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Abstract. The classic Internet architecture is a victim of its own suc-
cess. Having succeeded so well at empowering users and encouraging in-
novation, it has been made obsolete by explosive growth in users, traffic,
applications, and threats. For the past decade, the networking commu-
nity has been focused on the many deficiencies of the current Internet
and the possible paths toward a better future Internet. This paper ex-
plains why the Internet is likely to evolve toward multiple application-
specific architectures running on multiple virtual networks, rather than
having a single architecture. In this context, there is an urgent need for
research that starts from the requirements of Internet applications and
works downward toward network resources, in addition to the predomi-
nantly bottom-up work of the networking community. This paper aims
to encourage the software-engineering community to participate in this
research by providing a starting point and a broad program of research
questions and projects.

1 Introduction

In a recent article on the future of software engineering [1], Mary Shaw iden-
tified the Internet as both the dominant force for the last 15 years in shaping
the software milieu, and the source of software engineering’s greatest coming
challenges. The challenges center on software that is widely used by—and often
created by—the public, in an environment that is ultra-large scale and has no
possibility of central control.

Software research has made huge contributions to Internet applications and
middleware [2]. These successes have been enabled by an Internet architecture
that has provided a relatively stable and universal interface to lower network
layers.

Currently, however, Internet architecture is a controversial subject in the
networking community. Peoples’ ideas are changing fast, and it is increasingly
likely that the future Internet will not have an architecture in the sense that it
has had one in the past.

The first goal of this paper is to inform software researchers about current
trends in the networking community and their likely effect on the future Internet.
Sections 2 and 3 summarize the nominal Internet architecture and the reasons it



is inadequate today, both as a characterization of the current Internet and as a
basis for meeting projected requirements. Section 4 describes how networking is
changing in response to these pressures, and where the current trends are likely
to lead.

Sections 3 and 4 show that there is an urgent need for research that starts
from the requirements of Internet applications and works downward toward net-
work resources, in addition to the predominantly bottom-up work of the net-
working community. The second goal of this paper is to encourage the software-
engineering community to participate in this research. Section 5 provides a start-
ing point in the form of a well-defined and apparently general architectural unit.
Based on this foundation, Section 6 presents a broad program of research ques-
tions and projects. The paper concludes that Internet evolution presents exciting
and important research challenges that the software-engineering community is
best qualified to take up.

2 The “classic” Internet architecture

Although the Internet architecture is not precisely defined, there is broad agree-
ment on the properties and protocols in this section. The Internet is organized
into layers, a concept that was brought into operating systems by Dijkstra [3]
and then adopted for networking. Usually the Internet is described in five layers,
as shown in Figure 1.

The physical layer provides data transmission on various media. A link is a
machine-to-machine data connection using a particular medium. Links are par-
titioned into groups called subnetworks. A machine can belong to (be a link
endpoint of) more than one subnetwork, in which case it acts as a gateway be-
tween them. The architecture is designed to allow great diversity in the physical
and link layers.

PHYSICAL

layers
core

TRANSPORT (TCP, UDP)
message flows, reliability, congestion control

addressing, routing, interoperation of subnetworks

LINK
subnetworks

APPLICATION (DNS)

NETWORK (IPv4)

Fig. 1. The five layers of the classic Internet architecture.



The network layer is one of the core Internet layers. It is referred to as the
“narrow waist” of the architecture because it is defined by the single Internet
Protocol (IP), which runs on all subnetworks. Each machine has a unique 32-bit
address. The address space is organized as a location hierarchy, which allows
global routing with routing tables of reasonable size. Each machine is either a
host or a router; hosts run applications and serve users, while routers deliver
packets. IP provides best-effort packet delivery between the machines.

The transport layer is the other core Internet layer. It is defined primarily
by the two transport protocols User Datagram Protocol (UDP) and Transmis-
sion Control Protocol (TCP). UDP sends and receives individual packets. TCP
implements reliable, FIFO, duplicate-free byte streams (two-way connections).
TCP also implements congestion control.

In the application layer, domain names as supported by the Domain Name
System (DNS) are available as a global mnemonic name space. Although all
other functions are the responsibility of the applications themselves, there are
many functions that are common to a variety of applications. These functions
are sometimes implemented and deployed as shared or re-usable middleware.
The functions include:

• management of application-specific name spaces;
• directories for discovery of resources and services;
• endpoint mobility;
• enhanced inter-process communication facilities such as remote method in-

vocation, transactions, multi-point connections, multicast, publish/subscribe
event-based communication, and trusted-broker services;

• security (authentication, access control, encryption, protection from denial-
of-service attacks);

• protocol conversion and data reformatting;
• buffering and caching;
• monitoring and billing for quality of service.

The classic Internet architecture was strongly shaped by the “end-to-end”
principle [4], which says that in a layered system, functions should be moved
upward, as close as possible to the applications that use them. If this principle
is followed, applications do not incur the costs and complexity of core functions
that they do not use, nor do they contend with core functions that conflict with
their goals.

Originally TCP was the only IP transport protocol. In the best-known ap-
plication of the end-to-end principle, TCP was separated from IP, and UDP was
added, when the early designers realized that TCP is ill-suited to real-time traf-
fic such as voice [5]. TCP reliability and ordering introduce delays (while lost
packets are retransmitted). Voice protocols cannot tolerate delay, and they deal
with lost packets by other means such as interpolation.

A different and equally influential principle that is usually confused with the
end-to-end principle is the “fate sharing” principle.1 The fate sharing principle

1 The confusion arises because the name “end-to-end” actually fits the fate sharing
principle better than it fits its own principle.



says that it is acceptable to lose the state information associated with an entity
only if, at the same time, the entity itself is lost [5]. In the best-known application
of the fate-sharing principle, all TCP functions run in the hosts at the endpoints
of TCP connections. Even if there are transient failures in the network, the hosts
can continue to communicate without having to reset their states.

3 The real Internet

The classic Internet architecture is a victim of its own success. Having succeeded
so well at empowering users and encouraging innovation, it has been made ob-
solete by explosive growth in users, traffic, applications, and threats.

3.1 Network management and operations

The Internet was not designed with management in mind, yet the administrators
of today’s networks face critical problems of configuration, traffic engineering,
routing policy, and failure diagnosis. Their tools for understanding network traf-
fic are poor, and their mechanisms for controlling network operations do not
offer a predictable relationship between cause and effect.

Most of the Internet consists of autonomous subnetworks that are either op-
erated by organizations for their own purposes, or operated by service providers
for profit. In this environment, economic incentives work against many important
goals [6]. No network operator has the power to provide better end-to-end qual-
ity of service (including bandwidth or latency guarantees, high availability, and
fast DNS updates) across the boundaries of autonomous subnetworks. Because
no network operator has the power to provide it, no operator can charge for it,
and so no operator has an incentive to support it. Furthermore, no operator has
a strong incentive to implement improved technology for global network man-
agement, because improvements yield no benefit until most other autonomous
subnetworks have also implemented them.

Internet routing is beginning to have serious problems of scale. The routing
table in a typical router now has 300,000 entries, and these must be stored in
the fastest, most expensive types of memory to maintain routing speed.2 There
are efforts to move toward a scheme in which a typical routing table has one
entry per autonomous system, which points to a router that can route to all the
addresses for which that autonomous system is responsible.

3.2 Middleboxes

To understand the issues of Internet software, it is important to consider middle-
boxes. A middlebox is a stateful server that lies in the middle of a communication
path between endpoints. It is distinguished from hosts, which are the endpoints

2 One of the main obstacles to acceptance of IPv6 is the high cost of routers able to
handle 128-bit IP addresses.



of communication paths. It is also distinguished from routers, which maintain
no state concerning particular instances of communication. A middlebox can
perform any function desired [7], in contrast to routers, which are constrained
to forwarding packets without altering them.

Middleboxes are ubiquitous in the Internet, as will be discussed in the next
two subsections. They have always been controversial, partly because of the
unfortunate things that have been done with them, and partly because every
middlebox violates the principle of fate sharing.

3.3 Network and transport layers

By the early 1990s two deficiencies of the classic Internet architecture had be-
come recognized as major problems:

• The 32-bit IPv4 address space is too small for the demand.
• There is no provision for secure private subnetworks.

The address space was effectively extended by Network Address Translation
(NAT), which allows many machines on a private subnetwork to share a single
public IP address. Private subnetworks were fenced off by firewalls. Both are
implemented by middleboxes, and NAT and firewall functions are often combined
in the same middlebox. These middleboxes are embedded so completely in the
network (IP) layer that basic understanding of Internet reachability requires
taking them into account [8].

NAT boxes and firewalls are everywhere: all business enterprises and Internet
service providers have them—maybe even several tiers of them—and they are
packaged with most residential broadband offers. Despite their obvious value,
NAT and firewalls do enormous harm from the perspective of those who need to
build and deploy applications. This is not because their functions or middleboxes
in general are intrinsically harmful, because they are not [9]. The harm is done
by heedless conflation of the concerns of network, transport, and application
layers.

To begin with NAT, Figure 2 shows a typical NAT box on the border between
a private subnetwork and the public Internet. Many different private subnetworks
re-use the same “private” portion of the IP address space. This means that some
of the nodes in the subnetwork have distinct private addresses but share a small
number of public IP addresses, which are the addresses of the subnetwork’s NAT
boxes.

On its public side the NAT box has an IP address and many ports.3 A public
port encodes a private address, port pair, so that a node on the subnetwork can
communicate on the open Internet. An example of this encoding is shown in
Figure 2. Because there are obviously fewer public ports than private address,
port pairs, most public ports are allocated dynamically by the NAT box and
released as soon as possible for re-use.

3 There are many variations in the way that NAT boxes and firewalls work. This
section describes common and representative schemes.



public Internetprivate subnetwork

host
IP

host

IP 213.18.123.100:3332

192.168.32.11:4444
address port

213.18.123.100

NAT box

213.18.123.100:3331

192.168.32.12:5555

Fig. 2. Source addresses and ports altered by Network Address Translation.

Because of NAT, many machines on private subnetworks do not have persis-
tent public addresses. It is impossible for applications on machines outside the
subnetwork to initiate communication with the applications on such a machine,
even if this would be useful and firewall security is configured to allow it. In this
case, application-layer concerns are sacrificed for network-layer goals.

Port numbers are transport-layer mechanisms used by TCP and UDP to
distinguish different sessions or applications at the same node (applications are
named by well-known ports). Yet NAT boxes alter port numbers for network-
layer reasons. As a result of this conflation of concerns, applications can no
longer use them the way they are supposed to be used. For one example, even if
a NAT box is configured to leave well-known ports alone, at most one node of
the private subnetwork can receive requests at a well-known port. For another
example, remote port manipulation by NAT boxes means that an application
cannot observe, control, or communicate its own port numbers.

Turning to firewalls, a NAT box often acts as or in conjunction with a firewall.
In its default setting, a firewall only allows communication initiated from inside
the private subnetwork. A node in the subnetwork sends a message to an IP
address and port on the public Internet. Both source and destination address,
port pairs are stored in the firewall, and only subsequent messages from the
public destination to the private source are allowed in.

Peer-to-peer communication can only be established if one endpoint initiates
a request and the other endpoint accepts it. Until 2004 it was considered impos-
sible to establish a TCP connection between two peers behind different default
firewalls. Even now it only works 85-90% of the time, because the solution is a
hack depending on the details of firewall behavior, which vary widely [10].

All of these issues are relatively unimportant for client-server applications
such as Web services, at least when the clients are private and the servers are



public. The issues are critical, however, for peer-to-peer applications such as
voice-over-IP.

There is a large selection of mechanisms to make peer-to-peer applications
such as voice-over-IP possible. However, all of them have major flaws or limita-
tions. NAT boxes and firewalls are sometimes configured manually to allow this
traffic, but this is too difficult for most people to do, and violates the security
policies of large organizations. Clients, application servers, NAT boxes, and fire-
walls can all cooperate to solve the problems automatically, but this requires
a degree of coordination and trust among software components that is rarely
feasible. Ad hoc mechanisms such as STUN servers4 exist, but these mechanisms
are fragile, and do not work with common types of NAT, types of firewall, and
transport protocols.

Finally, when implementors cannot use TCP because of firewalls, they some-
times re-implement the features of TCP that they want on top of UDP.5 In
addition to the waste of effort, this is almost certain to subvert TCP congestion
control.

3.4 Middleware and applications

Applications need a broad range of effective mechanisms for security and end-
point mobility. Although is not clear whether these mechanisms should be in
networks, middleware, or applications (or all three), it is clear to everyone that
current capabilities are inadequate.

Many of the middleware functions listed in Section 2 cannot be provided in
accordance with fate-sharing, or cannot be provided as well [11, 12]. For example,
the only way to protect endpoints against denial-of-service attacks is to detect
malicious packets before they get to the endpoint. So this function must be
provided in the network, even though detecting malicious packets often requires
maintaining state information that violates the principle of fate-sharing.

Application middleboxes were more controversial ten years ago. By now the
philosophical debate seems to be over, with the trend toward “cloud comput-
ing” having finalized the legitimacy of servers in the network. Furthermore, fate
sharing is less important now because network servers are commonly run on
high-availability clusters.

Although the debate is over, a serious problem remains: the Internet architec-
ture does not support application-level middleboxes. Consider, for example, the
problem of introducing Web proxies into the paths of HTTP messages. There
are many kinds of Web proxy, providing functions such as caching, filtering,
aggregating, load-balancing, anonymizing, and reformatting. They serve the in-
terests of diverse stakeholders such as users, parents, employers, Internet service
providers, and Web content providers.

4 A machine behind a NAT box can query a STUN server to find out what address
and port the NAT box has currently assigned to the machine.

5 Because UDP does not require an initial handshake, it is easier to traverse firewalls
with UDP.



Figure 3 shows the desired path of an HTTP request, from a browser on an
employee’s desk through three proxies:
• a privacy proxy desired by the employee, to reduce information leakage and

annoyance;
• a filtering proxy desired by the employing enterprise, to block access to some

Web sites;
• a caching proxy desired by the Internet service provider, to improve perfor-

mance and conserve resources.
The choices for implementing this chain by introducing the middleboxes into the
path of the HTTP request are not attractive.

Web
browser

privacy
proxy

filtering
proxy proxy

Web
server

caching

Fig. 3. The path of an HTTP request.

First, a browser or proxy can be configured with the address of the next
proxy in the path. This is administratively burdensome and very inflexible. It can
also be circumvented by one stakeholder acting against the interest of another
stakeholder. For example, why should the privacy proxy (or the Web browser,
if there is no privacy proxy) direct requests to the filtering proxy against the
user’s own interest?

Second, an implementation of IP can look inside messages to find the HTTP
requests, and route them in a special way. Finally, a local DNS server can be
programmed to answer a query for the IP address of a Web service with the IP
address of a local proxy instead. These mechanisms are both messy, burdensome,
and inflexible. They break the rules of IP and DNS, respectively, and are only
available to some stakeholders.

Because of problems such as these, protocols such as Mobile IP [13] and IP
multicast [14] rely on special IP routers, addresses, and routing. In this way their
designers avoid the limitations that most application programmers must accept.

3.5 Principles and priorities

The range of problems observed today is not surprising. The Internet was created
in simpler times, among a small club of cooperating stakeholders. As the Internet
becomes part of more and more aspects of society, it will inevitably be subject
to more demands from more stakeholders, and be found deficient in more ways
[15].

This final section of the status report turns to impressions of the principles
and priorities that have shaped the Internet so far. These impressions are subjec-
tive and not completely fair, because the Internet has been shaped by historical,



political, and economic forces beyond anyone’s control. All of the tendencies,
however, are readily apparent in current networking research as well.

The networking community has a good understanding of the demands of
scalability and the value of hierarchy in meeting those demands. I would not
say it has a good understanding of the end-to-end principle, because it is usu-
ally confused with the principle of fate sharing. Performance, availability, and
efficiency are the highest priorities by far.

There are some principles and ideas, understood very well by software engi-
neers, that appear to be unfamiliar to the networking community—or at least
to large segments of it:

Complexity matters. The trouble with software is that it can do anything,
no matter how complex, convoluted, fragile, incomprehensible, and ill-judged.
Software engineers understand the cost of such complexity. Because the net-
working community underestimates the cost of complexity, it pays no attention
to one of the most important problems of the current Internet, which is that it
is much too difficult to build, deploy, and maintain networked applications.

Separate concerns. “Tussle” describes the ongoing contention among stake-
holders with conflicting interests, as they use the mechanisms available to them
within the Internet architecture to push toward their conflicting goals [15]. Be-
cause the mechanisms they use are always intertwined with many other mecha-
nisms, and each mechanism was designed to address many concerns, the result
of tussle is usually to damage efforts to reach unrelated goals.

With the right abstraction, a structure can be both simple and
general. Here the best example is the application protocol SIP [16], which is the
dominant protocol for IP-based multimedia applications, including voice-over-IP.
SIP is currently defined by 142 standards documents totaling many thousands of
pages (and counting) [17]. Each new requirement is met with a new mechanism.
There seems to be no conception that a protocol based on better abstractions
could be both simpler and more general.

Think compositionally: there is no such thing as a unique element.
Networking is full of things that are treated as unique, when they are actually
just members of a class that need to be considered in relation to one another
and often composed in some way. “The stakeholder deciding on the proxies
for an HTTP request” is one such example, as described in Section 3.4, and “a
communication endpoint” is another. For example, if a proxy blocks a request for
some reason, then the proxy is the endpoint of the communication, rather than
the IP host to which it is addressed. Compositional thinking will be discussed
further in Section 6.

From the viewpoint of Internet users and application programmers, there
are requirements that sometimes equal or exceed performance, availability, and
efficiency in priority. These include ease of use, correctness, predictability, and
modularity. The use of functional modeling and formal reasoning to help meet
such requirements is all-but-unknown in the networking community.



4 Internet trends and evolution

4.1 Trends in practical networking

As we would expect, people have found a variety of ways to work around the
shortcomings of the Internet as they perceive them. In addition to code work-
arounds, two of them operate on a larger scale.

First, many new networks have gateways to the Internet but do not run
IP. These include mobile telephone networks,6 and also many other wireless,
enterprise, and delay-tolerant networks.

Second and most important from the perspective of software engineering,
enterprises deploy what they need in the form of Internet overlays. An overlay
is a custom-built distributed system that runs on top of the core layers of a
network, for the purpose of simulating a different or enhanced architecture. In
general an overlay consists of user machines, servers, protocols, data structures,
and distributed algorithms. In general an overlay can cross the boundaries of
autonomous subnetworks.

Many overlays run on the current Internet. Akamai runs a content-delivery
overlay providing high availability, low latency, and fast DNS lookup/update
[18]. Skype achieved instant popularity as a voice-over-IP service partly because
it was the first such peer-to-peer service to penetrate firewalls successfully. Many
global enterprises rely on Virtual Private Networks (VPNs), which are overlays,
for security.

Returning to the discussion of voice-over-IP in Section 3.3, Skype uses an
overlay solution to the firewall problem as follows [19]. Users on private sub-
networks initiate TCP connections to servers or designated peers on the open
Internet. These servers connect with each other, and all messages between peers
on private subnetworks are relayed by these servers. This is a very inefficient way
to transmit high-bandwidth real-time voice data, which should travel between
endpoints by the shortest possible path [20].

4.2 Trends in networking research

In the networking community, researchers have been working on deficiencies in
the Internet architecture for at least a decade.

In the first half of the 2000s, the research climate was dominated by the
belief that research is pointless unless its results can be adopted easily within the
existing Internet. Attempting to work within this constraint, people realized that
the current architecture makes solving some problems impossible. The idea of a
“clean slate” architecture became popular, if only as an intellectual exercise that
might lead to fresh ideas and a more scientific foundation for research. Under the
title “Next Internet,” clean-slate research gained funding and attention world-
wide. Researchers gave serious attention to how the results of such work might
find their way into practice [21, 22].

6 The public landline telephone network does not run IP either, but it would not be
expected to do so, as it preceded IP by a century.



Even before the question of how results could be used, a clean-slate research
agenda faces the question of how new ideas can be evaluated. For an experiment
to be convincing, the experimental network must be large-scale and open to
public use.

The answer to this question, according to widespread opinion in the net-
working community, is virtualization. This refers to technology for supporting,
on a real network, a set of independent virtual networks. Virtualization must
guarantee each virtual network a specified slice of the underlying network re-
sources, and must also guarantee that applications and data on different virtual
networks are isolated from one another. Virtualization can provide a large-scale
test-bed for multiple parallel experiments, at reasonable cost [23]. Virtualization
technology itself is now a major subject of research.

There are two ways that these research trends could lead to success. One
is that a particular “Next Internet” architecture emerges as the leader and is
adopted globally as the Internet architecture for the next few decades. The other
is that no architecture emerges as the leader, yet virtualization works so well
that no single architecture is required. These are the “purist” and “pluralist”
outcomes, respectively [23].

How would a pluralist outcome be different from the current situation, in
which more and more stakeholders resort to overlays? As envisioned, the pluralist
outcome has three major advantages:

• Provided that virtualization comes with the right economic incentives, a vir-
tual network can get a guaranteed allocation of resources end-to-end, so it
can offer predictable quality of service to its users.

• Virtualization is intended to expose the capabilities of the underlying hard-
ware as much as possible, so that virtual networks can monitor and exploit
them better than is possible now.

• A virtual network is a clean slate, without the obstructions and complications
of existing core layers that current overlays must contend with. In allowing
applications to get as close to the physical and link layers as necessary, it is
a return to the end-to-end principle.

4.3 Prospects for evolution

Concerning virtualization and “Next Internet” investigations, Roscoe expresses
a popular viewpoint in regarding the pluralist outcome, not as a consolation
prize, but as the preferred alternative [24]. Certainly it seems the more likely
result, given that the purist outcome requires the kind of global consensus that
is very difficult to achieve in any public concern.

If neither of these outcomes takes hold, then the Internet will certainly con-
tinue evolving in ways that make the classic IP architecture less important.
There will be more networks that do not use IP, and more overlays designed to
avoid various aspects of it. Overlays will become “application-specific networks”
because all networking problems, from application programming to traffic engi-
neering and monitoring, are easier if the application is known.



From a top-down viewpoint, all the possible paths of evolution look similar.
There is certainly a new openness to clean-slate thinking and application-specific
thinking. Hopefully there is also increased appreciation of the richness of net-
worked applications and the importance of fostering innovation by making them
easier to build.

5 A pattern for network architecture

This section defines an overlay as a unit of network architecture. In [25], Day
argues convincingly that this is the only type of architectural unit. There can be
many instances of the overlay type, differing in their ranks, scopes, and proper-
ties. The choice of the term “overlay” is discussed in Section 5.4.

Day’s pattern for overlays is unusually thorough and explicit. The presenta-
tion in Sections 5.1 through 5.2 is a much-abbreviated form of it.

Day’s pattern is also well-thought-out and appears to be quite general. For
this reason, it seems to be an excellent starting point for further research on
network architecture.

5.1 Definition of an overlay

An overlay is a distributed inter-process communication facility. It has members,
each of which is a process running on some operating system on some machine.
It also has a name space and some mechanism for enrollment (either dynamic
or by static configuration) by which processes become members and get unique
names from the name space. An overlay process belongs to only one overlay. The
membership of an overlay is its scope.

An overlay offers a communication service to overlays and applications above
that use it. From the perspective of the upper overlay (or “overlay” for short),
the programming interface to the lower overlay (or “underlay” for short) gives
overlay members the abilities to:
• register and authenticate themselves with the underlay;
• provide information to the underlay about their location, i.e., a member of

the underlay on the same machine;
• provide information to the underlay about which overlay members have per-

mission to communicate with them;
• authorize expenditures of resources in the underlay;
• request a communication session with another member of the overlay (by

overlay name), and receive an identifier for it;
• accept a requested communication session (associated with the requestor’s

overlay name) and receive an identifier for it (which need not be the same as
the requestor’s identifier);

• send or receive messages in a session, using its identifier; and
• close a communication session.

As with enrollment, an overlay can give information to an underlay dynamically
or by static configuration.



To implement the sessions of the communication service that it offers, an
underlay includes mechanisms to:
• maintain directories with the locations and permissions of registered overlay

members;
• enforce the permissions and authorizations of the overlay;
• allocate, manage, and release resources, which often include sessions in other

underlays below itself;
• route and forward messages, which may have data units different from those

of the overlay;
• perform error control and congestion control on transmission of messages;

and
• account for resources used by the overlay.

Returning to a focus on a single generic overlay, the members of an overlay
are sometimes partitioned into hosts and routers, but this is not a necessary
distinction. The rank of an overlay is its place in the use hierarchy.

In Day’s view all of the classic IP core is one overlay, including IP, TCP,
UDP, and DNS.7 This is consistent with the nature of current non-IP overlays,
which contain all these parts. For example, i3 is a well-known overlay suitable
for a variety of purposes [26].

5.2 Private subnetworks

Figure 4 shows an arrangement of overlays suitable for an application that tra-
verses the boundaries of private networks. A and D are application processes.
The application (described as an overlay, although it may not export a service
for higher applications) must have at least as many processes as participating
user machines. The application has a permission scheme in which A can initiate
a session with D. All processes are labeled with their names within their over-
lay, and registered as co-located with the processes directly below them in the
diagram.

Below the application is an overlay for the application infrastructure, con-
taining a process on every machine that participates in the application, whether
user or server/router. For the session between A and D, this overlay checks
permissions and chooses route a, b, c, d.

At the lowest rank of the figure there are three overlays, a public network and
two private networks. Processes in these overlays represent points of attachment
to these networks. As we can see in the figure, processes b, b, and b’ are co-located
at a machine that serves as a gateway between public and private networks, as
are processes c, c, and c’. The arrows show the path of a message from A to D.

This structure provides opportunities for security that do not depend on
discriminating arbitrarily against peer-to-peer applications, as firewalls usually
do. Security is discussed further in Section 6.4.

Each network overlay need only have a name space large enough for its mem-
bers, and it is independent of the name space of any other overlay. Thus the

7 The distinction between TCP and UDP is de-emphasized.
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Fig. 4. Interoperating networks are overlays with the same rank.

structure is as good as NAT for managing name spaces of limited size. Applica-
tion processes refer to each other by names in their own overlay, regardless of
where they are located or attached.

5.3 Mobility and multihoming

Mobility is the movement of processes in one overlay with respect to other over-
lays. Figure 5 is similar to Figure 4, except that the vertical lines show the reg-
istered locations of processes. The dashed lines are permanent locations while
the dotted lines are transient locations.

Initially b is located at b in the leftmost network, and a can reach b in one
hop in the infrastructure overlay. Later the machine containing B and b moves
to the rightmost network, so that it loses its point of attachment b and gains a
point of attachment b’. At this later time, the infrastructure overlay must route
messages from a to b through c.

Throughout the movement of this machine, the infrastructure overlay can
maintain a session between A and B, because it always has the ability to reach
b from a. This illustrates that the scope of an overlay includes all processes
that can reach one another without forwarding in a higher overlay. In contrast,
processes c and c’ are not in the same overlay, and cannot reach each other
without forwarding in the infrastructure overlay.

Mobility and multihoming are different points on a continuum. With multi-
homing, a process maintains multiple points of attachment, possibly to different
overlays, on a permanent basis. For example, c is multihomed to c and c’. With
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Fig. 5. Mobility is a dynamic relationship between overlays.

mobility, a process may never have two points of attachment at the same time,
or have two only transiently.

5.4 Overlay composition

Previous work on overlay composition has proposed two operators for compos-
ing overlays, layering and bridging [27, 28]. Layering is the use of one overlay
by another overlay of higher rank. Bridging is an operator that composes two
overlays of the same rank, such as the networks in the bottom ranks of Figures 4
and 5.

As these figures show, bridging is a top-down concept, something that an
overlay does with two overlays below it. As an operator joining two overlays
of the same rank, bridging is always under-specified and probably a step in the
wrong direction. A proper operator would have to specify which are the common
elements of bridged overlays, when and how a message is forwarded from one
overlay to another, and what service the composed overlays offer to a higher
level—all very difficult to do from the bottom up. Such errors are common
in networking, due to the chronic absence of specifications (whether formal or
rigorous but informal).

I take as a working hypothesis—to be exploited and evaluated—that Day’s
pattern is the correct unit of architecture. Given its importance, its name is
also important. The three candidates are “layer,” “overlay,” and Day’s name
Distributed IPC Facility (DIF, where IPC is Inter-Process Communication).
“Layer” is not a perfect name because it is too easy to misunderstand it as
a rank (as in Figure 4) or as a global structure that all vertical paths must
traverse (as in Figure 1, or in cakes). “Overlay” is not a perfect name because of



its implication that it must lie over something else, which virtualization aims to
make less relevant. Acronyms, and especially recursive ones, impede intuition.
Because the confusion caused by “layer” seems much more serious than the
confusion caused by “overlay,” I have chosen “overlay.”

6 Research challenges, from the top down

Internet evolution is creating interest in a large number of research questions
concerning network architecture, many of which should be answered from a top-
down, application-centric viewpoint rather than a bottom-up, resource-centric
viewpoint. There should be no artificial distinction between “middleware” and
“network,” but rather a well-organized hierarchy of abstractions and implemen-
tations, problems and solutions.

6.1 Overlay organization

What is the range of functions and cost/performance trade-offs that overlays
can provide? Clearly evolution should move in the direction of offering more and
better choices to stakeholders and application developers.

How are overlays arranged in a use hierarchy? Presumably there will be
overlays with more application services at the top, and overlays with more clever
resource management at the bottom.

In an organization of overlays, how many overlays should there be, and what
are their scopes? These would seem to be the most important questions for
understanding and achieving scalability.

Within an overlay, can the interests of different stakeholders be represented
and composed in an orderly manner? Section 6.3 discusses a particular example
of such composition.

As with any mechanism for modularity, layering imposes some overhead in
terms of extra processes within an operating system, extra message headers,
etc. How serious is this overhead? Are there techniques for minimizing it when
necessary, and can they be used without destroying valuable boundaries?

An Internet of new overlays would require a tremendous amount of software.
To what extent can overlay code be parameterized? How can an overlay be
composed from smaller re-usable pieces?

Many of these questions are related to large bodies of research in program-
ming languages and software engineering, far too numerous to mention here.
New networking research should be drawing on their successful ideas.

6.2 Overlay interaction

Vertically adjacent overlays should interact only through their interfaces. Is the
interface template in Section 5.1 enough, or is more inter-overlay communica-
tion required? When are vertically adjacent overlays bound together? Can it be
delayed until runtime?



What about the possibility of explicit interaction between overlays that are
related vertically but not directly adjacent? For example, could a topmost overlay
choose the bottom overlay to be used by a middle overlay between them? Could
there or should there be any explicit interface between top and bottom overlays?

How does interaction across the interfaces of the use hierarchy represent and
compose the interests of different stakeholders? One issue is already handled
explicitly: an overlay can account for and charge for resources used by an upper
overlay.

Configuration is part of the interface between layers. In the Internet today,
configuration at all levels is a huge headache and major source of errors. Can we
design overlays to ease the task of configuration?

At a deeper semantic level, what is the specification of an overlay (the ser-
vice it offers) and what are its assumptions about the overlays it uses? How can
formal reasoning be used to verify that an overlay’s assumptions and implemen-
tation satisfy its specification, and that the specification of an overlay satisfies
the assumptions of an overlay that uses it? Are there principles governing the
properties of overlays and how they compose in the use hierarchy?

6.3 Communication primitives

Message transmission (UDP), reliable FIFO connections (TCP), and multi-
cast are familiar Internet primitives. Middleware commonly implements remote
method invocation and transactions.

It seems that there might be other communication primitives that could be
provided as “sessions” in the overlay pattern. Any of the following possibilities,
however, might turn out to be minor variants of other primitives, or so inter-
twined with an application that they cannot be separated as an application-
independent service.

An abstract name is a name that does not permanently denote a specific over-
lay process. Several possible primitives are related to abstract names. For one
example, a multicast name denotes a set of processes intended to receive all trans-
missions in some class. Other examples include publish/subscribe event-based
communication, message-oriented anycast, and connection-oriented anycast. (In
connection-oriented anycast, a connection request can go to any member of an
abstractly named anycast group, but once the connection is formed to a par-
ticular process it is point-to-point.) The semantics of abstract names has been
explored in [29].

In many high-performance applications today, processes migrate from one
machine to another. This is similar to mobility but not identical, as a process
changes the machine to which it is attached.8

The most interesting possibility in this area is support for applications that
are not monolithic, but rather are compositions of several applications. The
composed applications can be developed independently, and can represent the

8 Day views migration as a form of multicast. In his view, a post-migration process is
related to, but different from, the pre-migration process.



interests of different stakeholders. For example, Figure 3 can be seen as a com-
position of four applications (three proxies and a Web server). We know that
these applications can be developed independently. As explained in Section 3.4,
they represent the interests of four different stakeholders.

In this example the support needed is a way to assemble the servers into
the path of the HTTP request that is flexible, convenient, and prioritizes the
stakeholder interests in an orderly way. It is not a matter of naming—at least
not directly—because the only name given by the user is the name of the Web
server at the end of the chain.

This problem is actually a special case of the problem solved by Distributed
Feature Composition (DFC) [30, 31]. DFC is an architecture for telecommuni-
cation services composed of independent applications. In DFC the analog to
Figure 3 is a dynamically assembled, multi-party, multi-channel graph that can
change while connected to a particular endpoint, even splitting into two graphs
or joining with another graph. The applications appear in the graph because
endpoint names and abstract names subscribe to them.

Not surprisingly, routing to assemble a DFC graph uses subscriber data and
an extra level of indirection, so its overhead is too high for many Internet appli-
cations. The challenge here is to find weaker versions that scale better, so that
there are adequate solutions for each situation.

6.4 Security

As with the other research topics, the foundation of security is the association
between network structures and the stakeholders who control them, as well as
the trust relationships among stakeholders. Security mechanisms can relocate
trust, but not create it.

Security is often partitioned into three problems: availability, integrity, i.e.,
controlling changes to the system state, and confidentiality, i.e., keeping infor-
mation secret.

Two kinds of security are obviously inherent in the overlay pattern. On be-
half of its users, an overlay must enforce their policies on which user processes
have the authority to change configured state, and which user processes have
permission to communicate with which other user processes. On its own behalf,
it must enforce its own policies on which applications, overlays, and overlay
members can use it, and how they are held accountable for their expenditures.
These mechanisms would seem to generalize well to many aspects of availability
and integrity.

Confidentiality is most often enforced by encryption. The most natural place
for encrypting messages would seem to be within the overlay that is sending and
receiving them, rather than in the underlay that is transmitting them.

Theoretical considerations aside, the main point is that buggy software makes
bad security. With respect to security, the purpose of network architecture is to
make the operation of network software correct, comprehensible, and modular,
so that effective security mechanisms can be designed for it.



7 Conclusions

Because of opportunities created by Internet evolution, there are exciting and
important research challenges concerning how networks should be designed to
meet the growing needs of global networked applications. The observations in
Section 3.5 show that software engineers should be participating in this research,
because the skills, perspective, and values of our community are much needed.

“Internet architecture,” whether in the classic form of Section 2 or the re-
ality of Section 3, has always served as a boundary between the disciplines of
networking (below) and distributed software systems (above) [24]. To participate
in Internet research, we must break down this boundary. We must gain more fa-
miliarity with the design issues of layers below middleware. We must also work
harder to bring our perspective to the networking community, whether in indus-
try, academia, or the Internet Engineering Task Force (IETF).

Finally, software engineers should collaborate with researchers in the net-
working community to test their ideas and find the most efficient ways to imple-
ment them. One of the great strengths of the networking community is building
efficient, large-scale implementations of distributed algorithms. Another great
strength of the networking community is experimental evaluation of ideas. And
only collaborative research will foster the common terminology and shared values
needed for both communities to affect technology in practice.
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