
Compositional Binding in Network Domains

Pamela Zave

AT&T Laboratories—Research, Florham Park, New Jersey USA
pamela@research.att.com

Abstract. This paper considers network services that bind identifiers
in the course of delivering messages, and also persistent, point-to-point
connections made in the context of such bindings. Five patterns represent
the different ways that identifier binding can be accomplished. A formal
model incorporating these patterns is used to compare the properties of
the patterns, to define desirable network properties related to identifier
binding, and to establish sufficient conditions for guaranteeing them. The
results provide new insights into connections between mobile endpoints.

1 Introduction

1.1 The problem

The most complex aspect of network design and operation is routing. Although
network routing has been studied intensively, almost all investigations are fo-
cused on the goals of performance and reliability. This paper is also about rout-
ing, but its focus is on services: How should network services be built and de-
ployed? How can network architecture best support the needs of services?
Of all the possible purposes and behaviors of network services, this paper

concerns two: (1) Delivering a message that requires binding of an identifier. In
other words, the sender of the message knows the intended receiver of the mes-
sage by one identifier, and the network knows that receiver by another identifier.
To deliver the message, it is necessary to bind the first identifier to the second.
(2) Providing a persistent, point-to-point connection in the presence of identifier
binding. In other words, one or both of the connection endpoints knows each
other by an identifier that requires binding.
The specific goal of the paper with respect to these services is to classify all

the ways that they can be performed, and to elucidate the properties of each.
The potential benefit to service builders is that they can make informed design
decisions. The potential benefit to network architects is that they can determine
whether an architecture provides good support for services.
There are many reasons why a service might maintain two distinct identifiers

I1 and I2 with the same meaning, in the sense that both identify the desired
receiver of a message. Four of the most common reasons are:
† I1 represents an abstraction such as a group of equivalent endpoints, and I2
represents a concrete instance of the abstraction such as a member of the
group.

† I1 is a long-lasting identifier such as the published address of a mobile end-
point, and I2 is a short-lived identifier such as the current network address of
the mobile endpoint.

† I1 is a public identifier and I2 is a private one.
† I1 belongs to the address space of the subnetwork to which the sender is
attached, while I2 belongs to the address space of the subnetwork to which the
destination is attached. In this situation the sender cannot send the message
with address I2 because it is either illegal or has a different meaning in the
sender’s locality.
These bindings have interesting properties and interactions from a service per-
spective [10].

1.2 Approach to a solution

It is widely accepted in the network literature that naming and routing are
related (Balakrishnan et al. have assembled an excellent bibliography on the
subject [1]), but it is difficult to say exactly how they are related. What we find
in the literature is a bewildering variety of examples, particularly because the
explosive growth of the Internet has been accompanied by an explosion in the
ways its structures are used and the purposes they are used for.
The first contribution of this paper is a formal model that gives a precise

answer to the question of how identifier binding can be accomplished in the
course of message delivery (Sections 2 and 3). The scope of the formal model is
a network domain, which corresponds loosely to the use of one protocol within
one network layer. Three “patterns” identify the three major variations on the
theme of identifier binding.
The model is compositional in the sense that message delivery can involve a

composition of any number of bindings. It is used to define the domain properties
of reachability, determinism, and nonlooping, and to state some simple theorems
concerning them.
The formal model appears to apply equally well to all network layers and

protocols. Most interestingly, application of the model to the “link” and “net-
work” (IP) layers shows that IP routing is simply a special case of identifier
binding. This adds a fifth reason for binding to the list above, the new reason
being to get the message closer to its destination.
The second contribution of this paper concerns the structure necessary to

implement persistent connections in the presence of identifier binding. For this
to work, an endpoint must be able to send messages that respond to a message it
has received, and these messages must be delivered to the sender of the original
message. Two ways to do this are presented as patterns that can be combined
with the patterns for message delivery (Sections 4 and 5).
Returnability is the domain property ensuring correct connections (Section 4).

For a domain to have returnability, its various bindings must interact correctly.
Section 6 proposes a set of constraints for ensuring returnability in a domain,
and gives evidence of their sufficiency. Section 7 shows how the results apply to
the problem of sustaining connections between mobile endpoints.

The model is written in Alloy [3]. The formal reasoning is performed by
the Alloy Analyzer, which checks all possible instantiations of a model up to
a specified size. The size limits used were not arbitrary, but rather based on
reasoning about the model itself. Nevertheless, the claimed results should still
be confirmed by proof. For reasons of space this paper shows only fragments
of the model; the full model, including information about analysis bounds, is
available on the author’s Web site.

2 Domains

A domain exists to provide network communication among a set of agents known
as endpoints. Typically a domain is associated with the protocol that the end-
points use to communicate with each other, so there is an IP domain in the
network layer of the Internet, and TCP and UDP domains in the transport layer
of the Internet. In the application layer there are many domains associated with
protocols; for example, the SIP domain is associated with the SIP protocol for
for voice-over-IP and other media services [8].
The address space of a domain is the set of strings that the routing infras-

tructure of the domain can interpret. This infrastructure is represented by a
relation routing from the address space to the endpoints. For example, in the IP
domain, IP routing maps IP addresses to hosts.
Although routing is not constrained by the formal model, it is best to think

of it, at least initially, as an immutable function. More flexible mappings to end-
points, such as mappings defined on abstract identifiers, one-to-many mappings,
and transient mappings, are all provided by the bindings that are the subject of
this paper.
A path packages together agent attributes generator and absorber and address

attributes source and dest. If a domain supports a path, then it is consistent with
the domain model for the path’s generator to send a message in the domain with
those source and destination addresses, and for that message to be received by
the absorber. For a given generator, source, and dest a domain might support
more than one path, which means that it can route nondeterministically to any
one of a set of absorbers. In Alloy, the signature of domains and paths, and the
definition of support, are:

sig Domain { sig Path {

endpoints: set Agent, source: Address,

space: set Address, dest: Address,

-- Arrow is Cartesian product. generator: Agent,

routing: space -> endpoints } absorber: Agent }

pred DomainSupportsPath (d: Domain, p: Path) { {

-- Source address routes to generator (dot is relational join).

p.source in (d.routing).(p.generator)

-- The destination address routes to the absorber.

p.absorber in (p.dest).(d.routing) } }

Often a domain is partitioned by subnetworks, each of which may have its own
administration, address space, and routing function. Although interoperation of
subnetworks requires binding [11], this example of binding is not necessary for
exploring binding issues, so subnetworks are ignored in this paper.

3 Bindings and reachability

Endpoints are not the only agents participating in domains. There are also han-
dlers, which (among many other activities) absorb messages or forward them
on their way to their destinations. In the SIP domain, the handlers are SIP
application servers. In the IP domain, the handlers include firewalls, gateways,
and Mobile IP home agents [7]. In a lower-layer domain implementing IP, the
handlers are IP routers.
If a path from one endpoint to another includes handlers, it is divided into

hops as shown in Figure 1. One of the reasons for having handlers in paths is to
bind identifiers. The figure shows three patterns for delivering a message when
binding of an identifier I1 to an identifier I2 is required. Of the three patterns,
two entail the use of handlers in the message path.
In Pattern 1, the initiator does its own lookup of the binding of I1, and then

sends a message whose destination is the resulting identifier I2. An example of
Pattern 1 is the binding of DNS names to IP addresses in the IP domain.
In Pattern 2, the initiator sends the message with destination I1, which is

mapped by routing to a handler. The handler handles the message by looking up
the binding of I1 to I2, changing the message destination to I2, and forwarding
it. Most messages in the SIP domain employ Pattern 2. The domain has its own
address space, in which all addresses begin with the prefix sip. If a message
is sent with destination sip:I1, and if sip:I1 is associated with a server, the
message goes to the server. The server looks up the binding and changes the
destination to sip:I2 before forwarding the message.
In Pattern 3, I1 has two parts. The initiator sends the message with desti-

nation IA1, which is the address part of the identifier. IN1 is the name part of
the identifier, which is encapsulated in the message as a secondary destination.
IA1 is routed to a handler, just as I1 in Pattern 2 is. The handler has access to
the binding of (IA1,IN1), and handles the message by changing the destination
to the resulting identifier I2 and forwarding it. A good example of Pattern 3 is
a single-address Network Address Translator (NAT). In this case, IA1 is the IP
address of the NAT. IN1 is a port number, which is used to identify different
hosts behind the NAT.
The primary distinction between the three patterns is the type of identifier

that they can bind. Pattern 2 can only bind addresses in the address space of the
domain, because the message is sent with destination I1, and the destination field
of a message must be in the address space of the domain. For the same reason,
Pattern 3 can only bind pairs whose first components are addresses, although

dest = IN 1

1

dest = I

I

1

I

dest = IA

IA

dest = I 2

I
2

2

2

21

1

2

dest = I

dest = I 1

binding(I) = I
2

generator absorber

absorber

absorbergenerator

generator

Pattern 3

I
handler

handler

Pattern 1

Pattern 2

Fig. 1. Three patterns for delivering a message with binding.

their second components are unrestricted. We refer to unrestricted identifiers as
names. Pattern 1 can bind unrestricted names.
Another important distinction between the patterns lies in the distribution

of binding data. In Patterns 2 and 3, the binding of an identifier need be acces-
sible only to the handler for that identifier. In Pattern 1, the binding for every
identifier must be accessible to every endpoint.
Other distinctions arise from the fact that Patterns 2 and 3 employ a handler

in the path of every message destined for the identifier, while Pattern 1 does not.
The presence of the handler can be used to increase security [1], yet it can also
reduce performance and reliability.
The result of binding any identifier can be another identifier of any type,

itself requiring further binding. Thus binding is inherently compositional. If I2
is a name bound using Pattern 1, then the descriptions above are modified
slightly: instead of sending a message with destination I2, as stated above, the
endpoint or handler looks up the binding of I2 and then uses the result of the
lookup as appropriate to its type.
To create the simplest possible model of compositional binding, we can ab-

stract names, addresses, and address/name pairs as subtypes of a single type
identifier. Then domains and paths can be extended as shown below. The union
of all bindings that apply to message destinations in a domain is dstBinding.

sig Domain { sig Path {

... ...

dstBinding: Identifier -> Identifier origDst: Identifier

} }

pred DomainSupportsPath (d: Domain, p: Path) { {

...

-- Starting from origDst, dest is in the reflexive transitive

-- closure of binding.

p.dest in (p.origDst).(*(d.dstBinding))

-- No further binding applies to dest.

p.dest !in (d.dstBinding).Identifier } }

pred ReachableInDomain (d: Domain, i: Identifier, g: Agent) {

some a: Address | a in i.(*(d.dstBinding)) &&

a !in (d.dstBinding).Identifier &&

g in a.(d.routing) }

Paths are extended with an origDst attribute holding the identifier originally
given as a destination. Binding transforms it to dest, which must (as shown
above) be in the closure of the binding relation but not in its domain. Thus the
transformation from origDst to dest models a path of hops and handlers extend-
ing as far as possible before the last hop is routed to the absorbing endpoint.
An endpoint is reachable in a domain, from an identifier, if there could be a

path in that domain with that identifier as origDst and that endpoint as absorber.
It is now possible to define some useful domain properties. A domain is

nonlooping if chains of hops and handlers cannot be infinitely extended, or

pred NonloopingDomain (d: Domain) { no (^(d.dstBinding) & iden) }

This says that there is no intersection between the irreflexive transitive closure
of dstBinding and the identity relation. A domain is deterministic if an identifier
reaches at most one endpoint, or

pred DeterministicDomain (d: Domain) {

all i: Identifier | lone g: Agent | ReachableInDomain(d,i,g) }

Adding a new binding to a domain is performed by an operation whose
signature is:

pred AddBinding (d, d’: Domain,

newBinding: Identifier -> Identifier)

A precondition ensures that if a newly bound identifier (member of newBind-
ing.Identifier) is an address or address/name pair, then its address part belongs
to the address space of the domain. The operation simply puts the newBinding
tuples into dstBinding.
The domain properties of reachability, nonlooping, and determinism are pre-

served by adding a binding, provided that some unsurprising preconditions on the
arguments are added. A particularly important group of preconditions ensures
that the newly bound identifiers are unused in the old domain. The preconditions
are packaged in this definition:

pred IdentifiersUnused (d: Domain, new: Identifier) { {

no ((d.routing).Agent & new)

no ((d.dstBinding).Identifier & new)

no (Identifier.(d.dstBinding) & new) } }

The three conditions say that the identifiers in the argument set new are not in
the domain of routing, are not in the domain of the old dstBinding, and are not
in the range of the old dstBinding, respectively. To ensure that reachability in
the new domain is a superset of reachability in the old domain, it is sufficient to
have IdentifiersUnused(d,newBinding.Identifier). To preserve determinism, it is
sufficient to have unused identifiers and a precondition that newBinding is itself
deterministic. To preserve nonlooping, it is sufficient to have unused identifiers
and a precondition that newBinding is itself nonlooping.

4 Connections and returnability

From the perspective of binding, the most interesting use of message delivery is
to create persistent network connections between endpoints. Figure 2 illustrates
the setup of a connection.
The request message from the generator (now initiator of the connection)

is delivered to the absorber (now acceptor of the connection) as described in
Section 3. Because the source address can be altered in the course of the path,
the figure shows a new path attribute finSrc, which is the final source identifier
delivered to the acceptor.
To complete setup of the connection, the acceptor must send a response mes-

sage, and the response message must be delivered to the initiator. The remainder
of the paper concerns how the acceptor sends the response message, how we can
be sure that it is delivered to the initiator, and related matters.
In the terminology of this model, to return a message is to send a message

related to a previously received message, with the intention that the message
will go to the generator of the previous message. The returning agent must do
this in a fixed way, which is to invert the source and dest identifiers it received
in the message being returned. The necessary relationship between the path p1
being returned and the return path p2 is as follows:

pred ReturnPath (p1, p2: Path) {

p1.absorber = p2.generator &&

p2.source = p1.dest && p2.origDst = p1.finSrc }

As shown in Figure 2, the acceptor of the connection responds to the request
message by returning it. Once the connection is set up, either endpoint should
send messages within the connection by returning the last message they received
within the connection. This is also shown in Figure 2, where the initiator sends its
next message to the acceptor by returning the response message it has received.
The requirement on agents to return messages within a connection is an

architectural constraint. It is being imposed for the purpose of ensuring that
the return message goes to the generator of the message being returned, thus
maintaining a healthy connection. As explained in the next section, both the

finSrc2

dest2

source3 = dest2

origDst3 = finSrc2 dest3

origDst1

finSrc3 = finSrc1

initiator

acceptor

acceptorinitiator
source1 finSrc1

dest1

source2 = dest1

origDst2 = finSrc1

Repeat

Response

Request

Fig. 2. The anatomy of a connection. Path attributes in Roman type are addresses,
while path attributes in Italic type are identifiers.

finSrc and dest fields of a received message are related to bindings in the domain.
The returner of the message must use dest as source and finSrc as destination to
invoke the bindings as intended. For example, in the figure finSrc2 may not be
the same as origDst1, and the repeat message must use the more recent finSrc2
as its origDst.
Rather than being an onerous constraint, this requirement is easy to satisfy

and beneficial for other reasons. The source address of any message should be an
address that routes to the generating endpoint in the current state of the network
(see Section 2). This constraint provides a measure of security, and is enforced
in the Internet today by IP firewalls that perform ingress filtering. Returning
messages is an easy way to get this security.
A domain in which every return message is delivered to the generator of the

message being returned has the desirable property of returnability. This property
of a domain is defined as follows:

pred ReturnableDomain (d: Domain) {

-- If there is a terminating attempt to return a path, it must

-- go to the generator of the message being returned.

(all p1, p2: Path |

DomainSupportsPath(d,p1) && DomainSupportsPath(d,p2) &&

ReturnPath(p1,p2)

=> p2.absorber = p1.generator

) &&

-- If there is an attempt to return a path, it must terminate.

NonloopingDomain(d) &&

(all p1: Path | DomainSupportsPath(d,p1) =>

(all a: Address |

a in (p1.finSrc).(*(d.dstBinding)) &&

a !in (d.dstBinding).Identifier

=> a in (d.routing).Agent)

) }

The first major conjunct says that if a domain supports two paths, one returning
the other, the return path must end where the path being returned began. The
second major conjunct says that if a domain supports a path, an attempt to
return that path must always terminate. A loop in the destination binding could
prevent termination, so that is prohibited. An undefined dest address could also
prevent termination, so that is also prohibited.

5 Bindings and returnability

With respect to the return of a message whose delivery entails binding by means
of a handler, there are two patterns, as shown in Figure 3. A handler is inserted
in the path from initiator to acceptor, just to remind us of its presence.
In Pattern A, address I2 is the final source of the return message as delivered

to the initiator. In Pattern B, the return message goes through a handler because
it has source I2, not because of its destination. The handler inverts the binding,
so that the final source of the return message is I1.
Most domains do not have a built-in mechanism for routing a message to a

handler on the basis of its source address. However, DFC [2, 4] and SIP domains
have it, and it can be simulated by various mechanisms.
The two patterns lead to fundamentally different network behaviors. With

Pattern A only the first message of a connection goes through a handler, which
evaluates the binding exactly once for the connection. With Pattern B, every
message of a connection goes through a handler: each message from the acceptor
to the initiator goes through a handler that hides I2, and each message from the
initiator to the acceptor goes through a handler that re-evaluates the binding of
I1.
As a result of these differences, the two patterns are good for different pur-

poses. Pattern A is good for one-to-many bindings, for example bindings that
distribute requests across a pool of equivalent endpoints. For a particular re-
quest, the destination handler chooses a particular endpoint and its address I2.
All subsequent messages of the connection go directly between the requestor
and the chosen endpoint. The destination handler is free to choose a different
endpoint and address for the next request.
Pattern B is good for long-lasting connections to identifiers whose binding

changes over time, for example mobile bindings. Every message of the connection
goes through the destination handler, so these messages will continue to be
delivered to the same endpoint even as its network address changes.
Pattern B is far more expensive than Pattern A. Nevertheless, Pattern B

appears to be the only well-structured way to achieve true mobility. The meagre
deployment of Mobile IP, as described by Perkins [7], can be explained by the
absence of a mechanism functioning as the source handler in Pattern B. Without
it, the only way to get connection messages through the destination handler (so
the binding can change over time without disrupting the connection) is to have
source2 = I1. Such messages, however, are often blocked by ingress filtering
because I1 appears unrelated to the current address of the mobile endpoint.

finSrc2 =I

origDst1 = I

source
handler

dest
handler

finSrc2 = I

dest1 = I

2

2source2 = I

source2 = I1

1

2

2

Pattern B initiator

Pattern A initiator

acceptorinitiator

Fig. 3. Two patterns for returning a message with binding. If the original message
follows Pattern 3 and the return message follows Pattern B, then finSrc2 has both
address and name parts.

Because every message of a connection using Pattern B goes through at least
one handler, the pattern provides extra opportunities for security and privacy,
which should be included as benefits to balance its costs. For example, Pattern
B conceals I2 from the initiator of the connection, thus maintaining privacy for
the acceptor.
Referring back to Figure 2, this section so far has described the binding

of origDst1 to dest1, and how the choice of Pattern A or B determines whether
finSrc2 is the same as dest1 (Pattern A) or origDst1 (Pattern B). In other words,
it concerns how the initiator reaches the acceptor.
The patterns apply equally to how the acceptor reaches the initiator. In this

direction, the identifier by which the initiator is known to the acceptor is finSrc1.
In this direction Pattern A is vacuous, as source1 will be the same as finSrc1.
With Pattern B, however, a handler invoked when the source address is source1
changes it to a different finSrc1, and every message from the acceptor to the
initiator goes through a destination handler for finSrc1.
The A/B distinction does not apply to Pattern 1 because there the initiator

knows address I2 from the beginning. In effect, all Pattern 1 bindings are also
Pattern A bindings.

6 Structured bindings

To add Patterns A and B to our model of composable bindings, it is necessary
to extend domains and paths as follows:

sig Domain { sig Path {

... ...

srcBinding: Identifier -> Identifier, finSrc: Identifier

AdstBinding: Identifier -> Identifier, }

BdstBinding: Identifier -> Identifier

} {

dstBinding = AdstBinding + BdstBinding

}

pred DomainSupportsPath (d: Domain, p: Path) {

...

p.finSrc in (p.source).(*(d.srcBinding)) &&

p.finSrc !in (d.srcBinding).Identifier }

The generalization dstBinding is now the union of two destination bindings, one
following Pattern A and one following Pattern B. There is also a srcBinding that
transforms a source address to a finSrc identifier exactly as dstBinding transforms
an origDst identifier to a dest address.
Note that, in this simple model, source and destination bindings are applied

independently to each message. In a more complex model, the handlers might do
more than just bind, and their order might be significant. Routing to all source
handlers before any destination handlers has proven to be a very successful rule
for this situation [4].
The easiest way to ensure returnability in a domain with many bindings is

to impose structure on them. The following definition of a structured domain is
stronger than it needs to be for many real situations, where sufficient conditions
can be defined more locally. The point here is not to find the narrowest con-
straints, but rather to understand why certain domain properties are important
in general, and how they contribute to returnability.

pred StructuredDomain (d: Domain) {

let ADom = (d.AdstBinding).Identifier,

BDom = (d.BdstBinding).Identifier,

RDom = (d.routing).Agent,

BRan = Identifier.(d.BdstBinding) | {

NonloopingDomain(d)

-- The two bindings and routing operate on different identifiers.

no (ADom & BDom)

no (ADom & RDom)

no (BDom & RDom)

-- Except for AdstBinding, delivering a message is deterministic.

(all i: Identifier | lone i.(d.BdstBinding))

(all i: Identifier | lone i.(d.routing))

-- B bindings are invertible, are inverted by srcBinding.

all i: Identifier | lone (d.BdstBinding).i

d.srcBinding = ~(d.BdstBinding)

-- Pattern A bindings precede Pattern B bindings.

no (BRan & ADom) } }

The let clauses establish ADom, BDom, and RDom as the mapping domains of
A binding, B binding, and routing, respectively. These sets are constrained to

be disjoint because it is too difficult to write constraints if one identifier can be
treated, nondeterministically, in two different ways.
Routing and B binding must be deterministic because (for instance) they are

repeatedly applied to the messages of a connection. If these operations could
have multiple legal outcomes, there would be no assurance that all the messages
belonging to one connection would go to the same endpoint. Note that A bindings
can be nondeterministic (one-to-many), because an A binding is only evaluated
once per connection.
B bindings must also be invertible, because they must be (and are) inverted

by source binding. Seeing this constraint, one might wonder why routing does
not have to be invertible. What if a B binding maps identifier I to address A1,
and both A1 and A2 route to the same endpoint? The answer to the question
lies in the definition of returning a message, which requires that if the message
being returned came to the endpoint by means of I and A1, the source field of
the return message is A1 and not A2. This is important because A2 is not in the
range of BdstBinding, and therefore not in the domain of srcBinding.
Finally, there is no intersection between the range of B binding and the

domain of A binding, which means that in any composition of bindings, all A
bindings must precede all B bindings. The reason for this constraint is illustrated
by Figure 4, in which a B binding precedes an A binding in a compositional chain.
The return message has source = I3. This address is unknown to srcBinding,
because it was produced by an A binding. Consequently the B binding is not
inverted, and the return message is handled as if both bindings were A bindings.
If A bindings precede B bindings, on the other hand, the return works properly,
and the finSrc received by the initiator is the last result of A binding and the
first input to B binding.

B destgenerator

3
source = I

3
handler

3finSrc = I

acceptorA dest
handler dest = I

2I
1

origDst = I

Fig. 4. An A binding following a B binding nullifies the B binding.

Fortunately the most natural uses of A and B bindings obey this rule. For
example, in the IP domain, DNS lookups (A bindings) precede all other bindings.
The rule is most likely to be broken by accident, when a binding of either type
is acceptable, and a binding of the wrong type is chosen because of lack of
awareness of the consequences.
The AddBinding operation is extended in two ways to add A and B bind-

ings, respectively. The preconditions on the extended operations are sufficient to
preserve the structure of a domain.

Analysis with the Alloy Analyzer establishes that structure guarantees returnability—
a structured domain is a returnable domain as defined in Section 4. A finite
counterexample to the assertion could not have more than 2 paths, 3 agents,
and 10 identifiers, even if both paths entail the application of two bindings in
either direction. The Alloy Analyzer found no counterexamples to the assertion,
checking all possible instances with up to 2 paths, 3 agents, and 10 identifiers.
The possibility of an infinite counterexample is precluded because a structured
domain is nonlooping.

7 Mobility

The most interesting example of a B binding is one used to reach a mobile
agent. When a mobile agent moves its network attachment, the domain changes,
or, in logical terms, becomes a different domain. The following operation is an
example of the effect a move might have on a domain. In domain d1, endpoint
g is attached to the network at address a1. In domain d2, it is attached to the
network at address a2. The operation updates BdstBinding to track the change,
and srcBinding to preserve the structure of the domain. Analysis establishes that
if d1 is structured, d2 is also structured.

pred MobileAgentMove (g: Agent, a1, a2: Address, d1, d2: Domain)

{ {

-- Preconditions:

-- a1 is the result of a B binding.

a1 in Identifier.(d1.BdstBinding)

-- a1 is not in the domain of a B binding.

a1 !in (d1.BdstBinding).Identifier

-- a1 routes to g.

a1.(d1.routing) = g

-- a2 is unused.

IdentifiersUnused(d1,a2)

-- Postconditions:

-- Update the domain.

(let a3 = (d1.BdstBinding).a1 |

d2.routing = d1.routing + (a2->g) - (a1->g) &&

d2.BdstBinding = d1.BdstBinding + (a3->a2) - (a3->a1) &&

d2.srcBinding = d1.srcBinding + (a2->a3) - (a1->a3)

)

-- Frame conditions on domain parts that don’t change:

d2.endpoints = d1.endpoints

d2.space = d1.space

d2.AdstBinding = d1.AdstBinding } }

To check that a mobile move preserves returnability, we need a new definition
of returnability with a temporal dimension, because a message can be delivered

acceptorhandler

handler
B destinitiator

dest = a2

source = a1 source

a2
at

a1
at initiator

origDst = m

finSrc = m

move initiator from a1 to a2

Fig. 5. How a connection is maintained to a mobile endpoint.

in one domain and returned in another. This situation is illustrated by Figure 5.
In this figure, a request message is delivered, then the initiator (a mobile agent)
moves, and the response message is delivered in the new domain. The mobile
address m of the initiator is bound using a B binding.
The new definition of ReturnableDomainPair is very similar to the definition

of ReturnableDomain in Section 4. The only differences are that there are two
domains d1 and d2, it is d1 that must support the path being returned, and it is
d2 that must support the return path or attempted return path. Alloy analysis
establishes that the following assertion is true for all instantiations with up to 2
paths, 3 agents, and 8 identifiers. A finite counterexample to the assertion could
not have more than 2 paths, 3 agents, and 8 identifiers, even if if acceptor’s
identifier of the initiator has two bindings and the initiator’s identifier of the
acceptor has one binding.

assert StructureSufficientForPairReturnability {

all g: Agent, a1, a2: Address, d1, d2: Domain |

StructuredDomain(d1) &&

MobileAgentMove(g,a1,a2,d1,d2)

=> ReturnableDomainPair(d1,d2) }

The form of this assertion emphasizes that we are making a major simplification:
we are assuming that message delivery and moving a mobile agent are serializable
with respect to each other.

8 Related work, limitations, and future work

The current Internet architecture has two global name spaces, DNS (domain)
names and IP addresses. Various researchers have proposed that additional
global name spaces should be added to the Internet architecture. For exam-
ple, the Name Space Research Group has explored the possibility of adding one
name space [5], O’Donnell proposes adding one name space [6], and Balakrishnan
et al. have considered the addition of two [1].
The problem with the “global” approach is illustrated clearly by the fact that

no two of these four proposed global name spaces are exactly alike in their goals

and properties. Clearly there are more requirements than can be satisfied by
adding global name spaces, so it makes sense to try to understand fundamental
properties of name binding, in the hopes of satisfying requirements in a more
incremental way.

In related work [9], Xie et al. also define a compositional model of reachability
in networks. Their model includes packet filtering, which is not covered here, and
does not include the issue of replying to a message, which plays a large role here.
The purpose of their model is actual computation of reachability, and the model
is not related to general network properties.

A study of interoperating subnetworks [11] is related to the present work in
its approach and concerns. The present work improves on the previous study in
three ways: (1) It covers bindings created for all reasons, not just interoperation.
For example, of all the binding situations mentioned above, only one is related to
interoperation. The present work gives special prominence to bindings support-
ing mobility, which requires a model having a temporal dimension not present
in [11]. (2) Here, the sufficient conditions for returnability do not require that
routing be completely deterministic. This is an important relaxation of demands.
(3) Here, the sufficient conditions for desirable properties are simpler and easier
to understand.

The model in this paper does not preserve the actual history of handlers
or bindings that contribute to a path. This is a limitation, as many interesting
capabilities and properties rely on this history.

Figure 6 illustrates this limitation. Alice has an identifier anon that she
publishes in certain contexts, giving address alice only to trusted associates. If
anon is bound with a B binding as modeled in this paper, every return message
from Alice will have finSrc = anon, regardless of whether the connection was
requested by a friend or by a stranger. If anon is bound with an A binding the
problem is even worse, as a stranger will receive return messages with finSrc =
alice.

handler

generator

generator

finSrc = anon source = alice

B dest

Response to

Request

Request

handler
source

acceptordest = alice
origDst = alice

origDst = anon

either Request

Fig. 6. These bindings do not support privacy well.

This limitation can only be removed by adding a mechanism that remembers
more about the request message. The issue is not adding history to the for-

mal model—which is straightforward—but rather understanding all the possible
mechanisms, their properties, and their architectural implications.
Another limitation, made obvious by Section 7, is that delivering a message

through a domain and modifying the domain are assumed to be serializable
with respect to each other. This assumption is far from reality, and insights into
realistic network behavior based on rigorous reasoning would be an important
contribution.
Another limitation of this work is that the rules for managing bindings are

global with respect to the domain, and therefore difficult to apply. A more prag-
matic approach might be to introduce the concept of hierarchical name spaces,
which are widely used for scalability, to convert the rules into a form that is
local and easy to apply.
By extending this work in the directions mentioned above, we would very

quickly be studying problems at the very heart of Internet routing, security, and
scalability. The prospect is equally exciting and daunting. By working top-down
from abstract models and extending them carefully, however, we have a chance
of making valuable discoveries that the usual bottom-up approach to networking
will never reach.

References

1. H. Balakrishnan, K. Lakshminarayanan, S. Ratnasamy, S. Shenker, I. Stoica, and
M. Walfish. A layered naming architecture for the Internet. In Proceedings of
SIGCOMM ‘04. ACM, August 2004.

2. G. W. Bond, E. Cheung, K. H. Purdy, P. Zave, and J. C. Ramming. An open
architecture for next-generation telecommunication services. ACM Transactions
on Internet Technology, 4(1):83–123, February 2004.

3. D. Jackson. Software Abstractions: Logic, Language, and Analysis. MIT Press,
2006.

4. M. Jackson and P. Zave. Distributed Feature Composition: A virtual architec-
ture for telecommunications services. IEEE Transactions on Software Engineering,
24(10):831–847, October 1998.

5. E. Lear and R. Droms. What’s in a name: Thoughts from the NSRG. IETF Name
Space Research Group, work in progress, 2003.

6. M. J. O’Donnell. Separate handles from names on the Internet. Communications
of the ACM, 48(12):79–83, December 2005.

7. C. E. Perkins. Mobile IP. IEEE Communications, May 1997.
8. J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks,
M. Handley, and E. Schooler. SIP: Session Initiation Protocol. IETF Network
Working Group Request for Comments 3261, 2002.

9. G. Xie, J. Zhan, D. A. Maltz, H. Zhang, A. Greenberg, G. Hjalmtysson, and J. Rex-
ford. On static reachability analysis of IP networks. In Proceedings of IEEE Info-
com. IEEE, March 2005.

10. P. Zave. Address translation in telecommunication features. ACM Transactions
on Software Engineering and Methodology, 13(1):1–36, January 2004.

11. P. Zave. A formal model of addressing for interoperating networks. In Proceedings
of the Thirteenth International Symposium of Formal Methods Europe, pages 318–
333. Springer-Verlag LNCS 3582, 2005.

