A Formal Model of Addressing for
Interoperating Networks

Pamela Zave

AT&T Laboratories—Research, Florham Park, NJ 07932, USA

pamela@research.att.com

Abstract. Designing network address spaces for interoperation among
domains is a challenging task. A formal model in Alloy is used to clarify
the problems and explore solutions. Basic connectivity requirements are
proposed, and two different sets of constraints are shown to satisfy them.
Keywords: networks, network design, network requirements, Alloy

1 Introduction

Universal connectivity is an important goal of networking. Today the world-wide
network is divided into a vast and diverse collection of administrative domains.
These domains include topologically distinct networks such as cellular networks,
WiFi networks, and private IP subnetworks. They also include overlay networks
such as virtual private networks and protocol-specific voice-over-IP networks.

To achieve the goal of universal connectivity, administrative domains must
interoperate. By definition, an administrative domain controls its own address
space. Yet interoperation requires that a client attached to one domain be able
to produce and use an address identifying a client attached to another domain.

This paper concerns the problem of designing address spaces and interop-
eration mechanisms that satisfy basic connectivity requirements. This is more
difficult than it sounds at first hearing. Addresses! can be non-unique, syntacti-
cally constrained, scarce, transient, and used for many purposes at many levels
of abstraction. There is no established notion of “good addressing” [4].

Equally important, interoperation is an inherently confusing subject. This
work was motivated by my experience designing an overlay voice-over-IP network
[1]. Our team had seemingly endless discussions about interoperation, which
never led to any clarity or comfort with the subject. I built the formal model
described here in the hope of dispelling that confusion. Unfortunately, now that
the confusion is gone, it is impossible to recreate what was so confusing. For-
tunately, now that the model exists, no one need experience that particular
confusion again.

Another difficulty is that very little is known about the user-level require-
ments on connection networks. Networking has always been and still is, to an

! The identifiers used in networking are known as as names, addresses, and locators,
among other things. This paper uses the term addresses, because it is most general
and fits well with an emphasis on routing.

overwhelming extent, a bottom-up engineering activity. Researchers are just be-
ginning to look at the global properties they might try to satisfy with better
network designs, which makes any contribution in this area especially timely.

The formal model is written in the Alloy language, which offers a powerful
combination of relational and predicate logic [8]. The language is also attractive
because of the Alloy Analyzer [7], which was used extensively in this study.

The model shown here is both simplified and abbreviated. The full model is
available on the Web [3].

2 Connections

The model is concerned with networks that form persistent connections between
agents. Agents represent either hardware devices, particularly I/O devices, or
software systems. Most of the concepts in this section are illustrated in Figure 1.

The set of agents is partitioned into clients, which are the users of networking,
and servers, which are part of the network infrastructure. The signatures of these
object types in Alloy are:

abstract sig Agent { attachments: set Domain }
sig Server extends Agent { }
sig Client extends Agent { knownAt: Address -> Domain }

Each agent has a set attachments of domains to which it is attached so it can
use their facilities. If an address, domain pair appears in the knownAt field of
a client, then address is published as a way of reaching the client from domain.
An extra fact (Alloy constraint) says that each such pair can be published by at
most one client.

Addresses are primitive objects. Each domain has an address space (set of
usable addresses) and a map from its address space to agents:

sig Domain { space: set Address, map: space -> Agent }

An additional fact says that if an agent is in the range of a domain’s map, it
is attached to the domain. At this stage of modeling there is no relationship
between knownAt and map, because map is in the network infrastructure and
knownAt is in the user environment.

The persistent connections created by domains are called hops. A hop has
fields containing the domain that created it, its initiating agent initiator, its
accepting agent acceptor, and its source and target addresses. If a field declaration
in an object does not have an explicit set or relation marking, the value of the
field is always a single object.

sig Hop { domain: Domain,
initiator, acceptor: Agent, source, target: Address }

Additional facts say that both agents are attached to hop’s domain, and that
both addresses are in the space of the hop’s domain. In Figure 1, the arrow

domain 0 domain 1

hop 0 /_\ hop 1

client 0 client 1
)\X link

server !

Fig.1. A connection through two domains. The server is attached to both domains.

representing hop 0 shows that its initiator is client 0 and its acceptor is the
server.

Most important of all, a fact says that the hop domain’s map relation maps
the hop’s target address to the hop’s acceptor agent. A domain’s map models
routing in the domain.

Servers can form multi-hop connections by creating internal links between
hops they are participating in. Like a hop, a link is expected to transmit data
more or less transparently.? A link has fields representing the server creating it
and the two distinct hops oneHop and anotherHop it connects:

sig Link { server: Server, oneHop, anotherHop: Hop }

Additional facts say that the server of a link is a participant (initiator or ac-
ceptor) in both of its hops. Also, a hop belongs to at most one link in each
server. This ensures that each connection between clients will be a linear chain
of alternating hops and links, without forks or joins.

Because hops and links work together to form connections, it is convenient
to have a direct representation of their closure. This is contained in two fields
of a connections object. A pair of hops is in the binary relation atomConnected
if and only if they are linked together. The binary relation connected on hops is
the transitive closure of atomConnected.

one sig Connections { atomConnected, connected: Hop -> Hop }

The modifier one indicates that there is exactly one connections object.

This basic model is extremely simple for something as complex as networking,
but it is sufficient to study many questions, particularly those related to routing
and addressing. It allows servers to be gateways between domains, as in Figure 1,
or to link hops within domains.

For simplicity, it completely eliminates the temporal dimension of network
protocols. It ignores the possibility that an agent might refuse a connection, or be
unable to accept one because it is busy. It also ignores multipoint connections,
because these are formed using point-to-point connections as building blocks,
and are not directly relevant to routing.

2 Part of the function of a server might be to filter or transform the data in some way,
in which case it will be less than fully transparent.

An instance of this model is a snapshot of network state. Thus agent mobility
is not represented directly, but is reflected by changes in agents’ attachments and
domains’ maps.

3 Interoperation

In this model, interoperation between domains is viewed as a feature that can
be added to networks, along with many other types of feature not discussed in
this paper. Any feature is installed in a domain and has some set of servers that
implement it:

abstract sig Feature { domain: Domain, servers: set Server }

An additional fact says that every feature has at least one server, and every
server implements exactly one feature.

A server of an interoperation feature is a gateway from its domain to a second
domain called its toDomain. When the server accepts a hop in its domain, it
initiates a corresponding hop in its toDomain, and links the two hops together.
The source and target addresses of the initiated hop are obtained by applying an
interoperation translation relation interTrans to the source and target addresses
of the accepted hop.

If a client wishes to connect to a client attached to a different domain, it must
have a target address it can use in its own domain to request the connection.
Conversely, a client must have an address in every domain from which it is
reachable. The presence of interTrans reflects the fact that a client’s addresses
in foreign domains may look very different from its native addresses in domains to
which it is attached. These differences can arise because of syntactic restrictions,
overlapping native address spaces, and historical factors.

The relationships among address spaces are illustrated by interoperation of
the PSTN and two Internet overlay networks for telecommunications, the ones
defined by SIP [10] and BoxOS [1].

The PSTN was the first domain to be designed. Its address space allows only
digit strings of limited length, so a typical native address is 12223334444.

SIP was the second domain to be designed (history is often important because
newer domains usually bear the burden of interoperating with older domains).
The SIP address space is based on URI syntax. A typical native address is
sip:alice@hostl. In SIP all addresses have the prefix sip, so a foreign PSTN
address has the form sip:122233344447user=phone.

BoxOS was the third domain to be designed. Its address space is also based
on URI syntax, and a typical native address is boxos:bob@host2. A foreign
PSTN address has the form pstn:12223334444. A foreign SIP address has the
form sip:alice@hostl.

Note that native addresses of a domain can be contained in the address space
of another domain, as STP addresses are contained in the BoxOS address space, or
encoded in the address space of another domain, as PSTN addresses are encoded

PSTN | BoxOS : SIP
| |
: source= : source= sip:
source= | pstn: , 12223334444
12223334444, 12223334444 | ?user=phone

client client

12223334444

sip:alice(@

target = target = hostl
15556667777 | sip:alice@ | sip:aliceg@
! hostl ! host1l

Fig. 2. Interoperation of two domains through a third domain.

in the BoxOS address space. This distinction determines whether translation is
an identity or not.

Figure 2 shows how the PSTN and SIP domains would interoperate if they
were attached to each other only through a BoxOS domain. The three source
addresses are addresses of the initiating client in three different domains. The
target addresses are addresses of the accepting client in different domains. Note
that server s must know how to translate the address of a PSTN client, even
though the PSTN is neither its domain nor its toDomain.

The PSTN address space has no encoding of SIP addresses. There are two
ways that a PSTN client can request a connection to a SIP client. The first
possibility is to dedicate a PSTN address to each reachable SIP client, so that
interoperation translation of addresses is one-to-one. This is the method illus-
trated by Figure 2, where PSTN 15556667777 corresponds to sip:alice@hostl
in both BoxOS and SIP.

A more common method is to dedicate a single PSTN address to an interop-
eration server. The interoperation server prompts the user for a foreign address;
because it has full use of the voice channel, it can use speech recognition or digit
codes to get the alphabetic characters and punctuation of a URI. The server
then translates its target PSTN address to the entered foreign address, so it
is performing a one-to-many translation. This situation is discussed further in
Section 5.3.

An example of a many-to-one translator is a dynamic, single-address Net-
work Address Translator (NAT). This is an interoperation server that translates
many private, unregistered IP addresses to a single public, registered IP address
representing the entire subnetwork served by the NAT (see also Section 6).

The signature of an interoperation feature is as follows. The constraints
within the signature apply separately to each interoperation feature.

sig InteropFeature extends Feature { toDomain: Domain,
exported, imported, remote, local: set Address,
interTrans: exported some -> some imported } {
domain != toDomain
exported in domain.space && remote in exported
imported in toDomain.space && local in imported

remote.interTrans = local }

Four address sets play a role in interoperation. The sets exported and imported
are in the address spaces of the domain and toDomain, respectively. They are
the true domain and range of the feature’s interTrans relation. This is indicated
by the declaration of interTrans, whose keywords say that each element of ez-
ported corresponds to some element of imported, and each element of imported
corresponds to some element of exported,

The subset remote of exported contains those addresses that trigger the fea-
ture because they point to agents in domains other than the domain of the
feature. The set local is the relational image of remote under interTrans. Note
that “local” is a relative term; for example, in Figure 2, server s{ translates
remote 15556667777 to sip:alice@host1, which is more local to BoxOS than
to the PSTN, but only truly local to SIP.

An address is defined as foreign in a domain if it triggers some interoperation
feature in that domain. An address is defined as mative in a domain if it maps
to a client in that domain. An unused address is neither foreign nor native.

A fact in the model says that if an address is foreign in a domain, it maps
to some agent in that domain, and every agent it maps to is a server of an
interoperation feature triggered by it. The constraint allows a domain to have
more than one interoperation feature triggered by the same address.

The primary function of an interoperation server is described by this fact:

fact { all f: InteropFeature, g: Agent, hl: Hop |
g in f.servers && hl.acceptor = g &&
hl.domain = f.domain &% hl.target in f.remote
=> (some 1: Link, h2: Hop |
l.agent = g &% l.oneHop = hl && 1.anotherHop = h2 &&
h2.domain = f.toDomain && h2.initiator = g &&
h2.target in (hl.target).(f.interTrans) &&
(hl.source in f.exported =>
h2.source in (hl.source).(f.interTrans))) }

Note that the relational composition operator (dot) is also used for field selection
in Alloy, because a field in a signature is really a function from objects of the
signature type to field values. Note also that there is no distinction between
an individual and a singleton set, nor between a set and a unary relation, so
individuals can participate in relational composition.

The fact determines what an interoperation server must do if it is the acceptor
of a triggering hop, meaning a hop in its feature’s domain and with a target
address in its feature’s remote set. The server must initiate a corresponding hop
in its toDomain, and link the two hops together. Note that if the source of the
triggering hop is not in exported, it cannot be translated by interTrans, and the
source of the initiated hop is unconstrained.

4 Requirements on interoperation

Now we come to the most interesting question: What requirements should inter-
operation satisfy? As mentioned in Section 1, this territory is largely unexplored.

One complication in formulating requirements is that a connection network
can be modified by a wide variety of features, as mentioned in Section 3. Because
the purpose of many features is to alter network behavior in ways that are
observable by users (and presumably serve the needs of users), it seems almost
impossible to find properties that should be satisfied regardless of which features
are present.

For one example, many addresses used to request connections represent, not
particular clients, but more abstract concepts [12]. An abstract address might
represent a group of interchangeable clients, or it might represent a person who
might be located near, and thus able to use, different devices (clients) at different
times. A request for a connection to an abstract address is routed to a feature
server that chooses a target client appropriate to the time or other circumstances,
and does whatever else is necessary to redirect the request to that target. Thus
features that support abstract addresses can make routing nondeterministic.

To understand interoperation, it seems necessary to isolate it from the ef-
fects of features that might interact with it, such as those supporting abstract
addresses. Its requirements can then be based on the assumption that an address
should point to at most one client.

In the absence of a classification of other network features that would tell us
which ones can interact with interoperation, we simply eliminate them all with
a fact stating that all features are interoperation features.

Other constraints on the model (not shown here) say that an interoperation
server cannot do anything but perform its primary function as described in Sec-
tion 3. A hop with an unused target address can be routed to an interoperation
server, but the server cannot link it to any other hop.

As an incidental result of these restrictions, in any connection between two
clients, one client is the initiator of its hop and the other client is the accep-
tor of its hop. This incidental result is employed to facilitate formalization of
interoperation requirements.

The most obvious requirement is that an address, domain pair published
as a way of reaching a client always reaches that client. The formalization of
the reachability requirement says that if a client is requesting a connection to
an address in a domain in another client’s knownAt set, then the first client is
connected to the second client through that request. As explained above, we can
assume that the second client is the acceptor of its hop:

assert Reachability { all c: Connections,
gl, g2: Client, h: Hop, a: Address, d: Domain |
gl = h.initiator && d = h.domain && a = h.target &&
(a->d) in g2.knownAt
=> (some h2: Hop | g2 = h2.acceptor && (h->h2) in c.connected) }

The second requirement concerns the returnability of connections. It is de-
sirable that a client accepting a connection should be able to take the source
address it has received, request a second connection to it, and get a connection
to the same client that initiated the first connection. Many telecommunication
features for automatic callback rely on an assumption of returnability. Naturally,
real callback features operate in a temporal context, so the second connection
exists at a later time than the first connection.

The formalization of the returnability requirement postulates a connection
between two clients, and identifies a return-request hop h8 with the necessary
relation to a hop h2 from which it is derived. It then asserts that a complete
return connection exists.

assert Returnability { all c: Connections,
gl, g2: Client, hl, h2, h3: Hop |
hil.initiator = gl && h2.acceptor = g2 &&
(h1->h2) in c.connected &&
h3.initiator = g2 &&
h3.domain = h2.domain && h3.target = h2.source
=> (some h4: Hop | h4.acceptor = gl && (h3->h4) in c.connected) }

The third requirement considered in this paper is motivated by the fact that
many real address spaces overlap. The non-uniqueness requirement means that
an address for a client need not be globally unique. Formally, the requirement is
satisfied if the following predicate can be instantiated in a model that satisfies
the other requirements.

pred NonUniqueness (gl, g2: Client, d1, d2: Domain, a: Address) {
(a->d1) in gl.knownAt && (a->d2) in g2.knownAt }

5 Satisfying the requirements

5.1 Methods of reasoning

Satisfying the requirements entails adding constraints to the model, checking
that the model with the additional constraints is still consistent and allows
the expected useful instances, and proving that the model with the additional
constraints satisfies the requirements.

The Alloy Analyzer finds instances of predicates, for example the non-uniqueness
predicate above. Such instances show that a model is consistent, and that it does,
indeed, allow the expected configurations and behavior.

The Alloy Analyzer also searches for counterexamples of assertions. Although
the search is limited to instances of a bounded size, within those limits it is
exhaustive. Every theorem and lemma was checked in this way by the Alloy
Analyzer, and no counterexamples to them were found. With respect to the
thoroughness of the search, there are two cases.

If an assertion refers to no recursive concepts, then the searchable instance
set is satisfactorily large. A typical search space would allow up to 3 domains,

6 features, 10 agents, 6 addresses, 4 hops, and 3 links, which is large enough to
include all conceivable counterexamples with three domains. For these assertions,
Alloy analysis is more convincing than a manual proof (see Section 7).

If an assertion includes recursive concepts, on the other hand, the search
bounds must be smaller. Also, Alloy analysis of this model has a fundamental
limitation associated with recursive concepts (see Section 7). For these assertions
analysis is less convincing, and is supplemented by manual inductive proofs.

5.2 Satisfying the requirements with generic constraints

This section shows how to satisfy the requirements with a set of general-purpose
constraints. While the constraints are plausible, they may be too stringent in
some circumstances. Section 5.3 show a special case might be handled with looser
constraints.

In Section 2, connections was introduced as a signature for a unique object
containing only derived fields. A previously unmentioned field of connections is
a ternary relation reachedBy, defined so that a client, address, domain triple
is present if and only if the address in the domain can reach the client, either
directly or through interoperation:

one sig Connections {... reachedBy: Client -> Address -> Domain } {

all g: Client, a: Address, d: Domain | (a->d) in g.reachedBy iff
(g in a.(d.map) ||
some f: InteropFeature |
f.domain = d &% a in f.remote &&
some ((a.(f.interTrans) -> f.toDomain) & g.reachedBy)

) }

An address in a domain reaches the client directly if the address maps to the
client in the domain. An address in a domain reaches the client indirectly if it
triggers an interoperation feature in the domain, and if the feature can map it to
an address, domain pair that reaches the client. An arrow is a Cartesian product
operator, so (a.(f.interTrans) — f.toDomain) is the set of all pairs that can be
produced by ffrom a. The last expression intersects this with g.reachedBy, and
evaluates to true if the intersection is nonempty.?

The general-purpose strategy for guaranteeing reachability is straightfor-
ward. First, constraints ensure that if an address, domain pair can be used to
reach a client, then routing to that pair is deterministic, and always reaches the
client. The constraints for deterministic routing are:

fact Constraintl { all a: Address, d: Domain |
some (a.(d.map) & Client) => one a.(d.map) }
fact Constraint2 {

3 The actual Alloy code for reachedBy has an additional constraint to guarantee that
the value is a least fixed point.

all f: InteropFeature, a: Address | lone a.(f.interTrans) }
fact Constraint3 { all a: Address, d: Domain |
lone f: InteropFeature | f.domain = d && a in f.remote }

Constraint 1 says that if the agents that a domain maps an address to, intersected
with the set of all clients, is nonempty (some), then the domain maps that
address to exactly one agent. In other words, if an address maps to a client in a
domain, it maps only to that client in that domain. Constraint 2 says that the
address translation performed by an interoperation feature is a partial function
(the quantifier lone means one or zero). Constraint 3 says that an address triggers
at most one interoperation feature in a domain.

The second part of the strategy is to constrain a client’s reachedBy set to
contain its knownAt set:

fact Constraint4 {
all c: Connections, g: Client | g.knownAt in g.(c.reachedBy) }

This relates its published addresses to network routing.

Constraints 1 through 3 are easy to apply, because they constrain individual
domains. Constraint 4 is not localized, because of the recursive definition of
reachedBy. This is not surprising, as reachability demands a routing path from
any domain in which in which a client has a known address to a domain where
the client is directly accessible.

The reachedBy set of a client is often larger than its knownAt set. For one
example, a mobile device might be attached temporarily to a domain where its
address is not published. For another example, a domain might provide con-
nections among other domains without having any clients of its own, in which
case there is no need to publish any of its addresses. When resource alloca-
tion changes, interoperation routes can change without any change observable
to clients.

Returnability is much more difficult to satisfy. It depends on every previous
constraint except Constraint 4. In addition, to begin with the obvious, the return
address of a hop is its source address, so we need constraints to guarantee that
the information in the source address is accurate and complete:

fact Constraint5 { all h: Hop | h.initiator in Client =>
h.source in ((h.domain).map). (h.initiator) }

fact Constraint6 {
all f: InteropFeature | f.domain.space in f.exported }

Constraint 5 says that if a hop is initiated by a client, its source must be an
address of the client in the domain. Constraint 6 says that every interoperation
feature’s exported set must include the address space of its domain. This prevents
the loss of source information during interoperation.

The core constraints for returnability require that each interoperation feature
have a partner feature that provides its return path. The constraints are obvious,
while the definition of an adequate partner feature is not:

pred PartnerTo (f1, f£2: InteropFeature) {
f1l.domain = f2.toDomain && f1.toDomain = f2.domain &&

(f1.imported - fl1.local) in f2.remote }
fact Constraint7 { all f1: InteropFeature |
some f2: InteropFeature | PartnerTo(f1,f2) }

fact Constraint8 { all f1, f2: InteropFeature |
PartnerTo(f1,f2) => (fl1.interTrans).(f2.interTrans) in iden }

Constraints 7 and 8 say that each interoperation feature has a partner, and that
the interTrans relations of partners invert each other.

Figure 3 provides the intuition to understand the definition of partnership,
and how it supports returnability. This figure describes a network in which the
domains could be pictured in a horizontal line, with each domain interoperating
only with the domains on its immediate left and right.

The figure shows the address spaces of two neighboring domains, except for
unused addresses. Fach address space is divided into native addresses of the
domain, addresses that encode native addresses of domains to the left (Lnative),
and addresses that encode native addresses of domains to the right (Rnative).
These two domains have interoperation features fI and f2 that are partners of
each other.

domainl domain2
[- . 1 -
| . | fl.interTrans | . |
I Lnativel | / .| Lnative2 I f2.remote
. ! |
f2.local : Sf2.interTrans :: 7] B
: nativel : I native2 :
it 2, fl.interTrans : 1 fl.local
I . | / I . !
1.remote Rnativel / Rnative2 I
f | | f.interTrans | I

Fig. 3. Partner interoperation features.

If a hop in domaini is routed to a server of f1, its target will be in Rnativel.
Its source will be in Lnativel or nativel. Its source cannot be in Rnativel because
if it were, the connection path would have passed through the native domain of the
target on its way to domainl. Because routing is deterministic, the path would
have ended in the native domain of the target.

Because of Constraint 8, the partition of the address space of domainlI corre-
sponds to a partition of the address space of domain2. The hop target translates
to an address in fI.local. The hop source translates to an address in f1.imported
- fl.local. Tf f2 satisfies (f1.imported - f1.local) in f2.remote then any hop in do-
main2 targeting the translated source address will trigger f2, and will be linked
by f2 to a continuing hop in domainli.

domain d0 L dl Cd2

source,target =

al,a2

a2,al

c0.knownAt = cl.knownAt = c2.knownAt =

{ (a0->d0), { (a2->d0), { (al->d0),
(al->dl), (a0->d1), (a2—>dl),
(a2->d2) } (al->d2) } (a0->d2) }

Fig. 4. The requirements do not depend on global uniqueness of addresses.

The actual proof of returnability encompasses all connection topologies, in-
cluding rings and grids. Its essence is a generalization of the above argument,
which can be summarized as follows: From any address, domain pair reaching a
client, there is a unique path (sequence of domains) to the client. If an address
source is the source of a hop in a domain then the path of the connection from
its originating client to the hop is the reverse of the unique path from source,
domain to the client. If the hop’s target triggers a feature fin domain, and if
source is in f.remote, then the unique path to the client of target, domain retraces
at least one step of the path routing so far. This contradicts the assumption of
deterministic routing, so source cannot be in f.remote.

The model instance in Figure 4, generated by the analyzer with all constraints
in force, shows that the non-uniqueness requirement is satisfied. Each of the three
clients is attached to one domain and has address a0 in that domain. Yet each
client is known in every domain. In the figure, a hop is labeled with a source,
target pair of addresses. Either path could be the return path of the other.

Because returnability does not require Constraint 4, it can be satisfied even
when reachability is not. A real-world example of this is a dual-mode cellphone*
at a WiFi hotspot, placing voice-over-IP calls. If the WiFi domain has no cooper-
ative agreement with the device’s home cellular domain, then it does not inform
the home cellular domain of the device’s presence at the WiFi hotspot. In this
case there is no forwarding from its known address in the home cellular domain
to its temporary WiFi address, and the device is not reachable. At the same
time, if the constraints for returnability are satisfied, the device’s outgoing calls
will be returnable at the temporary address until it leaves the WiFi hotspot.

4 A dual-mode cellphone is a WiFi device as well as a cellphone.

Fig. 5. Interoperation of a VPN with the PSTN.

5.3 A special case

Figure 5 shows a Virtual Private Network (VPN) interoperating with the PSTN.
The picture is not geographically accurate, as the two clients are on opposite
coasts of the U.S. The VPN belongs to a corporation which provides it so em-
ployees can make long-distance business calls at low cost. PSTN hops to and
from the interoperation servers are local, while VPN hops are long-distance.

In the figure, client ¢! at PSTN address al is using access address ax to
reach the VPN gateway, then entering address a2 using touch tones on the voice
channel. The gateway translates az to a2 and makes the long-distance connection
to client ¢2 at PSTN address a2. The figure also shows the connection when c2
(not an employee of the VPN owner) returns the call to c1.

We wish to know if this network satisfies the requirements, and the results
in the previous section are not suitable. As in an example in Section 3, address
translation from the PSTN to the VPN is one-to-many, violating Constraint 1.

We can create a formal model that is closer to the truth by extending the
PSTN address space to include pairs of numbers, where the first number is
dialed, and the optional second number is entered through touch tones. Then
interoperation translation from the PSTN to the VPN projects a pair of numbers
azfan] onto its second number an, and is a function. But now Constraint 8
is violated, because interoperation translation applied to number pairs is not
invertible.

Fortunately, there is additional information that can be brought to bear:
number pairs are never used as source addresses. Because the basic Alloy model
is already available, it is quick work to try a version in which the targetOnly
addresses of a domain are never used as source addresses in the domain, and
Constraint 8 does not apply to them.

This version does not satisfy returnability, and examination of a counterex-
ample shows why. The interoperation feature f1 from the PSTN to the VPN
translates both a2 and the targetOnly address azfa2] to a2. The address a2
must be in the f2.remote set of its partner f2, but it is not, because azfa2] is
in fl.remote, and therefore a2 is in f1.local. The solution is to remove the influ-

ence of the targetOnly address az[a2] from the computation of the partnership
constraint on f2.remote.

With the definition of partnership modified appropriately, analysis shows
quickly and convincingly that returnability is satisfied for this network. The
reachedBy set of client ¢2 consists of (a2—PSTN), (a2— VPN), and (azfa2]—PSTN).

6 Related work

The most prominent address-related networking problem is understanding reach-
ability at the level of Internet routing, which is “staggeringly complex” [6]. At
this level of abstraction, routing information is distributed dynamically by the
policy-driven Border Gateway Protocol (BGP) and other local protocols. A path
from one point to another includes multiple hops within the same domain. There
are packet filters to block packets, and packet transformers to modify them.

While it does not seem feasible to capture all of this in an Alloy model,
important aspects of it do seem approachable. For example, Feamster and Bal-
akrishnan study routing only in steady BGP states, taking the position that
important requirements can be violated by steady states as well as transient
states [6].

The model presented here is valid for packet routing in the sense that only
connection requests are really manipulated, and a connection request is equiv-
alent to a packet. In [11] reachability is defined directly for packet routing: for
any pair of points, there is a reachable set containing the packets that can travel
from the first to the second point. It would be interesting to see how an Alloy
model based on this definition compares to the present one. The goal of [11]
is polynomial computation of reachable sets in a stable configuration of a spe-
cific network, taking into account routing information, packet filters, and packet
transformations.

It seems clear that logic-based modeling and analysis has something to con-
tribute to these efforts. The proofs in [6] are informal, yet my experience suggests
that network routing has subtleties that only the precision of a completely formal
model is likely to expose. The algorithm in [11] might be made even more useful
if it were possible to explore invariant relationships among various architectural
constraints. Certainly Feamster argues for continuing, broad-spectrum research
on correctness and verification of network routing [5].

It is well-known that NATs cause problems in the Internet by allowing ad-
dresses that are not globally unique. Currently the worst problems are dynamic
and protocol-specific [2]: How does a NAT know that a protocol is finished us-
ing an address, so that it can re-use the address while maintaining a one-to-one
interoperation translation? How does a NAT find and apply interoperation trans-
lation to addresses embedded in the payloads of packets? Nevertheless, general
principles of addressing and interoperation should be a sanity check on all specific
proposals.

7 Evaluation and future work

As a modeling language, Alloy is very pleasant to use. The combination of rela-
tional logic and predicate logic is a powerful one. Although Alloy is first-order,
quantification over objects with relation-valued fields provides many of the bene-
fits of a second-order language. Typing is strong but avoids unnecessary distinc-
tions. The syntax is highly streamlined, with a few operators applied uniformly
in many contexts to do many jobs. The extended quantifier vocabulary no, lone,
one, some and all provides major shortcuts in writing logical and relational
expressions. The complete model is 190 lines of Alloy code.

Analysis by model enumeration is often exhilarating and illuminating, and
equally often tedious and frustrating. The Alloy team is working on features and
capabilities in the Analyzer that will reduce tedium and frustration. Many of
them are already installed, but because they are not yet documented, they are
not really available to most users.

Recursion in the definition of reachedBy corresponds, in a network, to ex-
tending a connection path with additional hops. If the routing data contains a
closed loop, the effect on routing will be a path that is extended indefinitely
(until terminated by some external mechanism).

Alloy analysis of this model cannot reveal a problem of this kind. Any analysis
will impose a maximum length on paths. If a model instance contained a request
for a connection to an address that caused such a problem, the connection could
not be completed according to the model’s constraints within the maximum path
length. Thus there cannot be a model instance containing such a request, and its
absence tells us nothing about whether there is a routing problem of this kind.

Despite this limitation, the research was undertaken in an analyze-first-prove-
last style, which worked fairly well. Alloy’s push-button analysis was extremely
helpful in building intuition, encouraging experimentation, and finding errors at
all levels. It was also a huge reassurance that a continually evolving model was
improving as well as changing. The entire experience causes me to trust bounded
model enumeration more than manual proof, when enumeration is known to be
reasonably comprehensive or at least representative.

All the discoveries were made using analysis alone—proofs served only to
confirm and explain. Considering the most difficult result in this paper, which
is the satisfaction of returnability, this had good and bad sides. On the good
side, experimentation gave me a hypothesis and the confidence to try to prove
it. On the bad side, I did not really understand why the hypothesis worked until
I proved it, although I believed that I understood it before.

Of course, this is not a controlled experiment. It is likely that a practitioner
of a prove-first-analyze-last style would find that proof attempts detect most
errors. And a person who was able to find an optimal interleaving of the two
techniques, particularly with the help of an automated proof checker, would have
the best results of all. Above all, it is important to remember that all of these
tools are aids to thought, and none of them is a substitute for it.

Experience suggests that Alloy models with many more object types and
facts could be written and read easily. As model enumeration became less con-

vincing, proof could take a larger role. This is fortunate, because there is an
unlimited supply of unanswered questions about networking. Section 6 hints at
the richness of packet routing at the resource level. At the level of features and
services, [12] shows how to manage interactions among features that manipulate
abstract addresses. The results are limited, however, by the assumption that
every address is globally unique. It would be valuable to have a single model
combining interoperation features, which remove the limitation, with abstract-
address features.

Other areas of networking in which addresses have semantics and are manipu-
lated include directory lookup (including DNS and a growing number of protocol-
specific Internet name spaces), security (including uses of self-authenticating
names and trusted domains), and mobility [9]. Experience shows that almost
any two functions that translate addresses can interact, so the likelihood of
address-related problems in these areas is high.

References

1. G. W. Bond, E. Cheung, K. H. Purdy, P. Zave, and J. C. Ramming. An open
architecture for next-generation telecommunication services. ACM Transactions
on Internet Technology, 4(1):83-123, February 2004.

2. R. Bush and K. Moore. NATs are evil—Well, maybe just bad for you. https://
rip.psg.com/ ~randy/ 040226.apnic-nats.pdf, 2004.

3. The Distributed Feature Composition (DFC) Web site. http://
www.research.att.com/projects/dfc.

4. P. Faltstrom and G. Huston. A survey of Internet identities. Internet Architecture
Board, draft-iab-identities-00.txt, 2004.

5. N. Feamster. Practical verification techniques for wide-area routing. In Proceedings
of the ACM SIGCOMM Workshop on Hot Topics in Networks, 2003.

6. N. Feamster and H. Balakrishnan. Towards a logic for wide-area internet routing.
In Proceedings of the ACM SIGCOMM Workshop on Future Directions in Network
Architecture, 2003.

7. D. Jackson. Automating first-order relational logic. In Proceedings of the Fighth
ACM SIGSOFT International Symposium on the Foundations of Software Engi-
neering, pages 130-139. ACM, 2000.

8. D. Jackson, I. Shlyakhter, and M. Sridharan. A micromodularity mechanism. In
Proceedings of the Ninth ACM SIGSOFT International Symposium on the Foun-
dations of Software Engineering, pages 62-73. ACM, 2001.

9. G.-C. Roman, G. P. Picco, and A. L. Murphy. Software engineering for mobility:
A roadmap. In Proceedings of the Twenty-second International Conference on
Software Engineering, pages 241-258. IEEE Computer Society, June 2000.

10. J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks,
M. Handley, and E. Schooler. SIP: Session Initiation Protocol. IETF Network
Working Group Request for Comments 3261, 2002.

11. G. Xie, J. Zhan, D. A. Maltz, H. Zhang, A. Greenberg, G. Hjalmtysson, and J. Rex-
ford. On static reachability analysis of IP networks. Technical report, AT&T
Research, 2004.

12. P. Zave. Address translation in telecommunication features. ACM Transactions
on Software Engineering and Methodology, 13(1):1-36, January 2004.

