
Mid-Call, Multi-Party, and Multi-Device
Telecommunication Features and Their Interactions

Pamela Zave
AT&T Laboratories—Research

Florham Park, New Jersey, USA
pamela@research.att.com

ABSTRACT
Mid-call telecommunication features act only after an ini-
tial media connection has been set up. Many mid-call fea-
tures perform complex functions such as handling multiple
far parties and multiple devices. They cause many impor-
tant feature interactions that are little known and poorly
understood. Using the example of personal features asso-
ciated with a mobile phone, this paper presents a general
method for analyzing the interactions of mid-call features
with each other and with other features in a service. The
paper discusses how to determine the most desirable behav-
ior of interacting features. It also shows, as a proof of exis-
tence, how to manage these interactions in pipes-and-filter
implementations of telecommunication services.

1. INTRODUCTION
Interaction of telecommunication features is a problem

with a long history and large literature. Although the prob-
lem was first recognized and addressed in circuit-switched
telephone systems, it arises relatively unchanged in IP telecom-
munications.

Many features are invoked when voice or multimedia calls
are being set up. Call set-up features and their interactions
are fairly well-understood by now.

Mid-call features act only after an initial media connection
has been set up. Many mid-call features perform complex
functions such as handling multiple far parties and multiple
devices. Although much has been written about call waiting
and conferencing in particular, there are still many impor-
tant interactions caused by mid-call features that are little
known and poorly understood. The purpose of this paper
is to explain how to analyze these interactions among the
features of a service, how to determine the most desirable
behavior of interacting features, and how the interactions
might be managed in practical implementations.

Bruns argues that there are many possible definitions of
“feature interaction,” depending primarily on the answers to
two questions [2]:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IPTComm 2011 Chicago, Illinois USA
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

• Are there independent specifications of feature behavior?
• In the implementation, is there a capability for imple-

menting features separately and composing those imple-
mentations?

For purposes of this paper the answers are that there must
be a feature capability in the implementation, but not neces-
sarily a specification of each feature. For these answers one
of the applicable definitions of feature interaction is that
two features interact if their composition is not well-formed.
This is the definition used in this paper, where “not well-
formed” might mean that the composition is inconsistent or
erroneous in some way, or might mean that the definition
of the composition is incomplete. A composition would be
incomplete if it raises new questions that must be answered
before the implementation can be finished. The feature in-
teractions in this paper cause a few inconsistencies and raise
many new questions.

Section 2 presents the network context and feature capa-
bility assumed in this paper. The context is that features
are implemented in application servers in the network rather
than in devices or endpoints. Network features can be signif-
icantly different from device or endpoint features, and thus
have different interactions. For example, call waiting imple-
mented in an endpoint requires multiple signaling channels
between the network and endpoint [11], while call waiting
implemented in the network requires the use of only one
signaling channel between network and device.

The feature capability is pipes-and-filters composition, as
introduced in the telecommunications domain by the Dis-
tributed Feature Composition (DFC) architecture [7, 17].
Basic pipes-and-filters composition is now also available in
the SIP Servlet standard [8] and IMS [1], and is reviewed in
Section 2.

Sections 3 through 6 present a comprehensive analysis of
mid-call feature interactions. The analysis is organized ac-
cording to various feature categories. All of the pieces are
brought together and summarized in Section 7.

Sections 3 through 6 not only expose interactions, but
explain how they can be managed successfully. The first
step in managing a feature interaction is to decide how the
features should interact. In terms of the definition of a fea-
ture interaction as an ill-formed composition, it is necessary
to decide how to resolve an inconsistency, or to answer an
unanswered question.

The behavior of a telecommunication system should not
be designed in a vacuum, but rather by thinking about how
people will use it. To make such thinking concrete, this pa-
per focuses on personal features. More specifically, it con-

ICB DND PR

dest = q

dest = qw

dest = qh

RVMOCBSD

src = p

p q

Figure 1: A usage formed to implement one call. Each solid box denotes a call set-up feature. Each arrow
denotes a dialog, set up in the direction of the arrow.

cerns the features associated with a telephone number that
is expected to be used by a single individual. Most com-
monly this would be a mobile-phone number, because home
or work telephones are often shared, and people carry their
mobile phones with them everywhere. The word subscriber
is used in this paper to refer to both the person and the
telephone number.

The decision to focus on personal features is compatible
with the decision to focus on network implementations. For
instance, call waiting for mobile phones is implemented in
the network, because a network implementation conserves
the scarce resource of wireless channels.

The second step in managing a feature interaction is to
adjust the feature implementations or composition so that
features interact as they should. In Sections 3 through 6
this is accomplished by using capabilities of DFC beyond
the basic ones reviewed in Section 2. Section 8 completes
the presentation by explaining how these capabilities can be
implemented in SIP Servlets and/or IMS.

The feature-interaction management in this paper is only
an existence proof, in the sense that it is possible to imple-
ment the correct behavior in other ways than using the ad-
vanced capabilities of DFC. The feature interactions them-
selves are real and independent of DFC, however, so that
they must be managed somehow in any successful imple-
mentation of mid-call features.

Historically many reported feature interactions were cre-
ated by user interfaces too simple to control complex fea-
tures well. For example, there is a well-known user-interface
feature interaction between call waiting and conferencing on
plain touch-tone phones [3]. With the rich user interfaces of
today’s mobile phones, this is no longer a problem, and user
interfaces are largely ignored here.

2. FEATURE COMPOSITION

2.1 Usages and features
A call is an attempt by one communicating entity (usually,

but not always, a person) to connect to another communi-
cating entity via telephone. Figure 1 is a graph set up to
implement one call. Its edges are dialogs, while its nodes are
devices and feature boxes. A dialog is an instance of a call-
control signaling protocol. Each feature box is a concurrent

software process that implements an instance of a feature.
A dynamic graph of dialogs and feature boxes is called a

usage in DFC. All of the figures in this paper are examples
of full or partial usages. Unlike Figure 1, most of the usages
have subusages pertaining to multiple calls.

A usage such as Figure 1 composes its features because sig-
nals traveling from one device to another must pass through
all of them. Each feature can modify these signals for its own
purposes, so that the overall behavior of the usage reflects
the functions of all of them. This is known as pipes-and-
filters composition.

Figure 1 shows a usage implementing a single call from
the person with telephone number p to the person with tele-
phone number q. The subusage marked src = p contains
the feature boxes that are present because the call is from
p. The subusage marked dest = q contains the feature boxes
that are present because the call is to q. All six features are
call set-up features, which are introduced here because they
will be used in examples throughout the paper.

This paper assumes that all features are implemented in
the network, in application servers deployed for this purpose.
Most likely each subusage of Figure 1 is implemented in a
feature server assigned to its subscriber, so that the two
subusages may be implemented in different servers, with a
network connection between them.

Using an abstract call-control signaling protocol, a dialog
begins when a box or device sends a setup signal to another
box or device. The setup signal carries both source and
destination telephone numbers. Once the setup has been
acknowledged, the dialog exists, and its signaling channel
can be used for commands, status signals, and control of
media channels. A dialog can be torn down at any time,
from either end.

The three most important status signals in a dialog proto-
col are alerting, avail and unavail. All of these signals travel
from the callee or incoming end of the dialog to the caller or
outgoing end. The alerting signal indicates that the person
identified by the destination number is being notified of an
incoming call, while avail indicates that he is available for
communication. The dual of avail is unavail, which indicates
that the person is not available.

A well-designed feature box has the properties of trans-
parency, autonomy, and context-independence. Transparency

means that when its feature is not active, it is unobservable
by other boxes in the graph. It is acting as an identity el-
ement, merely relaying signals from one dialog to another.
Autonomy means that when it needs to perform some func-
tion, it does so without help from other boxes. A feature box
can act autonomously because it sits in a signaling path be-
tween user devices, where it can observe all the signals that
travel between them. Because it is a protocol endpoint, it
can absorb or generate any signals that it needs to. Context-
independence means that it does not rely on the presence of
other features, or contain any knowledge of them. A feature
box does not know what is at the other end of the dialogs it
is participating in.

In Figure 1, the source features of p are Speed Dialing
(SD) and Outgoing Call Blocking (OCB). SD examines the
setup signal to see if its destination field contains a short
code rather than a telephone number. If so, it replaces the
code with the telephone number that the subscriber has as-
signed to it. In all other respects SD is transparent.

OCB is configured by an authority other than the sub-
scriber, for example a parent. OCB examines the setup sig-
nal to see if the subscriber is allowed to call that destination.
If so, OCB is transparent. If not, OCB generates an error
message for the subscriber and tears down its incoming dia-
log, which will cause the usage to be torn down all the way
back to the originating device.

In Figure 1, the destination features of q are Incoming
Call Blocking (ICB), Redirect to Voice Mail (RVM), Do Not
Disturb (DND), and Parallel Ringing (PR). ICB blocks un-
desired calls as OCB does, but with two differences. First,
ICB is usually configured by its own subscriber. Second, it
blocks a call by sending unavail and then tearing down its
incoming dialog; thus the caller cannot observe why his call
did not succeed.

RVM is initially transparent. If it receives unavail through
its outgoing dialog, then it tears down its outgoing dialog,
creates another outgoing dialog whose destination is a voice-
mail server, and becomes transparent. The server will accept
the dialog (connecting it to the caller through RVM), send
avail on behalf of the subscriber, and prompt the caller to
leave voice mail for the subscriber.

If DND is currently disabled by the subscriber, the feature
box behaves transparently. If it is currently enabled, its pur-
pose is to allow only important calls, so that the subscriber
is not otherwise disturbed. DND decides whether a call is
important by taking the caller’s word for it. Because DND
cannot make any assumptions about the caller’s device, its
user interface to the caller must be implemented by audio
announcements, prompts, and touch-tones.

On receiving a setup signal when it is enabled, DND em-
ploys a media resource (see Section 6) to announce to the
caller that the subscriber wishes to be undisturbed. It then
prompts to ask the caller (through a touch-tone response)
if the call is important. If the call is not important, then
DND sends unavail upstream and terminates, because the
subscriber is not available for casual calls. If the call is im-
portant, then DND creates an outgoing dialog and is trans-
parent from that point on.

PR creates concurrent outgoing dialogs to a list of phone
numbers supplied by the subscriber, for example the num-
bers of the subscriber’s home phone (qh) and work phone
(qw). It also creates a dialog to the subscriber’s mobile
phone.

Note that a phone or other user device will send an avail
signal upstream when the user answers the phone. If PR re-
ceives an avail signal from one of its downstream branches, it
tears down the other branches and forwards the avail signal
upstream. If it receives unavail from all branches or times
out, it tears down all the branches, sends unavail upstream,
and terminates.

2.2 Routing and feature interactions
The mechanism for assembling usages is a feature router.

Each time a box initiates a dialog, the setup signal goes to
a feature router that chooses a box or device to receive it,
and forwards the setup to its recipient.

Every continuous routing chain from one device to an-
other contains a source region and a destination region. The
source region comes first; it contains feature boxes work-
ing on behalf of the source telephone number in its role as
caller. The destination region contains feature boxes work-
ing on behalf of the destination telephone number in its role
as callee. Each number subscribes to some (possibly empty)
set of features in each region.

Figure 1 shows that p subscribes in the source region to
SD and OCB, while q subscribes in the destination region
to ICB, RVM, DND, and PR. In each region, the subscribed
features of a telephone number have a precedence order that
determines the order in which they are assembled into a
usage.

A simple routing chain from device to device begins when
the calling device creates a setup signal with the new method
and sends it to a feature router. The source field of the new
setup signal is the number of the device. To continue the
chain, a feature box takes a setup signal it has received and
applies the continue method to it. The continue method
returns a setup signal, which the box then sends to a feature
router. Each method returns a setup signal with the fields
set so that a router can construct each region according to
the precedence order.

If a feature is added to a subscriber’s feature set, a new
question arises: how should its signaling actions be merged
and prioritized with respect to the signaling actions of the
other features? This is the most common kind of feature
interaction in a pipes-and-filters architecture. Once the de-
sirable behavior has been determined, it is implemented by
adjusting the precedence order of the feature set.

For instance, SD and OCB interact because SD changes
the destination field of a setup signal and OCB examines
the destination field of a setup signal. OCB should see the
actual destination that will be called, so SD should precede
OCB in a source region.

The interactions among the destination features of Fig-
ure 1 are analyzed in [14]. The precedence order shown
yields behavior that satisfies the most common user expec-
tations.

In the literature there are many other feature capabilities
and ways of composing features, but they are not all equally
useful. For instance, often features are described as sets of
action rules on the call state with pre- and post-conditions.
In these schemes feature composition is the union of the
rule sets, and feature interactions are detected as conflicts
between action rules from different features. As an example,
[9] is unusual in including some mid-call actions, but typical
in other ways.

Rule-based feature constructs have not had much impact

on practice because the common ground of interaction be-
tween two features is the entire call state, which can be-
come arbitrarily complex as features are added. The big
advantage of pipes-and-filters composition is that the com-
mon ground of interaction between two features is only the
dialogs between them, which grow little in complexity even
in complex feature sets. Pipe-and-filters composition is con-
structive, and provides in precedence a simple mechanism
for managing many feature interactions.

3. MID-CALL FEATURES WHERE JOINS
OCCUR

3.1 Understanding the interactions
In this paper a personal usage is the portion of a usage

containing all the features of a particular subscribing person.
Starting at a time when the subscriber has no telephone ac-
tivity, a personal usage is assembled when the subscriber
first places or receives a call. Mid-call features allow the
personal usage to change shape while the subscriber is talk-
ing. When the subscriber returns to a state of no telephone
activity, the personal usage is torn down piece by piece and
disappears.

A typical call set-up feature is subscribed to in one re-
gion only, because during call set-up the caller (source) and
callee (destination) play very different roles. Mid-call fea-
tures, on the other hand, operate when the caller/callee role
distinction no longer matters much, and both ends of the call
are symmetric. For this reason, mid-call features are sub-
scribed to in both source and destination regions. If both
the source and destination of a call subscribe to a mid-call
feature, then the usage will have an instance of that feature
in the source’s personal usage, and another instance in the
destination’s personal usage.

One of the best-known mid-call features is call waiting
(CW). CW is initially transparent, and its function is trig-
gered only when it receives a new incoming call for the sub-
scriber. It sends an alerting signal to the new call as if
the subscriber’s phone were ringing, and sends a signal to
the subscriber that a call is waiting. On the subscriber’s
command, it will switch the subscriber back and forth be-
tween old and new calls. If CW receives another incoming
call while it is already handling two calls, it will refuse the
third call. It has long been known that CW interacts with
unavailability features such as RVM, by narrowing the cir-
cumstances under which they are triggered [3].

Zooming out to look at a much less detailed picture, q’s
personal usage will look different when CW is active (Fig-
ure 2) than it does in Figure 1. Because CW is a mid-call
feature, the subscriber has answered one device, and there
is now only one outgoing dialog instead of three. More rel-
evantly, CW allows a new incoming call to join an existing
usage. In Figure 2 the usage has two dialogs coming in in-
stead of one, each representing a different incoming call to q.
These two incoming dialogs must share the single outgoing
dialog that connects the usage to the mobile phone.

Any join feature raises two questions that must be an-
swered before implementation can be completed:
• In the personal usage of q, how many instances are there

of each of the other features?
• To which dialogs does each apply?
A join feature also requires that a single dialog (outgoing in

q

dest = q

Figure 2: The personal usage of q when CW is active.

the figure) carry the signals of multiple dialogs (incoming
in the figure). This may be inconsistent with the rules of
the dialog protocol. These are the most important inter-
actions caused by mid-call features where joins occur. The
inconsistency will be dealt with in Section 3.2.

The obvious answer to the questions, for ICB and RVM,
is: two, one applying to each of the incoming dialogs. PR, on
the other hand, should only be applied when the first incom-
ing call triggers the personal features to make contact with
the subscriber. After PR has helped the subscriber choose
and answer a device, the subscriber will remain connected
on the same device while CW receives additional calls. So
the right answers for PR are: one, applying to the outgoing
dialog.

DND is interesting because it might be like ICB and RVM
or like PR. Once the subscriber has been disturbed by a
first incoming call, does DND allow subsequent incoming
calls through? If so, it belongs in the same category as PR.
Does DND continue to apply whether the subscriber has
been disturbed by an urgent call or not? If so, it belongs
in the same category as ICB and RVM. Note that the DND
implementation remains exactly the same in either case, and
only its place in the personal usage will be different.

If a subscriber has multiple join features, then different
incoming calls can join a usage in different places, and there-
fore have different features applied to them. This means that
the questions above apply separately to each join point. It
also makes it necessary to distinguish the calls that should
join in one place from the calls that should join in another.

As an additional simplification, this paper assumes that a
personal feature set has only one join feature. The simplifi-
cation is discussed further in Section 4.

The simplification does not mean that there can be only
one join feature. Consider, for example, Emergency Break-
In (EBI). EBI is a feature that allows an emergency call to
break into an existing usage. The implementation of EBI is
similar to the implementation of CW, except that it gives
priority to the emergency call.

Emergency calls can be distinguished from normal calls
because they are calls to device numbers, while normal calls
are calls to personal numbers. Feature subscriptions are
associated with telephone numbers. The personal features
ICB, RVM, DND, and PR do not apply to emergency calls,
so device numbers do not subscribe to them.

To provide for this behavior (and also to manage other fea-
ture interactions, as we shall see) it is necessary to have de-
vice numbers for mobile phones that are distinct from their
personal numbers. So the mobile phones in subsequent ex-
amples will have device numbers pm and qm, while p and q
remain as personal numbers. Device numbers need not be
public.

3.2 Managing the interactions
This section describes how the desired behavior can be

CW SD, OCB ICB, RVM

ICB, RVM

DND, PRCW

POCPPU

PIC

PPUPIC

PIC

dest = q

dest = p

src = p

RVM, ICB

**

Figure 3: A mid-call join feature such as CW divides a personal usage into per-personal-usage (PPU), per-
incoming-call (PIC), and per-outgoing-call (POC) subusages.

implemented using the advanced capabilities of DFC.
Returning first to CW and how joins occur, all the setup

features in Figure 1 are free, meaning that when a feature
router needs to route a dialog to a box of that type, it cre-
ates a new instance of the feature. Joins require features
that are bound rather than free. If a feature is bound, then
there is at most one box (instance) of that feature per sub-
scriber. When a feature router needs to route a dialog to a
box (instance) of that type for a particular subscriber, and
there is already one in use for that subscriber, the router
sends the dialog to the existing box. In Figure 3, CW is
drawn with a heavier line to emphasize that it is bound.

In the personal usage of q found in Figure 3, CW divides
the graph into three portions. There is a portion called the
per-personal-usage (PPU) subusage, because each feature is
instantiated only once in each personal usage. There are
also two per-incoming-call (PIC) subusages, with features
that apply separately to each incoming call, whether the
entire personal usage is new or not.

The feature interactions are managed by setting the prece-
dence order in q’s destination region so that the PIC features
precede CW and the PPU features follow it. As discussed
above, ICB and RVM are PIC features. In this example
DND is a PPU feature, as well as PR.

If the first call of the personal usage is outgoing, as is
the case for subscriber p in the figure, then CW divides
the early usage into a PPU subusage and a per-outgoing-
call (POC) subusage. The POC subusage contains all the
source features that apply separately to each outgoing call,
whether the entire personal usage is new or not. The feature
interactions are managed by setting the precedence order in
p’s source region so that the PPU features precede CW and
the POC features follow it. In Figure 3 there are no features
in p’s PPU, and SD and OCB belong to p’s POC.

A subsequent incoming call to p adds a PIC subusage to
p’s personal usage. Note that if there were a PPU subusage
it would be assembled as a set of source (outgoing) features,
yet its dialogs would be required to carry the signals of this
incoming call.

Each PIC or POC subusage may contain a chain of di-
alogs, all of which represent the same call. A PPU subusage
also has a chain of dialogs, but these dialogs may be shared

among multiple calls. As introduced in Section 3.1, sharing
may be inconsistent with the rules of the dialog protocol (it
is inconsistent with SIP, as discussed in Section 8). Elimi-
nating the inconsistency may require two modifications:
• It is usually necessary to represent call information (sta-

tus, commands) differently in the shared and unshared
portions of the personal usage. For example, an incoming
dialog setup signal in a PIC or POC subusage turns into a
special mid-call call-waiting signal in the PPU subusage.

• It is necessary to associate per-call signals in the PPU
subusage with the calls to which they belong. Thus the
call identifiers they carry may differ from the call identifier
with which the subusage was set up, and must be hidden
if this causes trouble.

All PPU features must handle shared dialogs. In practice
this is not usually a burden. For example, the PPU features
DND and PR are call set-up features, so they are triggered
only by the setup signals of their initial incoming dialogs.
After performing their functions they handle all mid-dialog
signals transparently, which is correct whether the signals
are shared or not.

In some cases the user interface to personal features em-
ploys a browser or other non-telecommunication application
on the device. In this design, user-interface messages do not
travel through the dialogs of a usage. To implement this de-
sign, it is necessary to associate each user-interface message
to or from the device with the correct per-subscriber and
per-call instance of the correct feature. Once it is imple-
mented there are fewer dialog feature interactions, however,
because the user interface is independent of the dialog pro-
tocol.

Figure 4 shows the relationship between personal features
and EBI. Understanding this figure requires understanding
the transitions between personal and device numbers.

A source feature can change the source number in its in-
coming dialog to a different source in its outgoing dialog,
and a destination feature can change the destination num-
ber. (Features in each region can also change the opposite
telephone number, but this is less important because it does
not affect feature routing.) Figure 4 shows that PR changes
destination q to qh, qm, and qw in its three outgoing dialogs.

If (as in the figure) qm subscribes to its own destination

pm qm

EBI EBIPR

src = pm

dest = pm

dest = qm

dest = qw

dest = qh

ID Figure 3

Figure 4: EBI is a mid-call join feature in a device zone rather than a personal zone.

feature EBI, then the chain from device pm to device qm will
contain a destination region consisting of two destination
zones, one for q and one for qm. Emergency (device) calls
are given destination qm by their callers, so they will be
routed directly to the zone of qm, without passing through
the zone of q.

In Figure 4 the source region also has two zones, one for p
and one for pm. In addition to EBI, the source zone for pm
also contains the Identification (ID) feature, which changes
source pm to source p.

Note that in more complex feature sets there can be mul-
tiple layers of phone numbers, multiple zones, and multiple
join points in usages [12]. In this paper the discussion is
simpler, because of the restriction to personal and device
numbers only.

4. MID-CALL FEATURES THAT INITIATE
NEW CALLS

Returning to CW for a few paragraphs, it is important to
emphasize that a CW feature box, which is assembled into a
personal usage during handling of the first call of a personal
usage, may be routed to in either source or destination re-
gions. For example, in Figure 3, the CW for p was routed
to in the source region, and the CW for q was routed to in
the destination region.

During initialization, a CW program must check the re-
gion of its first incoming dialog and orient itself properly.
If the dialog is routed in the source region, then it comes
from the subscriber, and its continuation goes toward a far
party. If the dialog is routed in the destination region, then
it comes from a far party, and its continuation goes toward
the subscriber. In either case we refer to the dialog connect-
ing CW to its subscriber as its anchor dialog. The anchor
dialog will last as long as the personal usage does, while di-
alogs that connect CW to far parties can be set up and torn
down more frequently. In Figure 3 the anchor dialogs of CW
are marked with asterisks.

A personal feature set usually has a feature to initiate
new outgoing calls while there is already a call in progress,
so that conferences can be formed. The earliest form of this
feature was Three-Way Calling (3WC).

3WC is exactly like CW in forming usages with a single

dialog connecting the usage to a device, and multiple dialogs
connecting the usage to far parties. Not surprisingly, it has
the same feature interactions as CW, managed in the same
way, as shown in Figure 5.

3WC has an additional feature interaction that CW does
not have. Because CW initiates new calls, it raises the ques-
tions: What are the source numbers of these calls, and what
personal features apply to them? In the personal usage of
p this is fairly obvious—3WC always continues its anchor
dialog, so that all its outgoing dialogs have the same source
(p) and have the same features applied to them (the POC
subusage).

For the 3WC feature of q, on the other hand, the answer
is different, because this time 3WC is reversing roles. The
source of the new outgoing dialog must be the destination of
its anchor dialog (q). Even though the box was routed after
PIC features in the destination region, its outgoing dialog
must be routed through the POC features.

This behavior cannot be accomplished by continuing the
anchor dialog, which is a destination-region dialog. To man-
age this feature interaction in DFC, we use DFC’s third
routing method, named reverse. The reverse method oper-
ates on the setup signal of an existing incoming or outgoing
dialog, reversing its source/destination numbers and routing
region. The effect of reverse applied to the anchor dialog of
q’s 3WC is a setup signal that will be routed to SD, as the
first feature in the POC subusage of q.

Note that, like continue, reverse allows a feature program
to change the source or destination field in the new dialog.
3WC should not change the source field, because that is
the subscriber’s number. It must change the destination
field, of course, to reach a new far party. Consequently the
method invocation that creates the setup signal for 3WC’s
new dialog can be characterized abstractly as reverse (dialog
= anchor, dest = newFarParty).

Because CW and 3WC are both multi-call features, they
interact directly through the selection of calls they manipu-
late [6]. When implemented separately in DFC, their inter-
actions show up as tree structures in a usage (Figure 6). The
tree structure shows that the calls are divided into groups;
for example, the subscriber cannot form a conference con-
taining incoming call 1 and outgoing call 3. If this kind of

SD, OCB ICB, RVM DND, PR

POCPPU
src = p

**
3WC 3WC

POC

SD, OCB

OCB, SD

PPUPIC

POC src = q

dest = q

Figure 5: A call-initiating feature such as 3WC also divides a personal usage into per-personal-usage (PPU),
per-incoming-call (PIC), and per-outgoing-call (POC) subusages.

grouping behavior is desired, then the tree structure is a
good way to analyze and implement it.

To many people, Figure 6 seems wrong because we feel
that all four calls are on an equal footing, and should be
treated alike by the features. This is compatible with the
assumption made in Section 3.1, that a personal feature set
does not have a way of distinguishing different calls for dif-
ferent join treatment.

OC4

CW

3WC

3WC

OC2

IC1

OC3

Figure 6: Interactions of multi-call features.

When a personal feature set includes joining and con-
ferencing among calls regarded as equals, it is advisable
to implement a single “multi-call control” feature that per-
forms both functions. This leads to a better user interface
and fewer constraints on what the subscriber can do. Not
surprisingly, contemporary “smart” mobile phones typically
combine CW and conferencing. They also handle more than
four calls at a time, which would not be intelligible to users
without the better interface and integration.

5. PER-PERSONAL-USAGE MID-CALL
FEATURES

This section takes a closer look at the PPU subusage,
dividing it into finer-grained subusages. We are working
toward a final organizational structure for personal usages,
which is shown in Figure 10. First we introduce two new
mid-call features to be used as examples.

Recording (Rec) is a mid-call feature that records the

voice channel (in both directions) whenever the subscriber
desires. Rec must be placed in the PPU subusage so that it
can capture everything that the subscriber hears and says.

Switch Phones (SP) is a mid-call feature that enables its
subscriber to move from one device to another while main-
taining a conversation. A well-designed SP feature creates a
three-way conference during the transition, so that no part
of the conversation is lost. SP must be placed in the PPU
subusage so that all of the subscriber’s calls are moved at
once.

When it is activated, SP creates a new branch (chain of
dialogs) to a new device that eventually takes over from the
first or existing device branch. Because of this behavior, it
raises many of the same questions as join and conferencing
features, except on the device side of the personal usage
instead of the network side:
• Which features should apply to the personal usage, inde-

pendent of its device branches?
• Which features should apply to each device branch of the

personal usage?
• What is the source telephone number of the new device

branch?
Figure 7 shows the resolution and management of these fea-
ture interactions.

There is a subusage of a personal usage where the dialogs
are shared by all device branches as well as all calls. This
is called the omniscient (Omn) subusage, because features
in it can observe all the end-to-end activity in the personal
usage. In Figure 7 we put Recording in the omniscient sub-
usage, so that it can record from all device branches. In the
precedence order, omniscient features must precede SP in
the destination region, and follow SP in the source region.

Features that apply to separate outgoing device branches
must follow SP in the destination region. If there are any
source features that apply to device branches, i.e., to device
branches coming into a personal usage, then they would pre-
cede SP in the source region.

The device branches created by SP are fundamentally se-
quential, even though two may co-exist for a brief handoff
period. Not surprisingly, the first one demands different fea-
tures. The features that apply only on the first contact with
the subscriber in this personal usage are in the FC subusage,

FC

PPU

src = p

SP Rec

Omn Omn

Rec

DB

SP DND,PR AC
dest = qh

dest

q+qh
=

dest = q

PPU

PODB

dest = qm

PODB

**

dest = x

dest = p+x

Figure 7: Per-personal-usage subusages of the personal usages of p and q. A multi-device feature such as SP
divides them into omniscient (Omn) and first-contact (FC) subusages. Per-outgoing-device-branch (PODB)
subusages are also introduced.

and those that apply to each device branch are in a per out-
going device branch (PODB) subusage, as shown in Figure 7.
Note that PODB subusages are not contained within PPU
subusages because—if a personal usage has several device
branches—there may be more than one of a PODB feature
per personal usage.

DND (as a PPU feature) and PR are first-contact features.
In DFC, the application of these features to the first device
branch only is managed as follows. Because SP routed to
in the destination region always continues its initial dialog
transparently, the first outgoing dialog from q’s SP will have
q as its destination, and be routed through DND and PR.
In Figure 7, the incoming call was answered on q’s home
phone with device number qh. When subscriber q wants to
switch phones, on the other hand, SP sets the destination
of its new outgoing dialog to device number qm rather than
personal number q. This branch is not routed through the
FC features of q.

Just like a 3WC feature box routed to in the destination
region, an SP feature box routed to in the source region
reverses roles when it creates a dialog to begin a new out-
going device branch. As with 3WC, the SP feature must
reverse its anchor dialog to create a dialog setup signal that
will be routed correctly. The anchor dialogs of the SP boxes
are marked with asterisks in Figure 7. 3WC and SP are
symmetric features in the sense that 3WC creates new calls
(going toward the center of the network) and SP creates new
device branches (going toward devices on the periphery of
the network). This symmetry is the reason why role reversal
is performed by 3WC routed to in the destination region and
SP routed to in the source region, which is also symmetric.

To create a dialog setup signal that will be routed cor-
rectly, SP routed to in the source region does a method
invocation that can be characterized abstractly as reverse (
dialog = anchor, dest = newDevice). The source field of
the setup signal will have the same value as the destination
of the anchor dialog. The feature can also be implemented
to use reverse (dialog = anchor, dest = newDevice, src =
subscriber), if it is considered desirable to identify the new
branch as coming from the subscriber. Because the new di-
alog will be routed in the destination region, the source field
will be used for caller identification only.

It may be necessary to choose specific PODB features for
specific devices. Figure 7 shows two examples of this.

Answer Confirm (AC) is a feature that distinguishes be-
tween a call’s being answered by a person and being an-
swered by a machine. It does this by prompting the callee
to enter a touch-tone. AC then signals avail or unavail up-
stream through its incoming dialog, depending on whether
it detected the tone or not.

In the example, AC is necessary on outgoing device branches
to the home phone qh, because q has PR and the home phone
has built-in voice mail. Without AC, voice mail might an-
swer the home phone and cause PR to abort branches to
other devices. This might prevent the subscriber from an-
swering the call on another device, or it might cause voice
mail to be recorded on the home phone rather than the sub-
scriber’s personal voice mailbox.

On the left side of Figure 7, subscriber p is using SP to
switch to a number x previously unknown to the system.
Lest this be used by the subscriber to surreptitiously trans-
fer a far party to a forbidden number, the outgoing device
branch is routed through a Device Blocking (DB) feature
that checks the number.

Because of the necessity to distinguish between FC and
non-FC features, these PODB cannot be subscribed to by
the personal numbers p and q. They are not (in general)
subscribed to by the device numbers qh and x, because the
features associated with these devices may have nothing to
do with p or q. In DFC they are subscribed to by special
internal numbers, denoted here as q+qh and p+x to show
that they are related to both device and personal numbers.
These numbers are internal mechanisms whose only purpose
is to cause the DFC routing algorithm to assemble the de-
sired features into personal usages.

SP is not the only possible multi-device feature. Another
possible feature in this category is an Add Video (AV) fea-
ture that creates an outgoing device branch of the usage
to a video device such as a television or laptop computer.
This feature could enable a subscriber to upgrade a call on
a voice-only device to a multi-media call.

Just as separate join and conferencing features create tree
structures in a usage (Figure 6), separate multi-device fea-
tures create tree structures (Figure 8). For multi-device fea-
tures to interact correctly, it is necessary to understand the
desired shape of the tree and set the precedence order so
that routing creates the desired shape.

Section 4 recommended merging multi-call features into

video branch

alternative

branches
voice

AV SP

Figure 8: Interactions of multi-device features.

a single feature, because that facilitates treating all calls as
equals. The same recommendation does not apply to multi-
device features, because multiple device branches are likely
to be functionally distinct. The structure of Figure 8, for in-
stance, supports treating voice and video devices differently.

6. MEDIA FEATURE INTERACTIONS
Many features are implemented using media resources.

For example, 3WC and SP require mixers, Recording re-
quires a recording server, and DND and AC require inter-
active voice-response servers. These features have to ensure
that media paths travel to the correct resources at the cor-
rect time. CW might be implemented with a resource to
play special tones and announcements. Even if it is not,
CW must still manipulate the media paths between devices.

All mid-call features that manipulate media paths have
the potential to interact, because at any moment, the correct
configuration of media paths might be dependent on the
states of more than one feature. Figure 9 illustrates this. In
the figure the signaling path between the mobile phone and
the soft phone on the laptop contains two feature boxes,
Rec and 3WC. Each feature is implemented with its own
reasource, which is also shown in the diagram.

er

1
2

3

6
4

5

Rec 3WC

MixerRecord−

Figure 9: Media feature interactions affect the paths
of media packets.

If neither feature is currently active, voice between the
mobile phone and laptop should travel by the most direct
path, labeled 3. If Recording alone is active, voice should
travel on path 1, 5. If 3WC alone is active, voice should
travel on path 2, 6. If both features are active, voice should
travel on path 1, 4, 6. It is not possible to configure the
voice paths without taking both features into account.

This example shows us that composition of media-manipulating
features raises the new question: If multiple features in a
usage are manipulating media paths concurrently, what are
the correct end-to-end media paths? In [16] the proposed
answer is based on the principle that, among composed fea-
tures, proximity to an endpoint (in the usage graph) confers

priority in determining its media paths. This leads to a gen-
eral specification of the correct media paths in each case,
and a general-purpose implementation of the specification
that has been verified correct [16].

In further work, this general solution has been adapted
for implementation in SIP [5]. A convenient programming
interface to the SIP solution is described in [15].

7. SUMMARY
Figure 10 summarizes Sections 3 through 5 by providing

a single picture of all the subusages of a personal usage.
Multi-call and multi-device mid-call features interact with

all other personal features by forcing decisions about which
calls and which device branches they apply to. These deci-
sions affect how often a feature is instantiated, exactly when
a feature is instantiated and activated, and exactly which
subset of the set of all signals it sees. Although DFC makes
it easy to analyze these interactions through the shapes of
usages, DFC does not create them. They are intrinsic to
the functions of mid-call features, and it is necessary to un-
derstand and manage them no matter how a feature set is
implemented.

The other interactions caused by mid-call features are:
• Multi-call and multi-device features may cause some di-

alogs to be shared among multiple calls and/or device
branches. This introduces new signaling information that
must be encoded so that it is accepted by the dialog pro-
tocol and all feature boxes and devices at the endpoints
of the dialogs.

• Multi-call and multi-device features may reverse roles,
raising new questions about the source and destination
numbers that should be used after role reversal.

• Multi-call features interact with each other by grouping
calls in specific ways.

• Multi-device features interact with each other by grouping
device branches in specific ways.

In addition, as previously reported, all mid-call features that
manipulate media streams have the potential to interact
with each other in determining correct media paths.

DFC includes some advanced capabilities that make it eas-
ier to manage these feature interactions. These advanced ca-
pabilities are: a flexible protocol that accommodates shared
dialogs, bound features, the reverse routing method, and
internal telephone numbers. Section 8 discusses the imple-
mentation of these capabilities in SIP frameworks.

Figure 10 shows that personal features are naturally di-
vided into eight categories. This paper has given specific
examples of features in all categories except per-incoming-
device. In practice there can be any number of features in
these categories. There are also other features that, like
DND, can go into more than one category, and produce dif-
ferent overall behavior depending on their category. An-
other example is Talk Limits (TL), which limits the number
of telephone minutes a subscriber is allowed. TL is a mid-
call feature that can be omniscient or per-call; depending
on where it is placed in a personal usage, it measures and
limits different things.

In the context of converged Web and telecommunication
services, there can be a dialog-state notification service, and
other services that subscribe to the dialog-state notifications
for various purposes [10]. The analysis of mid-call features
here shows that the relevant state is actually the state of
a personal usage rather than of any particular dialog, and

network

devices

Per

Call
Outgoing
Device

Per
Personal
Usage

Omniscient
Multi−
Device Contact

First Per
Outgoing
Device

Per

Call
Multi−

Outgoing

Per
Incoming
Call

Per
Incoming
Device

Figure 10: All the subusages of a personal usage. Dialogs with double-headed arrows can be set up in either
direction.

that the state of a personal usage is much more complex
than a dialog state. Thus mid-call features interact with
both the notification service and the converged services that
subscribe to it.

Click-to-Dial (C2D) is always an outlier in the feature
landscape. In its most common form, C2D creates two out-
going dialogs (whether sequentially or simultaneously), both
routed to destination features. It thus creates a usage with
two personal usages, each first assembled with destination
routing. The personal usages are themselves normal in all
respects, however.

DFC can be used to develop feature sets with fine-grained
modularity. In this style, each named function, no matter
how simple, is implemented as a separate feature box. Al-
though this style is good for prototyping because it is very
flexible, it may incur too much overhead for production use
[4].

To improve performance when using DFC principles, it
is often desirable to group more functions into larger fea-
ture modules. Figure 10 provides important guidance in
doing this, because a successful coarse-grained modulariza-
tion must be compatible with its structure. The most obvi-
ous coarse-grained modularization has one feature box per
atomic subusage in Figure 10.

Even coarser-grained modularizations are possible, pro-
vided that they coalesce adjacent subusages and preserve the
correct instantiations. For example, it is straightforward to
combine omniscient functions with multi-call or multi-device
functions. It is possible to combine per-call functions with
multi-call functions, but the resultant module must have an
internal mechanism to instantiate per-call features for each
new call. It is inadvisable to combine omniscient functions
with first-contact functions, on the other hand, because it
is impossible to compose such a module successfully with
multi-device features.

8. IMPLEMENTATION
Assuming that feature interactions in a feature set are be-

ing managed according to DFC principles, it will be neces-
sary to implement the advanced capabilities of DFC—those
beyond simple pipes-and-filters as described in Section 2.
This section covers the relevant implementation issues for

SIP, SIP Servlets, and IMS.

8.1 SIP
In a SIP implementation, all the dialogs mentioned above

would be invite dialogs. A dialog-setup signal would be a
SIP invite, an alerting signal would be a 180, an avail signal
would be a 2xx response to the initial invite, and an unavail
signal would be a 4xx-6xx response to the initial invite.

Shared dialogs are one of the biggest effects of multi-call
and multi-device features. The SIP standard is not written
to accommodate shared dialogs, so that the obvious imple-
mentations of them are inconsistent with the protocol. For
example, a dialog endpoint cannot send 180 after sending a
2xx response to the initial invite, even though shared dialogs
often need to signal “ringing” mid-call. Some techniques for
implementing shared dialogs in SIP are presented in [13].

8.2 SIP Servlets
The most recent SIP Servlet standard [8] is very compat-

ible with the DFC architecture. A servlet corresponds to a
feature. An application session corresponds to a feature in-
stance or box. The session key-based targeting mechanism
supports the distinction between free and bound boxes. The
regions/roles are named originating and terminating instead
of source and destination.

The standard allows compliant servlet containers to run
application (feature) routers chosen by their deployers. For
those who wish to deploy the DFC routing algorithm, an
open-source DFC application router is available at echarts.org.

Reverse routing has long been a source of confusion, and
its history reflects this. The DFC manual says that only
an outgoing dialog can be reversed [17]. The SIP Servlet
standard says that only an incoming dialog can be reversed.

In principle, the incoming/outgoing distinction should make
no difference to an implementation. The only necessary re-
striction on the use of reverse is that the subscriber must
subscribe to the reversing feature in both regions, so that
the feature has a place in the precedence order of both re-
gions. In practice, an incoming/outgoing restriction is sim-
ply a consequence of other implementation decisions.

Unfortunately, the incoming/outgoing distinction does make
a difference in the arenas of requirements and behavior. As

has been explained in Sections 4 and 5, 3WC and SP should
reverse their anchor dialogs because they are the predictable
and persistent dialogs. In both the cases where reverse is
needed, their anchor dialogs are outgoing (see Figures 5 and
7).

Furthermore, consider the behavior of p’s SP box (Fig-
ure 7) after it has switched to device x. After the switch is
complete, its original incoming dialog will be torn down. If
the box is called upon to switch phones again, at that time
it will have no incoming dialog, whether anchor or not.

To overcome this deficiency in the SIP Servlet standard,
an SP box routed to in the source region must save the
setup signal of its original incoming dialog, even after that
dialog has been torn down. When it needs to create a new
device branch, it can apply the reverse method to the saved
incoming setup signal.

8.3 IMS
The IP Multimedia Subsystem (IMS) standard builds on

SIP [1] and is compatible with application servers programmed
using the SIP Servlet standard. Like the servlet standard,
IMS recognizes originating and terminating regions. An IMS
S-CSCF is capable of routing a SIP call through one or more
application servers in the originating region, to implement
originating features, and one or more application servers in
the terminating region, to implement terminating features.
Like a DFC feature router, an IMS S-CSCF can create or-
dered chains of SIP dialogs and application servers.

If a subscriber’s personal feature set contains a bound fea-
ture subscribed to in both regions, then all dialogs routed
to that feature for that subscriber, whether in the originat-
ing or terminating region, must go to or within the same
application server. This is an additional requirement on ap-
plication routing, not mentioned in the standard.

IMS puts subscriber data in separate databases with many
administrative constraints. This may make it difficult to use
internal telephone numbers to manage feature interactions,
as done in Section 5. Dialogs routed to internal telephone
numbers are best confined to within SIP Servlet containers,
where these numbers can be configured locally.

9. CONCLUSION
This paper has explored many previously unreported fea-

ture interactions caused by mid-call features, particularly
multi-call and multi-device features. The discussion has
been focused and simplified by assuming a personal feature
set associated with a mobile telephone number.

During an interval of time when a subscriber has telecom-
munication activity, a personal usage encompasses the net-
work state of that activity. A personal usage may include the
states of multiple incoming and outgoing calls, the state of
the subscriber’s connection with the network through one or
more devices, and the states of relevant features. Because
all of these elements of a personal usage can interact, an
implementation architecture that represents these elements
and their relationships is more robust than one representing
calls alone.

The DFC architecture is well-suited to representing per-
sonal usages, It is used in this paper to analyze feature in-
teractions and manage them by dividing personal features
into eight categories. Because DFC does not create these
interactions, all implementations of telecommunication ser-
vices with mid-call features will have to manage them one

way or another.

Acknowledgments
This work has benefited greatly from the contributions of
my AT&T colleagues Greg Bond, Eric Cheung, and Tom
Smith.

10. REFERENCES
[1] 3GPP. Service requirements for the IP multimedia

core network subsystem. 3GPP Technical Specification
23.228 Stage 2.

[2] G. Bruns. Foundations for features. In Feature
Interactions in Telecommunications and Software
Systems VIII, pages 3–11, Amsterdam, 2005. IOS
Press.

[3] E. J. Cameron, N. D. Griffeth, Y.-J. Lin, M. E.
Nilson, W. K. Schnure, and H. Velthuijsen. A
feature-interaction benchmark for IN and beyond.
IEEE Communications, 31(3):64–69, March 1993.

[4] E. Cheung and T. M. Smith. Experience with
modularity in an advanced teleconferencing service
deployment. In Proceedings of the Thirty-First
International Conference on Software Engineering.
IEEE, 2009.

[5] E. Cheung and P. Zave. Generalized third-party call
control in SIP networks. In Proceedings of the Second
International Conference on Principles, Systems and
Applications of IP Telecommunications, pages 45–68.
Springer-Verlag LNCS 5310, 2008.

[6] Y. Inoue, K. Takami, and T. Ohta. Method for
supporting detection and elimination of feature
interaction in a telecommunication system. In
Proceedings of the International Workshop on Feature
Interactions in Telecommunications Software Systems,
pages 61–81. IEEE Communications Society, 1992.

[7] M. Jackson and P. Zave. Distributed Feature
Composition: A virtual architecture for
telecommunications services. IEEE Transactions on
Software Engineering, 24(10):831–847, October 1998.

[8] JSR 289: SIP Servlet API Version 1.1. Java
Community Process Final Release,
http://www.jcp.org/en/jsr/detail?id=289, 2008.

[9] A. F. Layouni, L. Logrippo, and K. J. Turner. Conflict
detection in call control using first-order logic model
checking. In Feature Interactions in
Telecommunications and Software Systems IX, pages
66–82, Amsterdam, 2008. IOS Press.

[10] X. Wu, J. Buford, K. Dhara, M. Kolberg, and
V. Krishnaswamy. Feature interactions between
Internet services and telecommunication services. In
Proceedings of the Third International Conference on
Principles, Systems and Applications of IP
Telecommunications. ACM SIGCOMM, 2009.

[11] X. Wu and H. Schulzrinne. Handling feature
interactions in the Language for End System Services.
In Feature Interactions in Telecommunications and
Software Systems VIII, pages 270–287, Amsterdam,
2005. IOS Press.

[12] P. Zave. Address translation in telecommunication
features. ACM Transactions on Software Engineering
and Methodology, 13(1):1–36, January 2004.

[13] P. Zave. Audio feature interactions in voice-over-IP. In
Proceedings of the First International Conference on
Principles, Systems and Applications of IP
Telecommunications, pages 67–78. ACM SIGCOMM,
2007.

[14] P. Zave. Modularity in Distributed Feature
Composition. In B. Nuseibeh and P. Zave, editors,
Software Requirements and Design: The Work of
Michael Jackson, pages 267–290. Good Friends
Publishing, 2010.

[15] P. Zave, G. W. Bond, E. Cheung, and T. M. Smith.
Abstractions for programming SIP back-to-back user
agents. In Proceedings of the Third International
Conference on Principles, Systems and Applications of
IP Telecommunications. ACM SIGCOMM, 2009.

[16] P. Zave and E. Cheung. Compositional control of IP
media. IEEE Transactions on Software Engineering,
35(1), January/February 2009.

[17] P. Zave and M. Jackson. The DFC manual. Technical
report, AT&T Research, 2003.
http://www2.research.att.com/˜pamela/man.pdf.

