Ideal Connection Paths in DFC

Pamela Zave
AT&T Laboratories—Research
Florham Park, New Jersey, USA

pamela@research.att.com

2 November 2003

1 Introduction

DFC [1, 3] is a architecture for the description of
telecommunication services. Recent experience with
using DFC to build real telecommunication services
has revealed the need for an improvement to the DFC
routing algorithm, namely the introduction of reverse
routing. This paper begins with the motivation for
reverse routing.

This is a significant change with subtle ramifica-
tions. The purpose of this paper is to ensure that
DFC routing remains on a sound footing. First, there
is a formal specification of the new routing algorithm.

The paper also includes proofs of many valuable
properties of the new routing algorithm. These prop-
erties are defined in terms of an abstraction called an
ideal connection path.

The presentation herein assumes familiarity with
DFC.

2 Motivation for reverse rout-
ing

Figure 1 illustrates the need for reverse routing. At
the top of the figure is a feature box of type ¢ in a
source zone of address a. Its incoming call N is the
means by which it is connected to its own subscriber,
or the near party. Behaving typically, it first applied
continue to the setup of N, and used the resulting
setup signal to place an outgoing call F. F is the
means by which this box is connected to a far party.

Sometime during its lifetime, the box may have to
re-establish, replace, or augment one of these connec-
tions. To replace F by F’, it can simply do another
continue. On the other hand, there is no correct way
to replace N. Any possible use of new or continue will
produce some awkwardness or anomaly, either in the
addresses of the setup signal or in the feature boxes
included in the usage.

source region

feature box

F’
ctu .-’
N T ctu F
N’ “Fev
target region
feature box
N’
ctu .
F T ctu N
F .-
rev

Figure 1: Motivation for the reverse method.

What kind of feature box performs such an oper-
ation? Typically it is a box such as Call Waiting or
Mid-Call Move, which is subscribed to in both the
source and target regions. This is the crucial clue.
When the box replaces N by N’ it is behaving like
a target-region feature box, even though it was origi-
nally routed to in the source region. Reverse routing
allows it to behave properly as a target-region feature
box. The box applies reverse to the setup signal of
F, and uses the resulting setup signal to place N’.
The new setup signal is in the target region. Unless
the box programmer has specified address transla-
tion, its source and target addresses are the reverse
of the source and target addresses in the setup signal
of F, and it is routed to the next box type after ¢ in
the target zone of a.

As the bottom of Figure 1 shows, the situation of
a target-region feature box is symmetric. Its original
incoming call F comes from the far party, and its
original outgoing call N goes to the near party. To
replace N by N, it can simply do another continue.
The only correct way to replace F', on the other hand,
is to apply reverse to the setup signal of N, and to
place a call as if it were a source-region feature box.

3 A formal model of routing in
DFC

3.1 Notation and some basic sets

The notation used in this paper is an older version of
Alloy [2], as explained here.

A domain is a basic set. A fixed domain has fixed
membership. All domains are disjoint. A list of sets
can be declared to partition another set, or to be
disjoint (but not exhaustive) subsets of another set.

New sets can be formed using + for set union and
- for set difference. The Boolean set operators are in
for containment, = for equality, and != for inequality.
Every set has a distinguished subset emptySet with
no members.

If X is a set, then XSeq is the set of all finite se-
quences with members in X. Every set XSeq has a
distinguished subset emptySeq; it contains one mem-
ber of XSeq, which is the sequence having no ele-
ments. The boolean operator el is used for sequence
membership.

A variable V is typed in a declaration of the form
V: T, the type T is simply a set, and the value of
a variable is a subset of its type. The value of a
variable can be constrained further by using one of
the multiplicity markings + (one or more), ? (one or
zero), or ! (exactly one) to indicate the size of the
subset. The keyword fixed means that the value is
constant.

A binary relation R is typed in a declaration of the
form R: S -> T, where S and T are sets. The general
form R: S m -> T n includes multiplicity markings
m and n. This constrains R to map each element of
S to n elements of T, and to map m elements of S to
each element of T. R: S -> static T means that R
always maps a particular element of S to the same
subset of T.

If Sis a set and R is a relation R: S -> T, then S.R
is the relational image of S under R. In other words,
it is the union of all the sets obtained by applying R
to individuals in S.

Assertions are expressed in standard logic, with
quantifiers all, some, binary operators &&, ||,

==>, <=> and unary operator !. Quantification pro-
duces singleton subsets rather than individuals. For
example, the assertion all x: X | x in X is true,
which means that in the formula x in X, each x is a
singleton subset of X rather than an individual in X.

The modified quantifier some new x: X creates a
new individual in a mutable domain X. When an op-
eration is being specified, a prime marks the value of
some variable after the operation. All variable values
not explicitly specified as changed by the operation
are the same after the operation.

Three of the basic sets are enumerated by their
partitions.

domain { Region, ZoneTag, Orient }

partition srcRegn, trgRegn: fixed Region !
partition whole, suffix: fixed ZoneTag !
partition orig, near, far: fixed Orient !

3.2 Entities and attributes

The basic set BoxType is considered fixed. It has the
distinguished singleton subset IB, containing the type
of an interface box. This simplifies full DFC, in which
there are error boxes and different types of interface
box.

domain { fixed BoxType }
IB: fixed BoxType !

The basic set Box is considered fixed, because its
dynamic properties are not significant here. Each box
has two static attributes and one dynamic attribute.

domain { fixed Box }

boxType: Box -> static BoxType !
boxAddr: Box -> static Addr !
ports: Box -> Port

The set ports contains all the ports that currently
belong to the box. The boxAddr attribute is a sim-
plification of full DFC; in full DFC an interface box
might be associated with more than one address.

The basic set Setup is a set of setup signals, or
simply “setups.” The set is considered fixed, as its
dynamic properties are not significant. Fach setup
has the following static attributes:

domain { fixed Setup }

regn: Setup -> static Region !
src: Setup -> static Addr !
trg: Setup -> static Addr !
route:
Setup -> static (ZoneTag + BoxTypeSeq) !
placing: Setup -> static BoxType ?

For simplicity, this specification omits the d1d field
of setups in full DFC.

The basic set Call is dynamic, and the operations
that create and destroy calls will be specified. There
is also a basic set Port whose members are parts of
calls. Therefore the operations that create and de-
stroy calls also create and destroy ports. Each call
has the following static attributes:

domain { Call, Port }

outPort: Call -> static Port !
inPort: Call -> static Port !

Each port has the following static attribute:
setup: Port -> static Setup !

The outPort of a call is also known as its “caller
port,” and belongs to the box that places the call.
The inPort of a call is also known as its “callee port,”
and belongs to the box that receives the call.

The basic set Addr contains addresses, and is con-
sidered fixed. Addr has the distinguished singleton
subset noAddr, containing the null address. Each ad-
dress has two static attributes:

domain { fixed Addr }
noAddr: fixed Addr !

srcZone: Addr -> static BoxTypeSeq !
trgZone: Addr -> static BoxTypeSeq !

Each zone is a sequence containing all the box types
to which the address subscribes in the region, in an
order compatible with the precedes partial order for
the region.

3.3 Reversible box types

The set reversible is a special set of box types. If
an address subscribes to a box type in reversible in
either region, it must subscribe to it in both regions.

reversible: fixed BoxType

all addr: Addr | all bt: reversible |
bt el addr.srcZone <=> bt el addr.trgZomne

In each region, the precedes partial order must be
a total order on reversible box types. Furthermore, it
must have the property that target precedence is the
exact opposite of source precedence: if reversible box
b1 precedes reversible box b2 in the source region,
then b2 precedes b1 in the target region.

Any box type can be in reversible if the de-
signer so chooses. However, either of two circum-
stances makes it mandatory that the box type be in
reversible:

e The box behavior includes a revcall operation.
e The box is bound, and it can be subscribed to in
both regions.

3.4 The routing algorithm

The specification of the DFC routing algorithm takes
the form of a parameterized predicate:

DFCRoutingAlg(out, inn: Setup !;
bt: BoxType !, addr: Addr !)

The parameters out, inn represent the setup signals
of the caller and callee ports, respectively. The pa-
rameters bt, addr represent the type and address,
respectively, of the box to which the callee port be-
longs.

The routing algorithm as specified here is a com-
position of three steps. (Full DFC has four routing
steps; the omitted step concerns the d1d field.) It
is specified using the two local variables st1, st2:
Setup ! to represent the setup signal after the com-
pletion of the first two steps. So the four setup sig-
nals out, stl, st2, inn are actually implemented
as one setup signal whose fields change as it goes
through the routing process.

Step 1 expands a ZoneTag into a whole or partial
zone, if necessary. The local variable st1 holds the
result of this step.

STEP 1

out.route = suffix

out.placing in reversible

stl.regn = out.regn
stl.src = out.src
stl.trg = out.trg
stl.placing = emptySet
out.regn = srcRegn && out.route = whole
==> stl.route = out.src.srcZone
out.regn = trgRegn && out.route
==> stl.route = out.trg.trgZone
out.regn = srcRegn && out.route =
==> stl.route =
out.src.srcZone.suffixAfter[out.placing]

out.regn = trgRegn && out.route =

whole

suffix

suffix
==> stl.route =
out.trg.trgZone.suffixAfter[out.placing]
out.route in BoxTypeSeq
==> stl.route = out.route

In this specification, suffixAfter[marker], where
marker is a singleton set, is a special attribute of any
sequence sequence. If marker el sequence, then

its value is the subsequence coming after the sequence
member marker. If marker !el sequence, then its
value is sequence. suffixAfter is only applied to
zones, which are sequences with no duplicates, so we
do not need to specify its value in the presence of
duplicates.

Step 2 follows Step 1. If the source region is ex-
hausted, it advances the region to the target region.
The local variable st2 holds the result of this step.

STEP 2
st2.src = stl.src
st2.trg = stl.trg

st2.placing = emptySet

stl.regn = srcRegn &% stl.route = emptySeq
==> st2.regn = trgRegn &&
st2.route = stl.trg.trgZone
stl.regn = trgRegn || stl.route != emptySeq
==> st2.regn = stl.regn &&

st2.route = stl.route

Step 3 follows Step 2. Because it is the final step,
the result of it is held by the parameter inn.

To avoid the issue of routing errors, the specifi-
cation of Step 3 assumes that every address has an
interface box. If the address does not map to a real
interface box, it maps to an interface box that has
the same behavior as an error box in full DFC.

STEP 3

inn.regn = st2.regn

inn.src = st2.src

inn.trg = st2.trg

inn.placing = emptySet

st2.route = emptySeq ==
inn.route = emptySeq &&
bt = IB && addr = st2.trg

st2.route != emptySeq ==>

inn.route = st2.route.tail &&

bt = st2.route.head &&
((inn.regn = srcRegn && addr = inn.src) ||
(inn.regn = trgRegn &% addr = inn.trg))

The sequence attributes head and tail have their
usual meanings.
Finally, it is possible to summarize certain proper-

ties of the DFC routing algorithm as a whole.

DFC ROUTING ALGORITHM SUMMARY

inn.src = out.src

inn.trg = out.trg

inn.placing = emptySet

out.regn = srcRegn ==

inn.regn = srcRegn || inn.regn = trgRegn
out.regn = trgRegn ==> inn.regn = trgRegn
st2.route = emptySeq ==> st2.regn = trgRegn
inn.regn = srcRegn ==>

inn.route in inn.src.srcZone.suffixesOf
inn.regn = trgRegn ==

inn.route in inn.trg.trgZone.suffixesOf

inn.regn = srcRegn ==
bt el inn.src.srcZone
inn.regn = trgRegn ==

bt el inn.trg.trgZone || bt = IB

==> addr inn.src

==> addr =

inn.regn = srcRegn

inn.regn =

trgRegn inn.trg

Here suffixesOf is an attribute of every set of se-
quences. It is the set of all sequences that are suffixes
of elements of the original set of sequences.

3.5 Placing a new call

A call (and its two ports) can be created by execu-
tion of a newcall operation. Its specification is a pa-
rameterized predicate. The parameter bo is the box
executing the operation, and the parameter trgArg
is the target address selected by the box program.

newcall(bo: Box !, trgArg: Addr !)

ENTITY INTRODUCTION

some bi: Box | some new c: Call |

some new po, pi: Port | some so, si: Setup |
c.outPort = po
c.inPort = pi

bo.ports’ = bo.ports + po
bi.ports’ = bi.ports + pi
po.setup = so
pi.setup = si

OUTPORT SETUP SIGNAL
so.regn = srcRegn
so.src = bo.boxAddr
so.trg = trgArg
so.placing = emptySet
so.route = whole

ROUTING
DFCRoutingAlg(so,si,bi.boxType,bi.boxAddr)

3.6 Continuing a call

A call (and its two ports) can also be created by ex-
ecution of a ctucall operation. The specification
parameter bo is the box executing the operation, the
parameter ec is an existing call with a port in bo,
and the parameters srcArg, trgArg are selected by
the box program.

ctucall(bo: Box !, ec: Call !,
srcArg, trgArg: Addr !)

PRECONDITION AND ENTITY INTRODUCTION
some p: Port |
ec.inPort = p && p in bo.ports

ADDITIONAL ENTITY INTRODUCTION
some new c: Call |
some new po, pi: Port |
some s, so, si: Setup |
c.outPort = po
c.inPort = pi
bo.ports’ = bo.ports + po
bi.ports’ = bi.ports + pi
p.setup = s
po.setup
pi.setup

some bi: Box |

SO

si

ADDITIONAL PRECONDITIONS

s.regn = srcRegn && srcArg
==> srcArg !'= bo.boxAddr

s.regn = trgRegn && trgArg
==> trgArg !'= bo.boxAddr

'= noAddr

!'= noAddr

OUTPORT SETUP SIGNAL

so.regn = s.regn

so.regn = srcRegn && srcArg != noAddr ==
so.src = srcArg && so.route = whole

so.regn = srcRegn && srcArg = noAddr ==>
so.src = bo.boxAddr && so.route = s.route

so.regn = trgRegn && trgArg != noAddr ==
so.trg = trgArg && so.route = whole

so.regn = trgRegn && trgArg = noAddr ==>
so.trg = bo.boxAddr && so.route = s.route

so.regn = srcRegn && trgArg != noAddr
==> so.trg = trgArg

so.regn = srcRegn && trgArg = noAddr
==> so.trg = s.trg

so.regn = trgRegn && srcArg != noAddr
==> 50.8rCc = srcArg

so.regn = trgRegn && srcArg = noAddr
==> 50.Src = s.sIC

so.placing = emptySet

ROUTING
DFCRoutingAlg(so,si,bi.boxType,bi.boxAddr)

3.7 Reversing a call

A call (and its two ports) can also be created by ex-
ecution of a revcall operation. The specification
parameter bo is the box executing the operation, the
parameter ec is an existing call with a port in bo,
and the parameters srcArg, trgArg are selected by
the box program.

revcall(bo: Box !, ec:Call !,
srcArg, trgArg: Addr !)

PRECONDITION AND ENTITY INTRODUCTION
some p: Port |

ec.outPort = p && p in bo.ports
ADDITIONAL ENTITY INTRODUCTION
some bi: Box | some new c: Call |
some new po, pi: Port |
some s, so, si: Setup |

c.outPort = po

c.inPort = pi

bo.ports’ = bo.ports + po
bi.ports’ = bi.ports + pi
p.setup = s
po.setup = so
pi.setup = si

ADDITIONAL PRECONDITIONS

s.regn = trgRegn &% srcArg !'= noAddr
==> srcArg != bo.boxAddr

s.regn = srcRegn && trgArg '= noAddr
==> trgArg != bo.boxAddr

OUTPORT SETUP SIGNAL

s.regn = srcRegn ==> so.regn = trgRegn

s.regn = trgRegn ==> so.regn = srcRegn

so.regn = srcRegn && srcArg != noAddr ==>
so.src = srcArg && so.route = whole

so.regn = srcRegn && srcArg = noAddr ==>
so.src = bo.boxAddr && so.route = suffix

so.regn = trgRegn && trgArg != noAddr ==
so.trg = trgArg &% so.route = whole

so.regn = trgRegn && trgArg = noAddr ==
so.trg = bo.boxAddr && so.route = suffix

so.regn = srcRegn && trgArg != noAddr
==> so.trg = trgArg
so.regn = srcRegn && trgArg = noAddr

==> so0.trg = s.src
so.regn = trgRegn && srcArg != noAddr

==> so.src = srcArg
so.regn = trgRegn && srcArg = noAddr
==> s80.src = s.trg
so.route = suffix ==
so.placing = bo.boxType
so.route != suffix ==> so.placing = emptySet
ROUTING

DFCRoutingAlg(so,si,bi.boxType,bi.boxAddr)

3.8 Simple properties

The following properties are trivially provable from
the preceding specification of DFC.

e FEach port belongs to exactly one box.

e FEach port belongs to exactly one call.

4 Ideal links

4.1 What is an ideal link?

An ideal link is a connection between two ports of the

same box. It is “ideal” in two senses:

e There are restrictions on which ports can be linked.
These restrictions do not exist in DFC.

e An ideal link does not correspond directly to signal
linkage or media linkage in DFC. It is an abstrac-
tion of these. A DFC feature box, behaving ideally,
would never create a signal or media link between
two ports unless there was an ideal link between
them.

The purpose of ideal links is to impose structure
that will help us define and prove important proper-
ties of DFC usages. It is not possible for all feature
boxes to confine themselves to ideal signal and media
linkages at all times. However, the exceptions should
be few, and they should be scrutinized with extra care
to make sure that they are not harmful. The proper-
ties based on ideal links will help us understand what
“harmful” means.

This theory concerns only connections among
telecommunication devices and people. Resources,
calls to resources, and intra-box links to calls to re-
sources are not described and not constrained.

There is a set of ideal links. This set is dynamic,
and the operations that create and destroy links will
be specified. Each link has two static attributes.

domain { Link }

nearPort: Link -> static Port !
farPort: Link -> static Port !

4.2 Port orientation

For convenience, we add a redundant port attribute.
Now each port has the following additional static at-
tribute:

orient: Port -> static Orient !

The orient attribute of a port is determined when
the port is created, as part of the creation of the call.
If the call is created by newcall, then:

po.orient = orig

The following must be added to the definitions of
ctucall and revcall. It defines the orient at-
tribute of the outPort of the created call.

po.setup.regn = srcRegn far

trgRegn

==> po.orient =

po.setup.regn = ==> po.orient = near

The following must be added to the definitions of
newcall, ctucall and revcall. It defines the
orient attribute of the inPort of the created call.

pi.setup.regn = srcRegn

trgRegn

==> pi.orient = near

pi.setup.regn = ==> pi.orient = far

4.3 Linking and unlinking

A link is created by execution of a link operation.
The parameters are the two ports to be linked. The
preconditions on port orientation ensure that these
ports are distinct. Another precondition ensures that
the two ports are not already linked.

link(pn, pf: Port !)

PRECONDITIONS
some b: Box |
pn in b.ports && pf in b.ports

pn.orient
pf.orient

near

far

! (some 1: Link |

1l.nearPort = pn && 1l.farPort = pf)
POSTCONDITION
some new 1l: Link |

l.nearPort = pn && 1.farPort = pf

As an obvious consequence of the preconditions, a
port with orient = orig cannot be linked. This for-
malizes the rule that a feature box should only use a
newcall operation when it is acting as an agent of its
subscriber, and is truly initiating a call as if it were
the subscriber. Interface boxes always create calls

using newcall. The linkages created by the inter-
face box between its calls and its telecommunication
device are not part of this formal model.

A call and its two ports can be destroyed by exe-
cution of a tdcall operation. If either of these ports
is participating in a link, the operation also destroys
the link.

A link is also destroyed by execution of an unlink
operation, which has no other effects.

5 Ideal connection paths

An ideal connection path (or just path) is a set of calls
that are connected together, end-to-end and contigu-
ously, by ideal links.

Because a path is a set, it can have subpaths that
are themselves paths. A maximal path is a path that
is not a subpath of another path.

5.1 Path properties: Orientation

The following table summarizes the possible orienta-
tions of the two ends of a call, based on the spec-
ification of the DFC routing algorithm and on the
definition of the orient attribute. The regn column
for each port p gives the value of p.setup.regn.

outPort inPort
regn orient regn orient
srcRegn far + orig | srcRegn near
srcRegn far + orig | trgRegn far
trgRegn near trgRegn far

A call ¢ with c.outPort.setup.regn = srcRegn
and c.inPort.setup.regn = trgRegn is a midpoint
call.

Theorem 1: Each path has at most one midpoint call.

Proof Theorem 1: A midpoint call ¢ has
c.outPort.orient = far or c.outPort.orient =
orig, and c.inPort.orient = far. If either of its
ports is linked, it is the farPort of the link.

The nearPort of the link is a port pn with
pn.orient = near. From the table, the other end
of its call is a port pf with pf.orient = orig or
pf.orient = far. If pf is linked, then pf.orient
= far, and pf is the farPort of the link.

Because this pattern continues recursively, a path
segment extending from a midpoint call can only con-
tain calls with one port having the orientation near.
Such a call cannot be a midpoint call. O

The proof of Theorem 1 shows us that a path has
the structure depicted in Figure 2. A full path is a
path containing a midpoint call. A half path is a path
containing no midpoint call. A midpoint call divides
a full path into two half paths, either of which might
be empty.

Since a path is a set of calls only, we need a way
to talk about boxes as well. The bozes connected
by a path is the smallest set of boxes, each of which
contains a port in the path.

Note that any half path has outward and inward
directions, based on the position of the midpoint call.
Because these directions can be determined from port
orientations alone, they are unambiguous even in a
half path that is not a subpath of a full path, and
therefore not associated with any midpoint call.

Figure 2 shows one half path whose outer port has
orient = orig, and one half path whose outer port
has orient = far. This is for illustration only. A
full path could have both outer ports with orient =
orig, or both outer ports with orient = far. The
fact that there are two outer ports is proved as fol-
lows.

Theorem 2: A full path is not a cycle.

Proof Theorem 2: Consider a full path depicted as in
Figure 2. For the path to be a cycle, both outer ports
in the diagram would have to have orient = far,
and both outer boxes in the diagram would have to
be connected by a call ¢ with c.outPort.orient =
near and c.inPort.orient = near. The DFC rout-
ing algorithm does not allow such a call. O

Note that a half path can be a cycle. Cyclic half
paths must be avoided by additional constraints.

Theorem 3: If a path connects two interface boxes, it
is a full path.

Proof Theorem 3: From the model in Section 3, a
port pf on an interface box has pf.orient = orig
or pf.orient = far. If two such ports are connected
by a path with a single call, from the table, that call
is a midpoint call, and its path is a full path.

If two ports on interface boxes are connected by a
longer path, then at least one of those ports is not
part of a midpoint call. From the table, the other
end of the call is a port pn with pn.orient =
It is linked to a port with orient = far.

Because this pattern continues recursively, a path
connecting two interface boxes must contain a call
with neither port having orient = near. This is a
midpoint call. O

near.

full path

midpoint call

V

o n £ n £ n £ £ n £ n £ n £
I I I I
I I I I
| o e e I | o e e I
half path half path
: I : I
| 2 | 2
boxes connected by half path boxes connected by half path
outward
inward

Figure 2: The anatomy of a full path.

5.2 Path properties: Zones

A zone of address a is a nonempty set of feature boxes
with address a, connected by a half path containing
no port with orient = orig. A mazimal zone of a
is a zone of a that is not a subzone of another zone
of a. If the size of a zone is one box, then the size of
its connecting path is zero.

Because of reverse routing, the structure of a zone
can be quite complex. The purpose of this section is
to expose and elucidate the structure of a zone.

Lemma 1: Let h be a zone of a: Addr ! Let the
path connecting h contain only a single call c. Let
pn be its port with pn.orient = near and let pf be
its port with pf.orient = far. Let bn and bf be
the boxes of pn and bf, respectively, with types tn
and tf, respectively. Then either <tn,tf> is a sub-
sequence of a.trgZone, or <tf,tn> is a subsequence
of a.srcZone.

Proof Lemma 1: Whichever box placed c derived its
setup signal, through ctucall and possibly revcall,
from the setup in of a call received by the box. Let
t be the type of the placing box. From the routing
algorithm,

in.regn = srcRegn
==> a in.src &&
<t,in.route> in a.srcZone.suffixes0f

in.regn = trgRegn

==> a = in.trg &&

<t,in.route> in a.trgZone.suffixesOf

Let ctu be the outgoing setup signal resulting from
applying ctucall to in. From the definition of
ctucall,

ctu.regn = srcRegn ==

(ctu.src = a &&

<t,ctu.route> in a.srcZone.suffixes0f)
whole)

(ctu.src !'= a && ctu.route

ctu.regn = trgRegn
(ctu.trg = a &&
<t,ctu.route> in a.trgZone.suffixes0f)

|| (ctu.trg !'= a &% ctu.route = whole)

Let rev be the outgoing setup signal resulting from
applying revcall in the placing box. From the defi-
nition of revcall,

rev.regn = srcRegn ==

(rev.src = a && rev.route = suffix)
|| (rev.src != a &% rev.route = whole)
rev.regn = trgRegn ==

(rev.trg = a && rev.route = suffix)
|| (rev.trg !'= a &% rev.route = whole)

From the table, there are two cases.

Case 1: pn = c.outPort, pn.setup.regn
trgRegn, pf = c.inPort, pf.setup.regn
trgRegn. Let out be pn.setup.

From the preceding,

out.trg = a ==
out.route = suffix ||

<tn,out.route> in a.trgZone.suffixes0f
After Step 1 of routing,

stl.trg = a ==

stl.route = a.trgZone.suffixAfter[tn]

Step 2 of routing does nothing. In the Routing
Phase, since tf != IB, tf = stl.route.head. So
<tn,tf> is a subsequence of a.trgZone.

Case 2: pf = c.outPort, pf.setup.regn =
srcRegn, pn = c.inPort, pn.setup.regn =
srcRegn. Let out be pf.setup.

From the preceding,

out.src = a ==
suffix ||
<tf,out.route> in a.srcZone.suffixes0f

out.route =

After Step 1 of routing,

a ==>
a.srcZone.suffixAfter [tf]

stl.src =
stl.route =

Step 2 of routing does nothing (if it did, ¢ would
be a midpoint call, and we would have pn.orient
= far). This tells us that st1.route != emptySeq.
In the Routing Phase, tn = stl.route.head. So
<tf,tn> is a subsequence of a.srcZone. O

Lemma 2: Let h be a zone of a: Addr ! Let
h contain only three boxes bx, by, and bz, listed
in order from innermost to outermost. Let the
types of the boxes be tx, ty, and tz, respectively,
where ty is not a member of reversible. Then ei-
ther <tx,ty,tz> is a subsequence of a.trgZone, or
<tz,ty,tx> is a subsequence of a.srcZone.

Proof Lemma 2: Because ty is not reversible, either
by is a free box, or it is a bound box that can be
subscribed to in only one region. In either case, it
receives incoming calls in only one region.

Because ty is not reversible, it cannot perform
revcall, and any call it places must be placed via
ctucall. Therefore any call it places must be in the
same region as the one in which it receives incoming
calls.

Combining this with two applications of Lemma 1,
either <tx,ty,tz> is a subsequence of a.trgZone, or
<tz,ty,tx> is a subsequence of a.srcZone. O

For every a: Addr, let a.reversibles be the
projection of a.trgZone onto the sequence of its re-
versible box types. a.reversibles contains all the

reversible box types subscribed to by a, in order from
innermost to outermost.

Theorem 4: Let h be azone of a: Addr ! Ordering
the box types in h from innermost to outermost, the
sequence of reversible box types in h is a subsequence
of a.reversibles.

Proof Theorem 4: Unless h contains at least two re-
versible boxes, the theorem is trivially true.

Let bx and by be two reversible boxes in h that
are not separated by any reversible boxes. Let bx be
connected to by through a port in bx with orient =
near, so that by is connected to bx through a port
in by with orient = far. Let their box types be tx
and ty, respectively. There are two cases.

Case 1: bx and by are adjacent in h. Then
from Lemma 1, either <tx,ty> is a subsequence
of a.trgZome, or <ty,tx> is a subsequence of
a.srcZone. Fither way, because of the relation-
ship between the source and target total orders
on reversible boxes, <tx,ty> is a subsequence of
a.reversibles.

Case 2: bx and by are not adjacent in h, but
are separated by some number of non-reversible
boxes. From repeated applications of Lemma 2, ei-
ther <tx,...,ty> is a subsequence of a.trgZone, or
<ty,...,tx> is a subsequence of a.srcZone, where
the ellipses represent sequences of non-reversible box
types. Either way, because of the relationship be-
tween the source and target total orders on reversible
boxes, and because the box types in the ellipses are
not in a.reversibles, <tx,ty> is a subsequence of
a.reversibles. O

Lemma 3: Let h be a maximal zone of a: Addr
! Let bi be the innermost box of h, with type
ti. Let the path connecting h be linked in bi to
an incoming call ¢ placed by box bo. Then ti =
a.trgZone.head.

Proof Lemma 3: From Figure 2, c.inPort.orient
= far. From the table, c.inPort.setup.regn =
trgRegn.

There are two reasons why bo might not be in
h. c might be a midpoint call, in which case it is
easy to see from the routing algorithm that ti =
a.trgZone.head.

Alternatively, bi might be a feature box with an
address a’ distinct from a. Because c is not a mid-
point call, we know that:

c.outPort.setup.regn = trgRegn

From the routing algorithm and the operations for
placing calls:

c.outPort.setup.trg = a
c.outPort.setup.route = whole

From this and the routing algorithm, ti =
a.trgZone.head. O
Lemma 4: Let h be a maximal zone of a: Addr

! Let bi be the outermost box of h, with type
ti. Let the path connecting h be linked in bi to
an incoming call ¢ placed by box bo. Then ti
a.srcZone.head.

Proof Lemma 4: From Figure 2, c.inPort.orient
From the table, c.inPort.setup.regn

near.
srcRegn.

There are two reasons why bo might not be in h.
If c has outPort.orient = orig, then h cannot be
extended to bo. In this case it is easy to see from the
newcall operation and routing algorithm that ti
a.srcZone.head.

Alternatively, bo might be a feature box with an
address a’ distinct from a. From the routing algo-
rithm and the operations for placing calls:

c.outPort.setup.regn
c.outPort.setup.src
c.outPort.setup.route

srcRegn

a
= whole

From this and the
a.srcZone.head. O

routing algorithm, ti =

A source truncating bor type is the type of
a box with the possible behavior of placing
a call with outPort.setup.regn = srcRegn and
outPort.setup.src != a, where a is the box ad-
dress. In a path, the call would end the source zone
of a whether the zone contained all of the subscribed
boxes or not. A target truncating box type is the
type of a box with the possible behavior of plac-
ing a call with outPort.setup.regn = trgRegn and
outPort.setup.trg != a, where a is the box ad-
dress. In a path, the call would end the target zone
of a whether the zone contained all of the subscribed
boxes or not.

Lemma 5: Let h be a maximal zone of a: Addr !
Let bo be the innermost box of h, with type to. Let
the path connecting h be linked in bo to an outgo-
ing call c received by box bi. Then to is either a
source truncating box type, or the last element of
a.srcZone.

10

Proof Lemma 5: From Figure 2, c.outPort.orient
= far. From the table, c.outPort.setup.regn =
srcRegn.

Case 1: c.outPort.setup.route

whole, which

from the call operations, can only occur if
c.outPort.setup.src != a. Either ¢ is a
midpoint call, or bi.boxAddr != a. Because
c.outPort.setup.src != a, to is a source truncat-

ing box type.

Case 2: After Step 1 of routing, stl.route
a.srcZone.suffixAfter[to]. If this were not an
empty sequence, ¢ would be routed to a feature box
of a, which is a contradiction. So this is an empty se-
quence, which can only occur if to is the last element
of a.srcZone. O

Lemma 6: Let h be a maximal zone of a: Addr
! Let bo be the outermost box of h, with type to.
Let the path connecting h be linked in bo to an out-
going call c received by box bi. Then to is either
a target truncating box type, or the last element of
a.trgZone.

Proof Lemma 6: From Figure 2, c.outPort.orient
near. From the table, c.outPort.setup.regn =
trgRegn.

Case 1: c.outPort.setup.route = whole,
which from the call operations, can only oc-
cur if c.outPort.setup.trg != a. Either
bi.boxType = IB, or bi.boxAddr != a. Be-
cause c.outPort.setup.trg != a, to is a target
truncating box type.

Case 2: After Step 1 of routing, stl.route
a.trgZone.suffixAfter[to]. If this were not an
empty sequence, ¢ would be routed to a feature box
of a, which is a contradiction. So this is an empty se-
quence, which can only occur if to is the last element
of a.trgZone. O

Theorem 5: Let h be a maximal zone of a: Addr
! Let tr be a reversible box type subscribed to by
a. If a subscribes to any source truncating box type,
tr does not succeed that box type in a.srcZone. If
a subscribes to any target truncating box type, tr
does not succeed that box type in a.trgZone. Then
h contains a box of type tr.

Proof Theorem 5:

Innermost box: Let bj be the innermost box of h.
Moving outward, let bk be the innermost reversible
box of h or the outermost box of h, whichever comes
first.

If Lemma 3 applies to bi, then from Lemma 2,
<tj,..,tk> is an initial subsequence of a.trgZone.

If bk is not reversible, then from Lemma 6, tk is ei-
ther a target truncating box type, or the last element
of a.trgZone. This contradicts the assumptions of
the theorem, so bk is reversible, and tk = tr or tk
precedes tr in a.reversibles.

If Lemma 5 applies to bj, then from Lemma 2,
<tk,..,tj> is a final subsequence of a.srcZone, or
a subsequence ending with a source truncating box
type. If bk is not reversible, then from Lemma 4, tk is
a.srcZone.head. This contradicts the assumptions
of the theorem, so bk is reversible, and tk = tr or
tk precedes tr in a.reversibles.

Outermost box: Let bl be the outermost box of
h. Moving inward, let bm be the outermost reversible
box of h or the innermost box of h, whichever comes
first.

If Lemma 4 applies to bl, then from Lemma 2,
<tl,..,tm> is an initial subsequence of a.srcZone.
If bm is not reversible, then from Lemma 5, tm is ei-
ther a source truncating box type, or the last element
of a.srcZone. This contradicts the assumptions of
the theorem, so bm is reversible, and tm = tr or tr
precedes tm in a.reversibles.

If Lemma 6 applies to bl, then from Lemma 2,
<tm,..,tl> is a final subsequence of a.trgZone, or
a subsequence ending with a target truncating box
type. If bmis not reversible, then from Lemma 3, tm is
a.trgZone.head. This contradicts the assumptions
of the theorem, so bm is reversible, and tm = tr or
tr precedes tmin a.reversibles.

Conclusion: There exist reversible boxes bk and bm
in h, not necessarily distinct, such that tk = tr or
tk precedes tr in a.reversibles, and tm = tr or
tr precedes tmin a.reversibles. From Theorem 4,
there exists a box of type tr in h. O

6 Uses and examples

As an example of unusual, but nevertheless ideal,
connection paths, Figure 3 shows a simple way of
doing Click to Dial. The first path is initiated by the
Web interface box with address w, which subscribes
to C2D in the source zone. The target of the initial
call is the subscriber s, who has done the click. The
setup signal of the initial call includes an encoding of
the intended far-party address t. The first action of
the C2D box is simply to continue its incoming call
to s.

If the call to s is answered, C2D next tears down
its incoming call and reverses its outgoing call, with
address translation from w to t. The resultant path
is shown at the bottom of the figure. All boxes have

11

links between their two calls. Note that both s and
t have target feature boxes.

Ideal connection paths provide a new way of look-
ing at DFC. One lesson of this new way of looking at
DFC is that feature boxes should use newcall guard-
edly. Many previous uses of newcall were actually
attempts to simulate revcall.

One legitimate use of newcall by a feature box oc-
curs when the feature is truly acting as an agent of
its subscriber, and is making a new call exactly as if
it were the subscriber. Since the box “is” the sub-
scriber, and is acting in some sense like an interface
box, it need not link the call to any other call. An
autoresponse feature for electronic mail uses newcall
in this way.

Another legitimate use of newcall by a feature box
occurs when the box address represents a scheduled
meeting, and the box implements it. The box may
place calls using newcall to add some participants.

The only common use of newcall by feature boxes
should be to place calls to resource addresses. The
call must have a null source address, to avoid invoking
source feature boxes. As mentioned in Section 4, the
theory of ideal links and ideal connection paths does
not concern resource calls.

Any kind of conferencing violates the constraints
on ideal connection paths. Figure 4 shows why. The
leftmost box is creating a distributed, multimedia vir-
tual device out of several physical devices. It has two
near ports linked to each other.

The middle and rightmost box are performing con-
ferencing in a more usual sense. The spontaneous
conference is being formed among parties who have
called or been called by a person. The scheduled
meeting has no person who is distinguished in that
way; the address of the box identifies the meeting.
Both boxes link far and orig ports to each other.

As these examples show, the existence of conferenc-
ing does not undermine the validity of the perspective
on DFC usages provided by ideal connection paths.
Ideal connection paths may not be the only thing go-
ing on, but they are the most important thing going
on, because they determine which feature boxes are
present in each usage. Nevertheless, these examples
show that an understanding of ideal connection paths
is not sufficient for analyzing feature interactions.

7 Other changes to DFC rout-
ing

This work has revealed the need for two other, smaller
changes to DFC routing.

midpoint calls

V

regn = srcRegn
Src = w
trg = s src = w
£ = =
1B [far = t] C2D trg = s TFB 1B
o n Ve £ $|n £ s
regn = trgRegn
sSrc = s
trg = t
1B TFB C2D TFB 1B
£ n t n vl £ S| n £ s
Figure 3: Ideal connection paths containing Click to Dial.
Device Spontaneous Scheduled
Augmentation Conferencing Meeting
]
f -7
Ot~ - 7 ,
| I i 3 n| __--7 ! ! .| £
: - z - - | | s’
n |. -7 T~ \ f 1 4
- = < 4
-~ ‘o

Figure 4: Feature boxes that do some kind of conferencing.

7.1 No more network zone

c.outPort.setup.route =
fore a midpoint call.

emptySeq, and is there-

The network zone is being eliminated from DFC be- For a call ¢ to be a midpoint call,
cause its usefulness has never been demonstrated in c.outPort.setup must have the following
practice, and it complicates the routing considerably. ,ii1ibutes. First, regn = srcRegn. Ei-
This decision is safe because anything that could have 4} 4, route = whole and src.srcZone =
been accomplished with a network zone can still be emptySeq (Case 1), route = suffix and

accomplished.

Let NB be a type of box that was written for the
the network zone. A box of type NB is free; if and
when it decides to continue its incoming call, it uses
ctucall, and does not change the source address.

Theorem 6: For all a: Addr let NB be the last
element of a.srcZone, and not an element of
a.trgZone. Every call placed by a box of type NB
is a midpoint call. Every midpoint call is placed by
a box of type NB.

Proof Theorem 6: Every call c¢ placed by a box of
type NB has c.outPort.setup.regn = srcRegn and

12

src.srcZone.suffixAfter[out.placing] =
emptySeq (Case 2), or route = emptySeq (Case 3).
Case 1 cannot occur because no address has an
empty source zone. Case 2 cannot occur because
the placing box would have to be both reversible and
the last element of some address’s source zone, which
contradicts the assumptions of the theorem. In Case
3 the placing box is the last box of some address’s
source zone, which means it is a box of type NB. O

The significance of Theorem 6 is that, under the
conditions of the theorem, boxes of type NB appear
in usages exactly where they would have appeared if
they were network-zone boxes, and DFC routing still

had a network zone. If a designer wishes to simulate a
network zone containing a box of type NB, all he has to
do is subscribe every address to it in the source zone,
and make its precedence last in the source zone.

7.2 A new setup field

Some setups have an additional attribute:
outer: Setup -> static Addr ?

Its purpose is to carry the previous source address in
the source region, if any, for use in address authenti-
cation. It is constrained by the architecture so that
it is guaranteed correct for this purpose.

Consider a source feature box of address s1 that
continues an incoming call, changing the source ad-
dress to s2. As explained in [4], feature boxes of s2
have a need and a right to determine that they are
being invoked legitimately. Voice-based authentica-
tion of the caller is one way of doing this. Whenever
it is appropriate, by far the simplest alternative is
to check that s1 is an address trusted by s2. This
is only possible, however, if the feature boxes of s2
have a trustworthy means of obtaining the address of
the box that performed the address translation. This
is the purpose of the outer attribute.

Privacy is a major concern of [4], and privacy de-
mands that more concrete addresses not be leaked to
the feature boxes and owners of more abstract ad-
dresses. Since s1 is probably more concrete than
s2, why is this not a violation of privacy? First,
it makes source translation the exact dual of target
translation, in which the feature boxes of an abstract
address know the next outer address in the target re-
gion. Second, the definition of the outer attribute
guarantees that address information cannot travel in
it any further than the feature boxes of the next inner
address in the source region.

The outer attribute belongs only to some setup
signals with regn = srcRegn. The newcall opera-
tion is augmented as follows:

so.outer = bo.boxAddr

The ctucall and revcall operations are augmented
as follows:

so.regn = srcRegn && srcArg != noAddr
==> so.outer = bo.boxAddr

so.regn = trgRegn || srcArg = noAddr
==> so.outer emptySet

In Step 2 of the routing algorithm, the two major
rules are changed as follows:

13

stl.regn = srcRegn && stl.route = emptySeq
==> st2.regn = trgRegn &&
st2.route = whole &&
st2.outer = emptySet
stl.regn = trgRegn || stl.route != emptySeq
==> st2.regn = stl.regn &&

stl.route &&
stl.outer

st2.route

st2.outer

All the other steps of the routing algorithm are aug-
mented to copy the outer attribute without change.

Two theorems establish the correctness of the
outer attribute.

Theorem 7: Let h be a maximal zone of a: Addr !
Let bi be the outermost box of h, and let the path
connecting h be linked in bi to an incoming call c
placed by box bo. Then c.inPort.setup.outer
bo.boxAddr.

Proof Theorem 7: From the proof of Lemma 4,
c.inPort.setup.regn = srcRegn, and there are
two cases. In the first case, ¢ was placed us-
ing newcall, so that c.outPort.setup.outer
bo.boxAddr. The only routing step that might al-
ter it is Step 2, but if that occurred we would
have c.inPort.setup.regn = trgRegn, which con-
tradicts the assumptions.

In the second case, ¢ was placed using ctucall
or revcall, and bo is a feature box with an address
distinct from a. From the routing algorithm and the
operations for placing calls:

c.outPort.setup.regn
c.outPort.setup.outer

srcRegn
bo.boxAddr

The only routing step that might alter the outer
field is Step 2, but if that occurred we would
have c.inPort.setup.regn = trgRegn, which con-
tradicts the assumptions. O

Theorem 8: Let box b be connected by an ideal con-
nection path. Let c be part of the path and an
incoming call to b. b does not satisfy the condi-
tions to play the role of bi in Theorem 7. Then
c.inPort.setup.outer = emptySet.

Proof Theorem 8: We consider three cases.

Case 1: c was placed using newcall. After Step 1
of routing, stl.route = out.src.srcZone. If the
route is empty, the augmented Step 2 will make
st2.outer = emptySet, which will be preserved by
subsequent routing steps. If the route is not empty,
then b will satisfy the conditions to play the role of
bi, which contradicts the assumptions.

Case 2: c was placed using ctucall or revcall,
and so.regn = trgRegn || srcArg = noAddr, so
that c.outPort.setup.outer = emptySet. No
routing step changes an empty outer attribute to
a nonempty one.

Case 3: c was placed using ctucall or revcall,

and so.regn = srcRegn && srcArg != noAddr, so
that

c.outPort.setup.regn = srcRegn
c.outPort.setup.route = whole
c.outPort.setup.src != c.outPort.setup.outer
c.outPort.setup.outer != emptySet

After Step 1 of routing, stl.route =
out.src.srcZone. If the route is empty, the aug-
mented Step 2 will make st2.outer = emptySet,
which will be preserved by subsequent routing steps.
If the route is not empty, then b will satisfy the
conditions to play the role of bi, which contradicts
the assumptions. O

References

[1] The DFC Web site:
http://www.research.att.com/projects/dfc

[2] Daniel Jackson, Ilya Shlyakhter, and Manu Sridha-
ran. A micromodularity mechanism. In Proceedings
of the Ninth ACM SIGSOFT International Sympo-
stum on the Foundations of Software Engineering
and the Eighth European Software Engineering Con-
ference, pages 62-73. ACM, 2001.

[3] Michael Jackson and Pamela Zave. Distributed fea-
ture composition: A virtual architecture for telecom-
munications services. IEEE Transactions on Soft-
ware Engineering XXIV(10):831-847, October 1998.

[4] Pamela Zave. Address translation in telecommunica-
tion features. Submitted for publication, 2003.

14

