
The Geomorphic View of Networking:
A Network Model and Its Uses

ABSTRACT
The Internet is evolving away from its original architecture
and toward the use of multiple, customized protocol stacks.
A pluralistic architecture is best explained by the “geomor-
phic view”of networks, in which each layer is a microcosm of
networking, and layers can be instantiated at many different
levels, scopes, and purposes. Exploiting the commonalities
identified by the geomorphic view, an abstract layer model
can lead to architectural insights that help extend commu-
nication services, derive design principles, and generate net-
work software.

Categories and Subject Descriptors
C.2.2 [Network Protocols]: Protocol Architecture

General Terms
Design, Performance, Security, Verification

Keywords
Internet, overlay, mobility

1. INTRODUCTION
The“classic” Internet architecture is usually depicted with

five layers: physical, link, network, transport, and applica-
tion. The network layer is defined by the Internet Protocol
(IP), while the transport layer is defined primarily by the
transport protocols TCP and UDP. It is now widely agreed
that this architecture fails to meet many of society’s present
and future requirements [2, 4, 5, 12].

The Internet is evolving as numerous stakeholders attempt
to meet their goals for dependability, security, mobility, scal-
ability, quality of service, and improved resource manage-
ment. The result is a trend toward multiple, customized
protocol stacks. For example, Figure 1 shows the headers of
a typical packet in the AT&T backbone network. Counting
one layer per header, this packet is handled by an architec-
ture with twelve layers above the physical, instead of the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MW4NG Dec. 2012, Montreal, Canada
Copyright 2012 ACM X-XXXXX-XX-X/XX/XX ...$10.00.

Application
HTTP

TCP
IP

IPsec
IP

GTP
UDP

IP
MPLS

MPLS
Ethernet

Figure 1: Headers of a typical packet in the AT&T
backbone network.

classic four.
In this customized architecture, every layer above the UDP

layer and below the application is middleware. GTP is a
protocol that implements quality-of-service agreements, and
IPsec provides security. HTTP is serving as a transport pro-
tocol, not because it is suitable for the application or even
designed as a transport protocol, but because it is almost the
only way to traverse NAT boxes and firewalls [11]. The pres-
ence of two MPLS layers, three IP layers, and two transport
protocols from the IP suite is an indication of ad hoc code
re-use, as protocols are instantiated at different positions in
the stack to serve different purposes.

The good news to be found in Figure 1 is that middleware
can be used to meet a wide variety of requirements, even for
those stakeholders who cannot influence the lower layers of
the architecture.

The bad news to be found in the figure is more exten-
sive. It illustrates major problems and unmet needs in the
following three areas.

Communication services: HTTP is a transaction-oriented
client-to-server protocol. Although it supports Web services
fairly well, there is a wide variety of potential Internet appli-
cations for which it is poorly suited. These include real-time,
connection-oriented, mobile, peer-to-peer, server-to-client,
and multi-party applications. When implemented on top of
HTTP, these applications are difficult to develop, difficult to
deploy and maintain, and very inefficient [16]. We need to

A B

C D E

Figure 2: Members and links of a layer.

provide a broader range of communication services so that
all applications can be developed easily and efficiently, while
security policies appropriate to each application are reliably
enforced.

Design principles: With so many layers, this customized
architecture is very unlikely to be the most efficient way
to satisfy the stakeholders’ requirements. In fact, there is
no way of predicting what its performance properties are,
as an estimated 15 load-balancing algorithms apply to each
packet, and each of the algorithms has been designed and
analyzed mostly in isolation [14]. We need principles to help
us design customized architectures that meet a variety of
functional and nonfunctional requirements in an efficient,
modular, and predictable way.

Software development: If the Internet evolves so that each
application runs on its own customized Internet architec-
ture, then a large amount of new network software will be
required. We need to develop this software through code
re-use and code generation, because conventional program-
ming will be too slow, too expensive, and too prone to er-
rors. Figure 1 shows code re-use, but does not meet other
requirements such as efficiency and predictability.

This paper outlines a research agenda aimed at solving
these problems. It is based on a “geomorphic view” of net-
works, in which each layer is a microcosm of networking—it
has all of the basic ingredients of networking in some form.
Layers are the architectural modules. In a network architec-
ture there are many layer instances; they appear at differ-
ent levels of the “uses” hierarchy, with different scopes, with
different versions of the basic ingredients, and for different
purposes. This view is described in more detail in Section 2.

The beauty of the geomorphic view is that any lesson we
learn about layers in general can be used many times over.
Section 3 explains how it might be possible to develop an
abstract, formal model of a layer that would be helpful in
solving the problems introduced above. We discuss both the
abstractions and our progress on building such a model.

Finally, Section 4 proposes some ways in which the layer
model could be exploited to solve the problems above. First,
it could delineate design spaces and elucidate how decisions
in one space depend on decisions in other spaces, leading to
principles of network design. Second, it could broaden the
set of mechanisms available to network designers, leading
to a richer set of communication services without sacrificing
other goals such as dependability, security, performance, and
scalability. Third, it could serve as a framework in which a
custom layer can be generated by selecting and integrating
library components. We also summarize briefly our progress
thus far.

2. THE GEOMORPHIC VIEW
OF NETWORKS

registration

processes on
one machine

A E

a edb

Figure 3: Implementation of a link in an overlay by
a session in an underlay.

In the geomorphic view of networks, the architectural
module is a layer. A layer has members, each of which has a
unique, persistent name. For example, Figure 2 is a snapshot
of a layer with five members, each having a capital letter as
a name. In general a member is a process, i.e., an indepen-
dent, asynchronous locus of state and control. The actual
behavior of a member may be no more complex, however,
than a sequence of procedure calls.

The members of a layer communicate with each other
through links, shown by lines in Figure 2. A link is a com-
munication channel. In general, a layer does not have a link
between each pair of members.

One of the two primary functions of a layer is to enable
members to send messages to each other. To do this, a layer
needs routes indicating how one member can reach another
through links and intermediate members. For example, (A,
B, D, E) is a route from A to E. It also needs a forwarding
protocol that runs in all members. The forwarding protocol
enables members to send and receive messages. In addition,
when a member receives a message on an incoming link that
is not destined for itself, its forwarding protocol uses the
route information to decide on which outgoing link it will
forward the message.

A channel is an instance of a communication service.1 As
mentioned above, a link is a channel. If a layer does not
implement its links internally, then its links are implemented
by other layers that this layer uses, placing the other layers
lower in the uses hierarchy.

If an underlay (lower layer) is implementing a link for an
overlay (higher layer), then the state of the channel must be
stored as data in the underlay. In the underlay, the channel
is known as a session. (There must be two names for chan-
nels, because a typical layer has both links and sessions.)

The second primary function of a layer is to implement
enriched communication services on top of its bare message
transmission. Typical enrichments for point-to-point ser-
vices include FIFO delivery and quality-of-service guaran-
tees. This function is carried out by a session protocol. A
layer can implement sessions on behalf of its own members,
as well as or instead of as a service to overlays.

For a link in an overlay to be implemented by a session in

1Although there is a wide variety of possible communi-
cation services, including broadcast, anycast, and pub-
lish/subscribe, in this brief summary we assume that chan-
nels are point-to-point.

primary function state component maintenance algorithm

member algorithm
location algorithm

attachment algorithm
link algorithm
routing algorithm

members
locations
sessions
attachments
links
routes

session protocol

forwarding protocol

Figure 4: Major components of a layer. Arrows
show which protocol or algorithm writes a state
component.

an underlay, both endpoint machines must have members in
both layers, as shown in Figure 3. A machine is delimited by
an operating system that provides fast, reliable communica-
tion between processes on the machine. This fast, reliable
operating-system communication is the foundation on which
networked communication is built.2

A registration is a record that relates an overlay member
to an underlay member on the same machine. Registrations
must be stored as data in both layers. In the overlay they
are called attachments, because they indicate how a member
is attached to the network through a lower layer. In the
underlay they are called locations, because they indicate that
a member is the location of a process in a higher layer.

The session protocol creates and maintains sessions data
in its layer, and uses locations data. For example, in Fig-
ure 3, A sent a request to a for a session with E. To create
this session, a learned from its layer’s locations that E is
currently located at e. Messages sent from A to E through
the link in the overlay travel through a, b, d, and e; the first
and last steps uses operating-system communication, while
the middle three steps use networked communication.

The six major components of the state of a layer are listed
in Figure 4. All can be dynamic. We have seen that the
session protocol creates and maintains sessions; the other
five are created and maintained by their own maintenance
algorithms.

This view of networking was inspired by the work of Day
[3], although we have made many changes and additions in
both content and presentation. It may seem familiar and ob-
vious because both the classic Internet architecture [1] and
the OSI reference model [7] also describe network architec-
ture as a hierarchy of layers, but in fact there are several
radical differences.

In the Internet and OSI architectures, each layer has a spe-
cialized function that is viewed as different from the func-
tion of the other layers. In both architectures, there is a
fixed number of layers. In the geomorphic view, each layer
is viewed as the same in containing all the basic functions
of networking, and there can be as many layers as needed.
Consequently, the network (IP) and transport (TCP/UDP)
layers of the Internet architecture fit into one “Internet core”
layer of the geomorphic view, where IP is the forwarding pro-
tocol and TCP and UDP are variants of the session protocol
offering variants of Internet communication service.

Because layers instantiated at different levels have differ-
ent purposes, their functions take different forms. For one
example, we are most familiar with routing algorithms in the

2A virtual machine can be regarded as a machine, in which
case communication through the hypervisor and soft switch
of the physical machine is regarded as networked communi-
cation.

LAN 1 LAN 2 LAN 3

1 2 2 3

gateway gateway

Application 1

Application 2

Internet core

Figure 5: Geomorphic view of the classic Internet
architecture. Internet links are labeled with the
LAN that implements them.

Internet core, where their purpose is reachability. A higher-
level middleware layer might offer security as part of its
communication services. Implementing security might en-
tail routing all messages to a particular destination through
a particular filtering server, so that, in this layer, part of the
purpose of routing is security. An application layer might
have a link or potential link between any two members, im-
plemented by communication services below, so that in this
layer the routing algorithm is vestigial. For another exam-
ple, low-level layers such as Ethernet LANs provide broad-
cast as a communication service. The services provided by
the Internet core are point-to-point, while an application
layer might implement its own form of broadcast.

The scope of a layer is its set of potential members. In the
Internet and OSI architectures, each layer has global scope,
and there is exactly one layer at each level of the hierarchy.
In the geomorphic view, as shown in Figure 5, a layer can
have a small scope, and there can be many layers at the
same level of the hierarchy. Figure 5 shows the geomorphic
view of the classic Internet architecture, with many LAN
layers at the bottom level. In each LAN layer, the data
structures, algorithms, and protocols are precisely those of
the particular LAN technology being used. This is in sharp
contrast to the idea of a generic, global “link layer,” which
cannot be made precise because it is a generalization of a
large number of different technologies.

It is self-evident that fixed layer structures cannot explain
today’s customized architectures, as exemplified by Figure 1.
The geomorphic view is intended not only to describe them,3

but also to generate a design space including many others
not yet explored. We call it the “geomorphic” view because

3In the geomorphic view Figure 1 would probably corre-
spond to 7 layers, from bottom to top: Ethernet, MPLS,
MPLS, IP+UDP+GTP, IP+IPsec, IP+TCP+HTTP, Ap-
plication.

its possible arrangements of layers resemble the complex ar-
rangements of layers in the earth’s crust.

3. TOWARD AN ABSTRACT LAYER MODEL
Our goal is to develop an abstract formal model of a layer,

so that we can exploit it to solve the problems presented in
Section 1. Because the diversity of network technologies and
the overall complexity of networking make this goal appear
quixotic, we first explain some of the factors that make this
goal feasible, before summarizing our progress.

3.1 What makes a useful layer abstraction
seem feasible?

As noted above, each layer instance corresponds to some-
thing real and specific, such as a particular LAN, as opposed
to a generalization. This means that we can compare a real
layer instance to an abstract formal model, and decide with-
out ambiguity whether the layer instance is a special case of
the formal model.

Although the geomorphic view is not intended to limit
network functions in any way, it is intended to be somewhat
prescriptive in how they are described. For one example,
a layer has one name space, in which a member has one
name. It follows that if there appears to be a process with an
“identifier”and a“locator,” it must actually be two processes
on the same machine, each in a different layer, with one
being registered to the other. For another example, there is
no concept of tunneling within a layer. Wherever“tunneling”
is used, the “tunnel” is a link in one layer, and it “tunnels
through” the links of a lower layer. For this reason, the two
MPLS layers in Figure 1 must also be two distinct layers in
the geomorphic view.

Prescriptive description brings many benefits. Most rel-
evant to this subsection, each layer is a simpler structure,
because it need not include multiple name spaces, tunnels,
and other unnecessary complexities. Another benefit is that
it forces designers to make explicit decisions that are usually
left unexplained or even undefined, such as the purposeful
relationship between routing in an overlay (whose links are
“tunnels”) and routing in the underlay (whose routing imple-
ments the tunnels). Finally, prescriptive description helps
ensure that each architecture has only one correct descrip-
tion, rather than many synonymous ones. This should prove
beneficial in comparing architectures and generating design
spaces.

Finally, in our current layer model most data structures
(members, attachments, locations, links, and routes) are re-
garded as centralized, or, more precisely, their distribution
over the states of layer members is not specified. In the
same way, the functional components that maintain them
(member, attachment, location, link, and routing algorithms)
are specified as (centralized) algorithms rather than (dis-
tributed) protocols.

This abstraction is extremely important because most of
the difficult decisions made in designing a network layer are
about or related to how the state is distributed, and how
protocols maintain adequate consistency across the layer.
Choices range from initializing state structures that cannot
change thoughout the life of a layer, through using a cen-
tralized database with lookup and update transactions, to
highly redundant, distributed state and complex consistency
protocols. These choices, in concert with choices about the
shape of the member/link graph, the structure of names, and

linklayer benefiting
from mobility

layer
imple-

menting
mobility

lower
layers a1’ a2’ b1’ b2’L1 L2 L3

A B

a b1 b2

Figure 6: A session with attachment mobility serv-
ing endpoint A and location mobility serving end-
point B. Dynamic registrations are shown as dotted
lines.

other constraints, are the major influences on scale, perfor-
mance, and dependability. We cannot defer these choices
forever, but the abstraction enables us to defer them until
they are relevant.

3.2 Progress on the model
We have a formal model of a point-to-point session pro-

tocol written in Promela, and have verified many desirable
properties with the model-checker Spin [6]. We have a for-
mal model of members, attachments, locations, links, ses-
sions, routes, and the forwarding protocol written in Alloy,
and have verified static consistency properties with the Al-
loy Analyzer [8]. Relatively little is included about the al-
gorithms that maintain these data structures.

Most of our efforts have been expended on investigating
and modeling the layer mechanisms needed for mobility. In
networking, this term refers to both a problem and its solu-
tions. As a problem, it means that a layer member is chang-
ing its attachment to lower layers of the network, in partic-
ular while using communication services. As a solution, it
means maintaining the member’s communication channels,
despite the movement.

Using the geomorphic view, we have discovered that there
are two completely distinct implementations of mobility. Fig-
ure 6 shows a layer with two mobile members A and B. Both
are benefiting from mobility implementations, in the sense
that their link will be preserved as they move. The mobility
of each endpoint is provided by a different mechanism.

On the left, as the machine of A moves physically, it goes
out of range of LAN L1 and enters the range of LAN L2.
Consequently, its attachment in the lowest level changes
from a1’ to a2’. In the middle layer, which is implementing
mobility, this means that links to a implemented by L1 are
replaced by links to a implemented by L2. The hard work in
this layer is performed by its routing algorithm, which must
re-route to maintain the reachability of a through new links.
The parts of the layer state affected by this implementation,
called attachment mobility, are its attachments, links, and
routes.

On the right, as the machine of B moves physically, it
goes out of range of LAN L2 and enters the range of LAN

L3. Consequently, its attachment in the lowest level changes
from b1’ to b2’. Although this is exactly the same at this
level as A’s mobility, It is handled by the implementing mid-
dle layer in a completely different manner.

In the middle layer, the location of B changes from mem-
ber b1 to member b2. The most common reason for this to
occur is that the implementing layer has a large, hierarchi-
cal, topology-dependent name space (as the Internet does).
As the machine of B moves from L2 to L3, it cannot keep
the same name in the middle layer, because topological con-
straints would be violated. Instead, its member b1 in the
middle layer dies and is reborn as member b2. The hard
work in this layer is performed by its session protocol and
location algorithm. The location algorithm must update B’s
location, while the session protocol must update distributed
session state so that a sends messages to b2 instead of b1.
The parts of the layer state affected by this implementation,
called location mobility, are its members, locations, and ses-
sions.

On first hearing this explanation, most people insist that
the difference between attachment and location mobility must
be illusory, merely a difference of viewpoint. The geomor-
phic view shows, precisely and unambiguously, that the dif-
ference is real: the two mechanisms exercise disjoint proto-
cols and algorithms in a layer, and alter disjoint data struc-
tures. This shows the power of an abstract layer model to
clarify subtle points.

Of the two mobility implementations, attachment mobil-
ity is by far the most familiar. Cellular networks, VLANs
[15], and Mobile IP [10] all use variants of attachment mo-
bility. TCP Migrate [13] is one example of location mobility.
Section 4 will use mobility to illustrate solving real problems
with the layer model.

Our next step toward an abstract layer model will be to
investigate and model security mechanisms. Although some
aspects of security belong strictly in the operating system or
application, others can be provided as part of network ser-
vices (e.g., encryption and authentication) or supported by
network services (e.g., guaranteed routing through security
servers). The latter aspects can be investigated and modeled
in the same spirit as mobility.

Overall, our abstract layer model is at a very preliminary
stage—it is rudimentary or incomplete in most places and
overly constraining in some. Nevertheless, our results on
mobility are an existence proof that the work is worth doing,
and may yield benefits that are difficult to get with other
research approaches.

4. USING THE MODEL
TO SOLVE PROBLEMS

In this section, we suggest how the previous ideas might
contribute to solving the problems introduced in Section 1.

4.1 Communication services
As previously mentioned, restrictive policies embedded in

most firewalls and NAT boxes make it very difficult to imple-
ment many applications, particularly those requiring real-
time, peer-to-peer, or server-to-client communication ser-
vices. Those restrictive policies exist because of the Inter-
net’s security crisis, but they are a blunt instrument.

With a carefully structured and articulated architecture,
it should be possible to build in higher-level security policies

that are sound and appropriate to their applications. This
work could provide the basis of an argument for bypassing
the blunt security policies enforced at lower levels of the
hierarchy.

The geomorphic view also promotes clean, well-specified
interfaces between layers. This improved understanding of
network architecture might encourage middleware designers
to offer a richer set of communication services to applica-
tion developers, and might encourage application develop-
ers to use well-engineered middleware services rather than
program their own versions.

Richer communication services might include channels that
are not point-to-point, for example anycast, conference, and
publish/subscribe channels. They might include“multihomed”
channels that can take advantage of the bandwidth of multi-
ple communication media simultaneously, for example cellu-
lar and WiFi transmission. They might include mobility ser-
vices such as transparent migration of application processes.
Or they might include services based on routing through
application-specific middleboxes such as privacy servers. All
of these services have their place in the geomorphic view of
networks.

4.2 Design principles
Our work toward developing design principles breaks into

two parts. The first is concerned with solving individual
design problems. The second is concerned with composing
individual solutions into an architecture that solves many
problems simultaneously. We illustrate both parts with a
mobility example.

Imagine that we are designing a mobility service for lap-
tops. Laptops are often used on buses, because each bus
has its own LAN for the benefit of its riders. Of course, the
bus is mobile also. We might see this as breaking into two
mobility problems, one for buses and one for laptops. It is
important for scalability that solutions to the two problems
be independent. In other words, we cannot accept solutions
that require an update for every rider when a bus moves,
nor can we accept solutions that require an update for the
bus when a rider with a laptop gets on or off.

Assuming that there is already a tentative layer architec-
ture, a solution to either of the mobility problems might be
assigned to any layer, and it might be a special case of at-
tachment mobility or a special case of location mobility. If
a layer L is going to implement location mobility for a layer
L+ above it, then the name spaces of L and L+ cannot be in
one-to-one correspondence (see Figure 6), and L must have
an efficient location algorithm that makes the locations of
mobile members of L+ available throughout the layer. If
a layer L is going to implement attachment mobility, then
there are quite a few choices concerning how L will optimize
the update, storage, and path-stretching costs of dynamic
routing (see [9] for an overview of these costs). These choices
constitute the design space of a mobility problem. By study-
ing these choices further, we hope to gain more insight into
the qualitative and quantitative constraints and trade-offs
relevant to solving individual design problems.

Figure 7 shows a new solution to the joint problem, gen-
erated from the design space of mobility, that has the in-
dependence and scalability advantages explained above. In
the figure, the top layer contains a middleware process M
on a mobile laptop, with an ongoing link to a middleware
process S. In the layer below, b is the Internet interface of

wireless
LANs

S M

bus
LAN

s bc b mb mn

b’ mb’b’b’

location
mobilityattachment

mobility

Figure 7: An implementation of mobile laptops on
a bus.

a bus LAN. When the laptop is on the bus, M is registered
at Internet interface mb, and b is acting as a router for mb.
Note that b and mb belong to the same block of Internet ad-
dresses, so when the laptop is taken off the bus and attached
somewhere else, it will register at a different process mn.

The big arrows indicate the processes benefiting from mo-
bility and the type of mobility, but not where it is imple-
mented. In fact, both mobility problems are solved in the
same layer. The middle layer implements location mobility
for M. This implementation must do something special to
update sessions and locations when the laptop moves on or
off the bus, but does nothing when the laptop is on the bus
and the bus is moving. The middle layer also implements
attachment mobility for b. This implementation must do
something special to restore links and routing when the bus
moves from the range of one roadside wireless LAN to an-
other, but does nothing when riders get on or off the bus.

In a network architecture, different mobility problems might
be solved in different, adjacent layers. We have used the
layer model presented in Section 3 to argue that mobil-
ity solutions in different layers are independent and non-
interfering. In other words, layer composition (in which an
overlay uses the services of an underlay) continues to work
smoothly.

In Figure 7, different mobility problems are solved by dif-
ferent mobility mechanisms in the same layer—another kind
of composition. We are currently completing a proof that
location and attachment mobility mechanisms in the same
layer are independent and non-interfering, so that they can
be composed safely.

One of the goals of composition, both inter- and intra-
layer, is more efficient architectures. For example, it has
been noted that Figure 1 appears to correspond to 7 lay-
ers in the geomorphic view. It is almost certainly possible
to implement the same functions in fewer layers. For ex-
ample, the purpose of IP + UDP + GTP appears to be
quality of service, while the purpose of IP + IPsec is se-
curity. If the mechanisms implementing these goals can be
shown to be independent and compositional, then both can
be implemented in the same layer, possibly along with other

functions as well.

4.3 Software development
As indicated in Figure 4, the layer model is intended

to decompose the software structure of a layer into com-
ponents with well-understood interfaces and dependencies.
The structure in the figure is very coarse, but further work
should make it possible to refine it.

Hopefully the refined structure can serve as a framework
where specific implementations of mechanisms such as loca-
tion and attachment mobility plug in. If so, the software
framework brings us closer to being able to generate a cus-
tom layer by selecting and integrating library components.

5. REFERENCES
[1] D. D. Clark. The design philosophy of the DARPA

Internet protocols. In Proceedings of SIGCOMM.
ACM, August 1988.

[2] D. D. Clark, J. Wroclawski, K. R. Sollins, and
R. Braden. Tussle in cyberspace: Defining tomorrow’s
Internet. IEEE/ACM Transactions on Networking,
13(3):462–475, June 2005.

[3] J. Day. Patterns in Network Architecture: A Return to
Fundamentals. Prentice Hall, 2008.

[4] A. Feldmann. Internet clean-slate design: What and
why? Computer Communications Review, 37(3):59–64,
July 2007.

[5] M. Handley. Why the Internet only just works. BT
Technology Journal, 24(3):119–129, July 2006.

[6] G. J. Holzmann. The Spin Model Checker: Primer and
Reference Manual. Addison-Wesley, 2004.

[7] ITU. Information Technology—Open Systems
Interconnection—Basic Reference Model: The basic
model. ITU-T Recommendation X.200, 1994.

[8] D. Jackson. Software Abstractions: Logic, Language,
and Analysis. MIT Press, 2006, 2012.

[9] J. Mysore and V. Bharghavan. A new
multicasting-based architecture for Internet host
mobility. In Proceedings of the 3rd Annual
ACM/IEEE International conference on Mobile
Computing and Networking. ACM, 1997.

[10] C. E. Perkins. Mobile IP. IEEE Communications, May
1997.

[11] L. Popa, A. Ghodsi, and I. Stoica. HTTP as the
narrow waist of the future Internet. In Proceedings of
the 9th Workshop on Hot Topics in Networks, 2010.

[12] T. Roscoe. The end of Internet architecture. In
Proceedings of the 5th Workshop on Hot Topics in
Networks, 2006.

[13] A. C. Snoeren and H. Balakrishnan. An end-to-end
approach to host mobility. In Proc. MOBICOM, 2000.

[14] O. Spatscheck. Cloud computing and my worries
about the network that enables it.
http://clouds10.mytestbed.net/presentation/

oliver_clouds10v2.pdf, 2010.

[15] M. Yu, J. Rexford, X. Sun, S. Rao, and N. Feamster.
A survey of virtual LAN usage in campus networks.
IEEE Communications, 49(7):98–103, July 2011.

[16] P. Zave. Internet evolution and the role of software
engineering. In The Future of Software Engineering,
pages 152–172. Springer, 2011.

