the target directory number can be
reached.

The router and its routing data are all specified in Z as shown previously [6]. The
action of routing a call is a Z operation performed under Promela control, and thus shared
with a namedskip action in Promela.

The identifier of the message variable holding the setup message to be examined and
modified is passed to theRoute_Call operation in Z as an input argumentm. The identifier
of the destination box is passed from theRoute_Call operation as an output argumentb.
Thus the actual naming of the action in Promela is performed by:

#define Route_Call__m__b skip

It is interesting to note thatRoute_Call updates the Z state functionmvars, which in
turn is shared with the Promela state functionmvars, which is not automatically updated
by virtue of the Z operation. Why is the invariant between the shared state functions
maintained? Simply because the change tomvarsis in the data fields of a setup message,
and it does not show up in the projected values found inmvars.

5. Language decomposition
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This section concerns how a telecommunication system can be reasoned about despite
the fact that it is described in two different formal languages, Promela and Z.

5.1. Joint execution

Probably the most common way to reason about a system description is to simulate
the system by executing the description. This can be done in an exploratory, opportunistic
fashion, or as part of a well-organized program of testing.

Promela descriptions can be executed by Spin [3]. Z is much harder to execute—even
impossible in some cases—but there are now multiple tools for executing descriptions
written in various subsets of Z [2,5,7,8]. Clearly, to be useful for the purpose of
coordinating with Spin, a Z execution tool must operate in interactive mode.

There is no question that Spin and a Z execution tool would both have to be changed
to accomplish joint execution. On the other hand, the changes seem to be peripheral rather
than central. Also, it may not be necessary to support all the options shown in Tables 1
and 2. The DFC description, for example, does not use automatic updating of Promela
state functions.

Thus a Z execution tool needs to be augmented only with automatic update of some
state variables. As shown in Table 1, the translation from Promela values to Z values is
guaranteed to be one-to-one, with no type incompatibilities.

A Z execution tool also needs to receive operation invocations and input arguments
from Promela. Any Z execution tool, however, must be designed for external invocation of
operations, since there is no concept of this internal to Z. Thus invocation of Z operations
by Promela should be achievable without changing the Z tool itself.

Spin needs to be augmented with the ability to invoke operations in Z, passing input
argument values to Z and receiving output argument values from Z. Also, if the invoked
operation is not executable in Z because its enabling predicate (computed precondition) is
false, then the shared action in Promela must be regarded by Spin as nonexecutable.

5.2. Model checking

Spin is primarily a model checker. From the perspective of decomposition, the
prerequisite for model checking is meaningful execution of the Promela description in
isolation. Model checking is simply an exhaustive search of the Promela execution space,
which is known to be finite.

Working in isolation, Spin has no way to obtain values for output arguments from Z
of shared actions. These values must be supplied by some additional Promela code.

Working in isolation, Spin never has an executable action rendered nonexecutable
because of a shared action in Z. This is particularly significant for proving liveness
properties, because it means that the isolated Promela description can have more possible
behaviors than the described system. Thus, the isolated Promela description might satisfy
liveness constraints that the actual system fails to satisfy.

As with output arguments, the deficiency in the Promela description must be rectified
before model checking. This sounds difficult, but it is not. As Section 6 will show, the use
of this composition capability is typically so limited and structured that it is not an
impediment to model checking.

5.3. Model enumeration

Nitpick [5] is primarily a tool for model enumeration. This new analysis technique
automatically finds counterexamples to asserted properties of specifications in a relational
subset of Z. The inability of Nitpick to find a counterexample is not a proof of the
property, because the size of models enumerated is limited, but it is powerful evidence that
the property holds.

The temporal scope of Nitpick analysis is one operation. This must be the case for
any analysis of pure Z, because pure Z has nothing even remotely temporal except the
suggestive prime notation, which is usually used to distinguish the pre- and post-states of
one operation.

As with model checking, the prerequisite for meaningful model enumeration is that
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the Z description makes sense in isolation. Fortunately, this is always true. A Z
description separated from its corresponding Promela description is missing only updates
to its read-only shared state functions, if any.

Obviously the missing update operations cannot be analyzed using Nitpick, but their
absence does not prevent Nitpick from analyzing any other operation. A read-only shared
state function is known within Z by its type declaration and by its invariants. Those
invariants should be made strong enough to establish the correctness of the operations that
depend on them.

5.4. General verification

General verification requires that lemmas about the Promela description and lemmas
about the Z description be combined to prove theorems about the description as a whole.
This should not be difficult because the semantics of the transition-axiom method, where
they meet, is simple and straightforward.

6. Examples of language decomposition

At the architectural level of a DFC description, there are several different kinds of
property worth proving. In this section I assume that all descriptions have been statically
type-checked.

First of all, there are properties establishing the internal consistency of a single-
language description. Logic-based formalisms such as Z can easily express inconsistent
assertions. In an operational language such as Promela, inconsistencies take the form of
problems that abort execution, such as out-of-bounds array indices or type errors detected
at runtime.

Secondly, there are properties establishing consistency between two languages. With
the composition technique presented here, consistency fails only (1) if an invariant on
shared state functions is not preserved, (2) if Promela passes Z an input argument of the
wrong type, (3) if Z passes Promela an output argument of the wrong type, or (4) if a
mandatory Promela action is shared with a Z operation having a false enabling predicate.

Finally, there may be requirements or specifications to satisfy. These are properties
expressible strictly in terms of the system’s environment or its interface with the
environment [16]. For example, a trunk interface must send signals on its trunk only in
accordance with the protocol specified for that trunk. For another example, there may be
"rules of telephone etiquette" that all features and services should observe.

6.1. Model-checking the protocols

I have used Spin model checking extensively to establish that theswitch process
and protocols of the virtual network never deadlock. This is a form of intra-Promela
consistency, since a deadlock is an abnormal termination of a Promela program.

The only difficulty, that of making the Promela description execute meaningfully in
isolation, proved minor. To see why, consider the box configuration in Figure 5,
containing three line interfaces and a Call Waiting feature box associated with Line 0. The
parenthesized numbers are box identifiers, while the numbers near ports are port
identifiers. Arrows show the source and target boxes of possible calls.

It takes eight Promela processes to represent this configuration fully: the four boxes,
the switch process, and a telephone process driving each line interface. Theswitch
process manages six ports. From the perspective of the protocols it is a powerful test; from
the perspective of model checking it is a big job.

Nevertheless, model-checking this configuration required very little ad hocPromela
code. There are no shared actions that are potentially disabled by Z. There is only one
output argument from Z, carrying the identifier of the destination box from the routing
operation in Z to the invokingswitch process. In this configuration, as Figure 5 shows,
the destination box of a call is almost completely determined by its origin box. Thus, the
extra code to enable theswitch process to do its own routing is trivial.
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Figure 5. A box configuration for model checking.
_ _________________________________________________________________________

6.2. Routing analysis

The routing algorithm and routing data are described entirely in Z, with no shared
state functions. Thus the description of routing is completely independent of Promela.

Routing is complex, and there are many theorems one would like to prove about it,
particularly that it always succeeds in finding a suitable destination box. This is a matter of
inter-language consistency, because if routing fails in this way then the computed
precondition of the Z routing operation is false, and the mandatory shared routing action in
Promela is blocked.

Using a theorem prover for Z is probably the best reasoning choice, but it is tempting
to consider model enumeration as well. Currently Nitpick cannot handle the relations on
relations needed for routing, but it would be interesting to investigate whether there are
abstractions of routing that can be checked for meaningful properties by model
enumeration.

7. Related work

Jackson presents a method for organizing a Z specification into multiple views [4].
Shared state functions and shared actions are essentially the same as his two primary
structuring mechanisms. He does not make special use of operation arguments, as they are
a means by which a Z description communicates with its environment.

The differences between this composition/decomposition technique and Jackson’s
arise from the fact that he is working within one language while I am trying to utilize two.
He does not need a separate composition semantics (the transition-axiom method) because
composition of Z views can be expressed within Z. He does not need to find the common
ground between two type systems, nor does he need to consider changes to existing
language-based tools.

Fischer compares a number of different methods for combining Z with a process
algebra [1]. Although there are some superficial similarities between his methods and the
technique presented here, the similarities are misleading because the two things are
actually fundamentally different.

All of the methods surveyed by Fischer are identifying some part of a Z description,
for example an object in Object-Z, with a process in a process algebra. The algebraic
process provides an operational semantics for the Z, answering such questions as in which
states can an operation occur and in which states must it occur. Communication among
these process/objects is described in two ways. Synchronization and routing are described
within the process algebra. Data values communicated, and their types, are expressed in Z.
Finally, since process algebras have no explicit states, there are no shared state functions.

I am using a completely different decomposition of "the things that need to be said"
into the things expressed in Z and the things expressed in a process-oriented formalism. Z
is given a particular operational semantics by assumption, not by explicit description in a
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process-oriented formalism. There is no structured relationship between Promela processes
and Z fragments. Z input and output are used for communication between Z and Promela,
not for communication among different objects described in Z. In effect, my Z description
operates as a big process on its own that interacts with the Promela processes at various
points. And a Promela process hastwo mechanisms for interacting with the "Z process":
shared actions and shared state functions.

Earlier work of ours [17] presents yet a different technique for composing Z
descriptions with descriptions in other languages, particularly control-oriented notations
such as automata. That earlier technique is more similar to this later work than the work
surveyed by Fischer is, but there are still many differences.

Like this later work, that earlier technique has two major mechanisms through which
languages can interact. One of them is shared state functions. In the earlier technique each
shared state function is written within exactly one language, and read only by all the other
languages that share it. This later technique would adopt the same happy simplification,
except that the signaling problem discussed in Section 4.3 does not allow it.

In sharing state functions, the earlier technique matches types by requiring a much
deeper, more detailed translation of each notation into a common semantics [14]. Thus
dealing with types across languages is more general in the earlier technique,
accommodating many languages instead of just our specific two, but also requires more
work.

The second interaction mechanism in the earlier technique is "event classification,"
which allows one language to define a context-sensitive class of events that another
language can respond to. Event classification could be used to achieve roughly the same
kind of Promela-to-Z operation invocation achieved here by shared actions. Shared actions
are superior in handling output arguments and disabling of Promela actions by Z far more
elegantly. Event classification is superior in avoiding the problem discussed in Section
4.3. As with state functions, that earlier work requires a deeper, more complete translation
of each language’s syntax into a common semantics [14] than is required by this later
work.

Now that the earlier and later techniques have both been exercised on large examples
and are thoroughly understood, it may be possible to revise one of them to obtain the
advantages of both.

Taking all together the technique presented in this paper, the three approaches
discussed above, and new multiprogramming languages such as Seuss [10], there is now
quite a variety of wide-spectrum formalisms within which one might plausibly hope to
describe and reason about complex systems such as DFC telecommunication systems.
What we do not yet have is any indication of which works better, for this or any other
application. This is the most important direction for future research on this subject.

Currently there is rapidly growing interest in the subject of combining model
checking with theorem proving. It should be noted that the issues of language composition
and decomposition discussed in this paper are directly relevant to this pressing subject,
because model checking is the natural way to reason about a Promela description, and
theorem proving is the natural way to reason about a Z description.
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Appendix: A box program for the Call Forwarding on Busy feature

The ultimate purpose of all the infrastructure presented in the body of the paper is to
make it possible to describe feature boxes conveniently. Here is an example of how the
Promela part of a feature box program built on this infrastructure looks; it is the Call
Forwarding on Busy program alluded to several times already. Comments can be found at
the end, linked to the program by line numbers.

01 #define CFB_active__b__m1 skip
02 #define _CFB_active__b__m1 skip
03 #define CFB_forward__b__m1 skip
04 #define Box_Recv__b__m1 S_to_B[b]?mvars[m1]
05 #define Box_Send__b__m2 B_to_S!b,mvars[m2],p1
06 proctype CFB_box(byte b,p1,p2,m1,m2)
07 {
08 BGN: Box_Recv__b__m1;
09 m2 = reserve; Box_Send__b__m2;
10 Recv_Up__p1__m2; Send_Down__p2__m1;
11 if
12 :: CFB_active__b__m1; goto AWT
13 :: _CFB_active__b__m1; goto PWT
14 fi;
15 AWT: Recv_Down__p2__m2;
16 if
17 :: m2 == upack; goto PRE
18 :: m2 == quickbusy; goto FWD
19 fi;
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20 PRE: do
21 :: Recv_Down__p2__m2;
22 if
23 :: m2 == busy; m2 = teardown; Send_Down__p2__m2;
24 goto CLF
25 :: m2 == alerting; Send_Up__p1__m2; goto LNK
26 :: m2 == teardown; Send_Up__p1__m2; m2 = downack;
27 Send_Down__p2__m2; goto CL1
28 :: !((m2==busy)||(m2==alerting)||(m2==teardown);
29 Send_Up__p1__m2
30 fi
31 :: Recv_Up__p1__m2;
32 if
33 :: m2 == teardown; Send_Down__p2__m2; m2 = downack;
34 Send_Up__p1__m2; goto CL2
35 :: !(m2 == teardown); Send_Down__p2__m2
36 fi
37 od;
38 FWD: CFB_forward__b__m1; Send_Down__p2__m1; goto PWT;
39 CLF: do
40 :: Recv_Down__p2__m2;
41 if
42 :: m2 == teardown; m2 = downack; Send_Down__p2__m2
43 :: m2 == downack; goto FWD
44 :: !((m2 == teardown)||(m2 == downack))
45 fi
46 od;
47 PWT: Recv_Down__p2__m2;
48 if
49 :: m2 == upack; goto LNK
50 :: m2 == quickbusy; m2 = busy; Send_Up__p1__m2;
51 m2 = teardown; Send_Up__p1__m2; goto CL1
52 fi;
53 LNK: do
54 :: Recv_Down__p2__m2;
55 if
56 :: m2 == answered; Two_Talk__b__p1__p2;
57 Send_Up__p1__m2
58 :: m2 == teardown; Send_Up__p1__m2; m2 = downack;
59 Send_Down__p2__m2; Two_Untalk__b__p1__p2; goto CL1
60 :: !((m2 == teardown)||(m2 == downack));
61 Send_Up__p1__m2
62 fi
63 :: Recv_Up__p1__m2;
64 if
65 :: m2 == teardown; Send_Down__p2__m2; m2 = downack;
66 Send_Up__p1__m2; Two_Untalk__b__p1__p2; goto CL2
67 :: !(m2 == teardown); Send_Down__p2__m2
68 fi
69 od;
70 CL1: do
71 :: Recv_Up__p1__m2;
72 if
73 :: m2 == teardown; m2 = downack; Send_Up__p1__m2
74 :: m2 == downack; goto END
75 :: !((m2 == teardown)||(m2 == downack))
76 fi
77 od;
78 CL2: do
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79 :: Recv_Down__p2__m2;
80 if
81 :: m2 == teardown; m2 = downack; Send_Down__p2__m2
82 :: m2 == downack; goto END
83 :: !((m2 == teardown)||(m2 == downack))
84 fi
85 od;
86 END: skip
87 }

01 See Section 4.4.
03 The Z operation shared with this action replaces thetarget field of the setup message

indexed bym1 with a new target, namely the directory number that the original target
is forwarded to.

04 This shared action is very like Port_Recv_from_Switch__p1__m1 as
presented in Section 4.3. The phrasefrom_Switch is redundant, as boxes never
communicate directly with any Promela process except theswitch process.

05 This shared action is very likePort_Send_to_Switch__p1__m1 as presented
in Section 4.3. However, the actual transmitted message containsanother field: the
identifier of the port that the box has selected for receiving this call. This field is
completely invisible to Z. So the description as a whole containsthree message
abstractions, one private to each language and one "common denominator" for shared
use.

08 This statement receives a setup message. This original setup message is stored inm1
and stays there, being modified there if forwarding becomes necessary. The message
variable indexed bym2 is used for everything else.

09 See note to Line 05.
10 These shared actions are used by many boxes, and are defined elsewhere for all. In a

box with two ports, we refer to the one that receives an incoming call as theupstream
port, and the one that places an outgoing call as thedownstreamport. Boxes send and
receive messages at both ports. Here the box receives an initialization message on the
upstream port, and places a downstream call using the same setup message that it
received.

12 Having attempted a downstream call, the box is waiting for its outcome. If the
subscriber has activated this feature, the box goes to an active waiting state, in which
it may do something special. If the subscriber has not activated this feature, the box
goes to a passive waiting state, in which its behavior is transparent to all other boxes
in the usage. See also the note to Line 47.

15 In a waiting state, a box is waiting to find out whether a call it attempted succeeds or
not. An upack means it succeeded. A quickbusy means it failed because the
destination box is busy (has no free ports), in which case this box is definitely going to
forward.

20 In the "pre" state it has not yet been determined whether the outgoing call will alert or
will suffer from a busy condition. In this state the box is waiting to find out. If the
call turns out to suffer from a busy condition, then the box is going to forward, but
first it must clean up the remnants of the downstream call. If the call results in
alerting a telephone, then no forwarding will be needed, and the job of this box is
effectively over.

38 This is where the box forwards. The shared operation is explained in the note to Line
03.

39 This state cleans up a downstream call, then goes to the forwarding state.
47 This line begins the "transparent zone" of the box program (note that once control

reaches this line or a lower one, it never again jumps back above this line). In this
zone the box is behaving transparently, i.e., it is behaving in such a way that it is
unobservable by other boxes in the usage. Like all feature boxes, whenever this box
reaches a point where no particular functions will again be required of it, it transfers
control to the appropriate point in the transparent zone.

53 In this linked state, there are established calls at both ports. As soon as ananswered
message comes from downstream, the ports are voice-connected internally (see
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Section 4.1). Status messages are forwarded in either direction. When either call is
torn down, the box acknowledges the teardown, disconnects the internal voice
connection, and initiates teardown of the other call.

70 This state presides over the final cleanup of the call at the upstream port. Cleanup is
completely routine, and could be handled implicitly by a more application-specific
language.


