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Abstract—Distributed Feature Composition (DFC) is a new technology for feature specification and composition, based on a virtual
architecture offering benefits analogous to those of a pipe-and-filter architecture. In the DFC architecture, customer calls are
processed by dynamically assembled configurations of filter-like components: each component implements an applicable feature,
and communicates with its neighbors by featureless internal calls that are connected by the underlying architectural substrate.
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1 INTRODUCTION

HE feature-interaction problem [6], [14], [24] arises from
the incremental, feature by feature, extension of tele-

communications system functionality. As new features—
especially call-processing features—are added, it becomes
increasingly difficult to manage the behavioral complexity
of the features and their interactions. Redesign of old fea-
tures to fit smoothly with the new features is scarcely ever a
practical option. Eventually the resulting complexity dam-
ages the quality and productivity of all phases of software
development. The proceedings of three recent workshops
provide a representative sample of research on the feature-
interaction problem [3], [7], [9].

This paper introduces a technology, distributed feature
composition (DFC), for managing the feature-interaction
problem. The heart of DFC is a virtual architecture for tele-
communications systems in which a feature corresponds to
a component type (a few features correspond to two com-
ponent types—see Section 4.7); each customer call is han-
dled by building a configuration of instances of these com-
ponents, according to the features to be applied to that par-
ticular call. The feature component instances communicate
by featureless internal calls that are connected by the un-
derlying architectural substrate. A new feature is specified
by describing its corresponding component type (or, occa-
sionally, two component types) and the rules for including
the component instances into configurations.

The primary characteristic of the DFC architecture is that
each feature is implemented by one or two component types,
and each external call is processed by a dynamically assem-
bled configuration of components and featureless, two-port
internal calls. The resulting configuration is analogous to an
assembly of pipes and filters, and has the typical advantages
of the pipe-and-filter architectural style: 1) feature compo-
nents are independent, they do not share state, 2) they do not

know or depend on which other feature components are at
the other ends of their calls (pipes), 3) they behave composi-
tionally, and 4) the set of them is easily enhanced [12]. These
characteristics contribute greatly to the power of the archi-
tecture to manage feature interactions. DFC is a virtual ar-
chitecture, and offers many possibilities of convenient map-
ping to typical physical architectures.

Section 2 gives a brief overview of the DFC architecture,
to convey an intuitive understanding of how it works and
how it addresses the feature interaction problem. Section 3
gives a more detailed and formal description, and Section 4
discusses the specification of various features in a DFC set-
ting. In Section 5 we present a summary of the conclusions
we draw from our development and study of DFC, and of
the contribution that we believe DFC can make to address-
ing the feature interaction problem.

We have made various simplifying assumptions to avoid
complicating our presentation of DFC. We believe that
these simplifications are immaterial to the applicability of
DFC to a fully realistic context. They are briefly described in
Section 5.

2 OVERVIEW OF THE DFC ARCHITECTURE

The fundamental idea is to treat features as independent
components—which we call boxes—through which calls are
routed from caller to callee. The routing of a call reflects the
features to be applied to it.

We regard the system as having a virtual switch that
serves its customers through line interface (LI) boxes at its
periphery; features are provided by feature boxes (FBs), ap-
propriately interposed on the path between a calling and a
callee customer. In general, boxes are not shared among
calls: two concurrent collect calls will require two collect
feature boxes—that is, two distinct instances of the same
feature box type. All communication between boxes takes the
form of featureless internal calls connected by the virtual
switch at the command of its embedded router. The router
and switch, together with the necessary voice and signaling
paths, form the substrate of the architecture, routing and
connecting these internal calls from box to box.
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2.1 Usages
We use the simple term call chiefly to denote these internal
featureless calls. Episodes of customer service, usually re-
ferred to as calls, will here be referred to as customer calls or
usages. We will chiefly use the terms caller and callee to de-
note the boxes placing and accepting internal calls. Where
there is no ambiguity we will sometimes use call, caller, and
callee for a customer call and its originating and terminating
customers.

Fig. 1 shows a snapshot of one usage in the DFC archi-
tecture in a state in which two customers are talking.

Fig. 1. A usage in the DFC architecture.

The customers’ telephones are connected to the system
at the line interface boxes LI1 and LI2. Two features have
been applied to this usage, provided by the feature boxes
Fba and FBb. The arrows in the diagram show the routing
of calls and the directions in which they were placed. Cus-
tomer 1’s original request was routed as a call from LI1 to
FBa; FBa then placed a call that was routed to FBb; FBb
placed a call that was finally routed to Customer 2’s line
interface box LI2. The switch is, therefore, carrying three
internal calls in providing the connection between Cus-
tomer 1 and Customer 2.

Each call is carried by a two-way voice channel and
two signaling channels, one in each direction. To complete
the connection between LI1 and LI2, the feature boxes FBa
and FBb join the voice and signaling channels of the calls
in which they are participating. In general, a feature box
has full control over the calls to which it is connected. It
can coordinate their voice channels in any way desired,
freely joining and separating their voice signals, playing
announcements and tones, recording speech, and monitor-
ing the in-band signals. Similarly, it can control the out-of-
band signaling of its calls by suppressing or passing on
messages and by introducing new messages of its own. The
order of feature boxes in a usage is, therefore, significant.
The behavior of each feature box is independent of the be-
havior of other boxes; but the effect of its behavior will de-
pend on its position in the usage. Feature box precedence is
an important aspect of feature specification in DFC.

A feature box is configured into each usage in which it
may possibly be needed. For example, FBa may be an
Originating Call Screening (OCS) box, and FBb a Call For-
warding on Busy (CFB) box, configured into the usage by

the DFC router simply because Customer 1 subscribes to
OCS and Customer 2 to CFB. If the number dialed by
Customer 1 is not in the provisioned screening list, the
OCS feature box FBa will behave transparently, the usage
proceeding as if the box were not present; similarly, if
Customer 2 is not busy, the CFB box FBb will behave
transparently. This potentially transparent behavior of fea-
ture boxes is an important factor contributing to their inde-
pendence and to the freedom with which they can be com-
bined and inserted into usages.

When a feature box is actively providing its feature serv-
ice by nontransparent behavior, it does so without relying on
other boxes. For example, if the OCS box finds the number
dialed by Customer 1 in the provisioned screening list, the
OCS box will not place an outgoing call; instead it may send
an unobtainable message back to the customer. If the CFB box
detects that Customer 2 is busy, it tears down its outgoing
call and places another call to the directory number (DN)
specified by Customer 2 for such forwarded calls.

2.2 Call Routing
The routing of calls from box to box within the system is the
responsibility of the router embedded in the DFC switch.
The first internal call in a usage is typically placed by the
originating customer’s line interface box: the box sends the
switch a setup message containing an empty routing list and
four fields: 1) a source field (whose value is the DN of the
originating customer), 2) a dialed-string field, 3) an empty
target field, and 4) a command field with an associated modi-
fier (which in this case would specify that a new routing list
was to be constructed). The router may assign a value to the
target field from the dialed string; it then uses the four field
values, together with information about customer sub-
scriptions and features, to construct a routing list for the
usage. This list is then inserted into the setup message for
dispatch to the switch and onward transmission.

To dispatch a call, the router truncates the routing list by
removing its head entry, and requests the switch to connect
the call to the box specified in that entry. A box that receives a
call receives the truncated setup message; in many cases,
once that call has been set up, the box will then place a sec-
ond call whose setup message is a copy of the first. When the
switch receives this second setup message, the router again
truncates the routing list, and the switch connects the second
call to the appropriate box. In this way a chain of calls is
formed until eventually the routing list is empty and the last
call is routed to the line interface box of its final target.

2.3 Configuring a Usage by Zones
Features are selected by the router in three zones: “Source,”
“Dialed,” and “Target.” Intuitively, features in the Source
zone are applied to all calls made by the Source caller: for
example, the SpeedCalling (SC) feature is applied to every
call made by its subscriber. Similarly, features in the Target
zone are applied to all calls directed to the Target callee: for
example, the Call Forwarding on Busy (CFB) feature is ap-
plied because the callee subscribes to it. Features in the Di-
aled zone are applied according to the string dialed by the
caller: for example, the prefix ‘0’ causes the Collect feature
to be applied. Roughly, the three zones correspond to three
obvious subchains in the construction of a usage, as shown
in Fig. 2.
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The applicable feature boxes are specified in the routing
list field of the setup message in zone order. The routing list
specifies first the appropriate source zone feature boxes,
such as SC and OCS; then the appropriate dialed zone
feature boxes, such as Collect; and finally the appropriate
target zone callee feature boxes, such as TCS and CFB.
Within each of the three zones, the feature boxes appear in
the precedence order given by their feature specifications.

Although this arrangement of features in zones may at
first sight seem restrictive, we know of no case where it
precludes a desirable behavior or obscures or complicates
the desired application of features to a usage.

2.4 Routing Data
The DFC router uses three sets of global data: subscription,
specification, and configuration data. All of this data takes the
form of relations. Subscription and specification data (with
one exception) is partitioned by feature, each relational tu-
ple being associated with just one feature.

Subscription data records customer choices to subscribe to
optional features, such as OCS and CFB; all subscription
data is statically provisioned. Some features are compulsory
(for example, the Emergency Break-In feature (EBI) which
allows emergency service officials to break into an existing
conversation). All customers are considered to subscribe—
albeit gratis—to such features, and these subscriptions too
are recorded in subscription data.

The feature specification data records the general external
specifications of individual features: that is, their relation-
ships to usages and to each other but not the behaviors of the
feature boxes that provide them. These general specifications
describe the applicability of each feature, identify the box
types that provide it, and define a precedence order (not
partitioned by feature) in which feature boxes are configured
into a usage. Feature specification data is written by system
engineers when features are introduced or modified.

The configuration data records the set of boxes that exist
in the system, the DN of each line interface box, and the
internal addresses used for interface and feature boxes. This
data provides a part of the underlying mechanism for
routing, but does not affect the selection of feature box
types to be configured into usages.

2.5 Nonrouting Data
Another global set of data, not used in routing, is the feature
operational data. Most of this data is provided by customers
and accessed only for reading by the features that use it: for
example, a forwarding number for CFB is provided by the
customer and read by a CFB feature box. Some of this data
may be written and read by different boxes cooperating to
provide one feature: for example, the Automatic CallBack
(ACB) feature is provided by one box that stores the caller

ID for an unanswered call, and another box that later places
a return call at the callee’s request.

The local state of a feature box may contain data in any
necessary form. For example, a Collect feature may allow
the caller to record a spoken identification to be played to
the callee: the feature box can hold this recorded message as
internal data for subsequent playback to the callee.

2.6 More Complex Routing
In general, the behavior of the router will not be so simple
as the sketch above. A detailed description of the routing
scheme is given in Section 3; here we mention only some
obvious deviations from the simple sketch.

•� Often the target DN cannot be determined from the
original dialed string. If the customer is using the
Speed Calling (SC) feature, the target DN must be
obtained by the SC feature box from the SC feature
operational data; if the customer is using the Se-
quence Credit Card Calling (SCCC) feature, the target
DN for follow-on calls must be collected by the SCCC
feature box from digits dialed by the customer during
the usage.

•� Some features may use the command field of the setup
message to change the routing. The Call Forwarding
Always (CFA) feature changes the target before the
original callee is reached; this change will require rese-
lection of the callee features and hence reconstruction
of the unused part of the routing list. A usage resulting
from this kind of feature behavior can be regarded as
composed of segments, each segment having its own
“Source,” “Dialed,” and “Target” zones.

•� Not all usages can be depicted by linear graphs. A us-
age may fork as a result of a customer service request
during the usage. A customer who subscribes to Three-
Way Calling (3WC) can flash and dial digits to request
connection to a third party while maintaining an ex-
isting connection to another customer. Joins, too, can
occur. For example, the Call Waiting (CW) feature joins
a new caller customer into an existing connection.

2.7 Routing: Independence of Features
Although routing can be quite complex, as indicated above,
it does not encroach on the functions of the feature boxes.
In particular, it does not access the feature operational data.
For example, when the subscription data shows that a cal-
lee customer subscribes to CFA, the router merely inserts a
CFA box into the usage; it does not examine the operational
data and reroute the call to the provisioned CFA destina-
tion. Similarly, for a customer subscribing to OCS the router
inserts an OCS box into the usage: it does not examine the
dialed string and abort the call if the called number is in the
OCS customer’s screening list.

Fig. 2. Feature zones in a usage.
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2.8 Boxes and Ports
Calls are connected between named ports of boxes. Each inter-
nal call that is active at a line interface or feature box requires a
dedicated port of that box. In Fig. 1, each of FBa and FBb has
two active calls; each, therefore, must have at least two ports.
A Three-Way Calling (3WC) box must have three ports. A
feature box providing Large-Scale Conferencing (LSC) for up
to 10 participants must have at least 11 ports: one for each par-
ticipant and one for the operator.

Each port of a box is statically typed as a callee, caller, or
dual port. A callee port can only receive calls; a caller port
can only place calls; a dual port can play either role.

A line interface box communicates through the DFC
substrate with other boxes, making and receiving calls on
behalf of the customer it serves. It can participate in only
one internal call at any time, any multiplexing being han-
dled by boxes that provide call multiplexing features such
as CW or 3WC. A line interface box, therefore, has exactly
one port, of the dual type. Obviously the interface box
must also interact with its own customer line, but these
interactions are not constrained by the DFC architecture;
rather, they obey the native protocol of the external line or
trunk. Since these interactions are not internal calls they
do not require a DFC port.

2.9 Connecting Internal Calls
Calls are carried by the DFC substrate, which consists of the
switch, its embedded router, and numerous voice and sig-
naling channels. Each active port in the system is communi-
cating with one port of another box by a two-way voice
channel, and with the switch by two reliable FIFO buffered
signaling channels in and out. In addition, each box that
has a callee or dual port (and can, therefore, receive calls) is
connected to the switch by two reliable FIFO buffered sig-
naling channels in and out, that are associated with the box
itself and not with any port.

Each call is initiated by a dual or caller port of a box
sending a setup message to the router. The router determines
the callee box for the call, and the switch forwards the mes-
sage to that box. The box might have no idle callee or dual
port at which to receive the call, in which case it responds
with a quickbusy message and the call attempt has failed.

Alternatively, the box might accept the call. In this case,
the box reserves an idle callee or dual port for the call, and
returns a reserve message that names the chosen port in a
data field. Upon receiving the reserve message, the switch
informs the caller and callee ports, and provides a two-way
voice channel between them. If every feature box in a linear
usage connects its incoming and outgoing voice channels,
an unbroken voice path is formed between the originating
and terminating customer lines.

Either port can end a call by sending a teardown message.
The switch will respond by disconnecting the voice chan-
nel. The teardown phase of the call protocol ensures that
both ports are disconnected from the switch and their sig-
naling channels are flushed.

When a call has been set up between two ports, either
participating port can send status messages, and the
switch will forward them to the other port. For example,
the callee port can send a status message indicating that

the target destination is busy, or is alerting. The set of pos-
sible status messages can be easily extended to meet the
needs of new features.

2.10 In-Band and Out-of-Band Signaling
Messages sent by a port on its outgoing signaling channel
(out-of-band signals) are typically passed from box to box
along the chain formed by their configuration into a usage.
As a result, the precedence ordering of features and appro-
priate design of feature boxes can be used to resolve any
conflict among boxes awaiting the same signal.

Consider, for example, a customer who subscribes to
both CFB and Callee Messaging-on-Busy (CMB). Evidently,
there is a conflict between the two feature boxes: if an in-
coming call, in which both CFB and CMB feature boxes are
configured, arrives while the customer is busy, CFB must
redirect the call to another DN, while CMB must invite the
caller to leave a voicemail message. In the DFC architecture,
busy status is signaled out-of-band. Once the usage has
been completed as far as the customer’s line interface box, a
busy signal is sent from that LI box. Whichever of the two
feature boxes CFB and CMB is closer to the LI box will re-
ceive the busy signal, act on it, and not propagate it further
back in the chain; the more distant feature box will not re-
ceive the signal at all. Feature precedence determines how
the conflict will be resolved.

Conflicts in respect of in-band signals sent on a voice
channel (in-band signals) are not so easily resolved. If the LI
box were to signal its busy status by emitting an in-band
tone, both feature boxes could detect the tone simultane-
ously. The conflict might then be resolved by the outcome of
a race, with all its attendant difficulties. For the most part,
then, we prefer to rely on out-of-band status messages. They
have the further advantage that they can carry additional
information in the message data fields.

One might jump to the conclusion that all voice analysis
and generation functions should be performed at line inter-
faces, so that feature boxes would handle only out-of-band
signals. But this is not feasible, because a system’s full rep-
ertoire of tones, announcements, and recognition vocabu-
laries cannot be anticipated. Our scheme is, therefore, a
compromise in which line interface boxes translate the most
common in-band signals to and from out-of-band signals.
Where feature box processing of in-band signals is inescap-
able, it is sometimes possible to avoid race conditions, us-
ing a technique described in Section 4.9.

2.11  Line Interface Box Behavior
The regime of out-of-band status messages has significant
consequences for the specification of line interface boxes.
Each LI box translates between its own particular line pro-
tocol and the protocol of the virtual network: this transla-
tion must include translation from status messages to tones
familiar to the human customer. For example, on receiving
a busy status message, a calling customer’s LI box must
place a busy tone on the outgoing voice channel of its line
so that the customer can hear it.

The DFC call protocol accommodates, but does not de-
fine, a wide range of status message patterns that a LI box
must translate into tones. For example, a user of SCCC can
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make a sequence of customer calls within one usage, dial-
ing ‘#’ instead of going onhook at the end of each call ex-
cept the last. The subscriber’s LI box must produce the ap-
propriate tones—alerting, busy, unobtainable—during each
call, mute the alerting tone when a callee answers, and pro-
duce dialtone when ‘#’ is dialed. These tones must be pro-
duced by the LI box in response to messages sent or passed
back by the SCCC feature box. Because a LI box must ac-
commodate sequences of calls, as in the SCCC feature, it
never interprets a tone message as a disconnect.

A LI box that receives a setup message when its one port
is already active returns a quickbusy message. The box
whose call attempt has failed will typically pass back a busy
status message that eventually reaches the calling cus-
tomer’s LI box, where it will be translated into a busy tone
on the line. A LI box that sends a setup message and re-
ceives an immediate quickbusy message in response must
translate this quickbusy message into a busy tone on the line.
(In practice, this can scarcely occur, because a usage with no
feature box is unlikely: a setup message sent by a LI box
will therefore usually be routed first to a feature box, which
will be able to accept the call.)

2.12  Feature Box Availability
Like conference bridges in a conventional physical archi-
tecture, feature boxes in the DFC architecture are regarded
as permanent, named individuals. At any particular time, a
feature box may be occupied or available. When a feature is to
be inserted into a usage, an available box of the right type is
found, and the switch sends the setup message to that box.
It is assumed that the population of feature boxes is effec-
tively unlimited: an available box of the right type can al-
ways be found when one is needed.

A box may be occupied although it is not currently par-
ticipating in any call. For example, a box providing a mes-
saging feature may try to deliver a caller’s recorded voice
message at regular intervals until the intended recipient
customer answers the phone. Between attempts, the box is
not available: it is occupied waiting for the current interval
to elapse before it makes a further attempt.

2.13  Box Classes: Free, Bound, and Addressable
For many features—such as OCS—any available box of the
appropriate type may be selected when one is required.
Such boxes are called free boxes, because they may be freely
selected. Some features—such as Call Waiting (CW)—do
not offer this freedom. To provide CW service, a CW box
must be inserted into each usage of the subscribing cus-
tomer; any incoming customer call that arrives while the
usage is in progress must then be directed to that particular
CW box. Only in this way can the new call be joined into
the existing usage.

To handle this kind of requirement conveniently, we
classify the CW box as a bound box: it is bound to the line
interface of the subscribing customer. Whenever that cus-
tomer makes or receives a call, the particular CW box
bound to that customer will appear in the usage. Essen-
tially, the class of bound boxes is the class of boxes at which
a join can occur.

In addition to free and bound boxes there is a third class.
Some features are directly addressable by customers
through the standard dialing plan. For example, in a Large-
Scale Conferencing (LSC) feature, intended participants in a
conference may be informed of a special DN to call; the
feature box at that DN connects them into the conference
after checking a password. Boxes implementing such fea-
tures are addressable boxes.

3 DESCRIPTION OF THE DFC ARCHITECTURE

Later, in Section 4, we consider a number of features and
show how they may be specified and combined in the DFC
environment. First, in this section, we give a more detailed
and formal description of the DFC architecture. We begin
by describing the configuration: that is, the boxes, their
types and classes, and how they are addressed. Then we
describe the subscription, specification, and operational
data. Then we describe the features, their relationship to the
configuration and to the data, and the router’s behavior.
Next we describe the protocol of internal calls observed by
boxes and ports. Finally, we describe the possible behaviors
of feature boxes in managing their calls, including the ma-
nipulation of voice and signal paths.

In each part, we use a notation convenient for the pur-
pose in hand, connecting our formal descriptions by infor-
mal narrative. We write relations indicating their types, in
the Z style [23], by distinctive arrow symbols (such as →→
for a total surjection). We also use relations as sets of pairs,
and vice versa, wherever it is convenient to do so. Appendix
A lists the symbols for relations.

3.1 Configuration Data: Boxes, Addresses, and DNs
The basic sets of the configuration are these disjoint sets:

[LIBox, FFBox, BFBox, AFBox, FFBType, BFBType, AFBType,
 Port, DN].

They are, respectively: the set of LI boxes; the sets of free,
bound and addressable feature boxes; the sets of free,
bound and addressable feature box types; the set of ports;
and the set of well-formed directory numbers.

Two further sets, the set of all feature boxes and the set
of all boxes, are defined from these basic sets:

FBox =̂
 
 FFBox < BFBox < AFBox;      Box =̂

 
 FBox < LIBox;

Each feature box has an appropriate (free, bound, or ad-
dressable) type, and each type has boxes:

freeType : FFBox →→  FFBType;     boundType : BFBox →→ BFBType;

addrType : AFBox →→  AFBType;

Each port belongs to one box and each box has at least one
port:

portBox : Port →→  Box;

Each LI box and each addressable feature box has a unique
DN:

LIbDnum : LIBox >→  DN;        AFbDnum : AFBox >→�DN;

ran LIbDnum > ran AFbDnum = /O

Each bound feature box is bound to exactly one LI box:

boundLI : BFBox � LIBox;
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3.2 Specification Data: Features, Box Types, and
Zones

The additional basic sets for specification data are [Featr,
Zone]. They are the set of features and the set of zones
{“Source,” “Dialed,” “Target”}; they are disjoint from each
other and from all other basic sets.

The set FBoxType of all feature box types of any class is
defined; each box type provides all or part of exactly one
feature, and each feature is provided by at least one box
type (a feature may be provided by cooperating boxes of
different types):

FBoxType =̂
 
�FFBType < BFBType�< AFBType;

     provFeatr : FBoxType →→  Featr;

A feature may be associated with more than one zone:
For example, 3WC and CW are used in both the outgoing
and the incoming calls of their subscribers, and therefore
belong to both source and target zones. The association of
features with zones is, therefore, many-to-many. However,
this association plays no direct part in the formal descrip-
tion of a DFC system: instead, the important association is
of feature box types with zones.

For each box type we specify whether it is a source, tar-
get or dialed feature box, or more than one of these. (An
example of a feature box type associated with more than
one zone is a CW feature box: the same type is used for CW
on an outgoing customer call as on an incoming call.) Each
box type is associated with at least one zone:

boxZone : FBoxType � Zone;
          " t : FBoxType � t ¶ dom boxZone

No bound box type is in the dialed zone:

BFBType v boxZone x {“Dialed”} = /O

But every addressable box type is only in the dialed zone:

boxZone (|AFBType|) = {“Dialed”};

3.3 Further Specification Data: Box Applicability and
Precedence

An element (t, ”Source”) or (t, ”Target”) of the relation boxZone
given in Section 3.2 indicates that a feature box of type t
may be applied to a customer call in the source or target
zone. Whether it will be so applied to calls made by par-
ticular customers is determined by subscription data, as de-
scribed in Section 3.4. For dialed features, the determination
depends on a relation in specification data. This is a relation
between sets of strings—for example, all strings beginning
with “0”—and feature box types:

dialSetFBType : P String |→  FBoxType;
          ran dialSetFBType = boxZone~ �_{“Dialed”}|);

The basic set String is the set of strings over the characters
(0..9, ‘*’, ‘#’) that can be dialed. The relation dialSetFBType is
given, tuple by tuple, in the specification of the features
provided by the boxes (the sets of strings being specified by
predicates over strings). One string may cause selection of
more than one feature box type. For purposes of explana-
tion it is more convenient to relate strings to feature box
types directly:

stringFBType : String � FBoxType;

" s : String, t : FBoxType � (s, t) ¶�stringFBType
Ã�$�ss���V�¶ss�Á�(ss, t)�¶ dialSetFBType;

Selection of a box to provide a source or target feature is
governed by boxZone, by the source or target field in the
setup message, and by the relation subscrip in the subscrip-
tion data (see Section 3.4). Selection of a box to provide a
dialed feature is governed by boxZone, by the dialed-string
field in the setup message, and by the relation stringFBType
in the specification data.

Ordering of feature boxes in a routing list is constrained
by a specified precedence relation:

boxPrec : boxZone � boxZone;

The pair ((fb1, z1), (fb2, z2)) is an element of boxPrec iff in
any routing list containing both a box of type fb1 applied as a
z1 feature and a box of type fb2 applied as a z2 feature the fb1
box must precede the fb2 box. boxPrec must be a partial order.

The specified precedence applies to routing lists as con-
structed by the router and held in setup messages, not to
usages. Because usages can be forked and joined, and a new
routing list can be constructed for a partially complete usage,
the order of boxes in usages is less constrained than their
order in routing lists. The informal concept of a segment cor-
responds to the part of a usage in which the feature box order
must conform to the precedence specified by boxPrec.

Since feature boxes are placed in the routing list in the
order source, dialed, target, the partial order boxPrec must
satisfy:

" fb1 fb2 : FBoxType, z1, z2 : Zone �
          ((fb1, z1), (fb2, z2)) ¶ boxPrec Æ (z1 = “Source”)
          Â�(z2 = “Target”) Â (z1 = z2); 

3.4 Subscription Data: Features, Feature Boxes, and
DNs

A subscriber subscribes to features, ensuring that the ap-
propriate feature boxes are applied to the subscriber’s calls
in the appropriate zones. However, the effect of a subscrip-
tion may be different for different subscribers. For example,
the Emergency Break-In (EBI) feature is used by privileged
emergency subscribers to place calls that will reach even a
busy telephone; normal customers are compelled to receive
such break-in calls when they are engaged in an outgoing
or incoming call of their own. The emergency service sub-
scribes to EBI in the source zone; the normal customer sub-
scribes, compulsorily, in both source and target zones. EBI
is provided by two feature box types: a source zone free box
for the emergency service, allowing break-in calls ro be
made; and a source and target zone bound box for the nor-
mal customer, ensuring that incoming break-in calls are
always received. Notice that the normal customer's bound
EBI box type is in both source and target zones (as is the
Call Waiting (CW) box discussed in Sections 4.4 and 4.6).

In this paper, we ignore the process of setting up sub-
scriptions to features, and regard subscriptions simply as
subscriptions to feature boxes in zones. The basic sets
[FBoxType, Zone] were introduced above. The subscription
data is the relation subscrip, between DNs and (FBoxType,
Zone) pairs. Since the relation boxZone is precisely the set of
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such pairs (t, z) in which box type t is associated with zone
z, we have:

subscrip : DN � (boxZone x {“Source,” “Target”});

The relation subscrip governs only features in the source
and target zones; applicability of features in the dialed
zone is governed by the relation dialSetFBType described
in Section 3.3.

The configuration data relation boundLI given in Sec-
tion 3.1 is constrained by subscrip. If the customer at DN d
subscribes to a bound feature box type t, then there must
be exactly one box of type t bound to the LI at d. The con-
straint is:

" d : DN, i : LIBox, t : BFBType �
     (i LIbDnum d Á�t ¶ dom subscrip �_d_) Æ
     ($� b ��b boundLI i Á�b boundType t);

3.5 Operational Data: Accessibility
Feature operational data consists of a set of relations
[OpernRel]. Each of these relations supports exactly one
feature; some features may be supported by more than one
relation, some by none:

suppFeatr : OpernRel � Featr;

Each relation is accessible only to feature boxes of the
types that provide the feature supported by the data. This
constraint contributes importantly to feature independence:

boxRel : FBoxType � OpernRel;    boxRel  = provFeatr ; suppFeatr~;

3.6 Routing: The Setup Message
A setup message is sent from a calling box to the switch.
The router embedded in the switch modifies the message
contents before the switch transmits the message to a callee
box; typically, that box will create another setup message by
copying all or part of the first message, and send it in turn
to the switch.

The full structure of the setup message is:

setup = (source, target : DN <�nul; dialed : String <��nul;
              route : (seq boxZone) <�nul;
              command : {“new,” “update,” “continue,” “direct”};
              modifier : P�Zone < FBoxType <��nul);

the command field and its modifier are set by the sending box
to control the action of the router.

In a setup message sent by an LI box: source = DN of
the LI; target = nul; dialed = the dialed string; route = nul;
command = “new” and modifier = nul.

In setup messages sent by feature boxes many combina-
tions of values are possible; they must conform to the con-
straints described in the next section. Further, a box may
not access the route component except to set it to nul or to
the value in an incoming setup message previously re-
ceived by the box.

3.7 Routing: Setting the Target and Routing List
Initially the router examines the values of target and dialed.
If dialed ¡ nul and target = nul, the router sets a value in
target derived from dialed according to the dialing plan; this
value may be nul when the dialed string does not indicate a
target DN (for example, if the dialed string is a speed-
calling code, or an 800-number).

Then, after acting on the value of command, as described
in this section, the router determines the destination box to
which the message should be sent by the switch, as de-
scribed in Section 3.8.

•� If command = “new,” the router computes a new
routing list, as explained below, for all three zones,
and inserts it into route.

•� If command = “update,” then modifier = a subset of
{“Source,” “Target,” “Dialed”} and route ¡ nul. The
router computes a new routing list for each zone
specified in modifier, and uses it to replace the existing
value of route for each of those zones.

•� If command = “continue,” then route ¡ nul (although it
may be empty); modifier is ignored. The router leaves
the existing value of route unchanged.

•� If command = “direct,” then modifier = bt, where bt is a
box type providing the same feature f as the box that
sent the setup message, and target = dn, where dn is a
subscriber to bt in zone “Target.” The router replaces
the existing value of route with the singleton sequence
É(bt, “Target”) Ù�

Each zone of the routing list is computed as follows:

•� For zone “Source” or “Target” the list is empty if
source or target, respectively, is nul. Otherwise the list
contains those box types of the zone that are sub-
scribed to by the source or target, respectively. For
“Source” and “Target” these are the following subsets
of boxZone:

(subscrip �_ source _�) x {“Source”}

and

(subscrip �_ target _�� x {“Target”}

•� For zone “Dialed” the list is empty if dialed = nul.
Otherwise the list contains the following subset of
boxZone:

(stringFBType �_dialed_)) v boxZone

The set stringFBType (_dialed_� is the set of dialed
zone feature boxes to be applied to the string dialed.

The router ensures that the complete routing list value set
in route satisfies the precedence relation boxPrec.

3.8 Routing: The Destination Box
After resetting target and route as described in Section 3.7,
the router chooses the destination box b as follows:

•� If route is empty, b is chosen according to the value of
target as follows:
•� If target is not the DN of any LI box or addressable

feature box, then b is any available Dialing Error
Response (DER) feature box (a free box).

•� If target ¶ LIbDnum then b = LibDnum~�(target).
•� If target ¶ AFbDnum then b = AfbDnum~�(target).

•� If route is not empty, the head element is (t, z) of type
FBoxType × Zone. This element is removed from the
route list, and used to choose b as follows:
•� If t ¶�FFBType then b is any available box of type t.
•� If t ¶�BFBType then b is the box of type t bound to

LibDnum~�(source) if z = “Source” and to LibDnum~
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(target) if z = “Target.” Such a box necessarily ex-
ists, by the constraints given in Sections 3.1 and 3.4,
which guarantee the existence of a bound box for
each subscriber to the feature implemented by the
box.

After the router has modified the setup message and de-
termined b, the switch transmits the modified setup mes-
sage to the chosen box.

3.9 Calls: Message Types
The message types for internal calls are shown in Table 1,
along with their fields, senders, and recipients.

The setup and teardown phase messages are concerned
solely with the connection and disconnection of calls; the
protocols for their use are given in Section 3.10.

The other messages are status messages, used to commu-
nicate between call participants after the setup phase and
before the teardown phase. Some messages travel only from
a callee to a caller, while others can travel in either direction.
The types of status message shown are of basic utility in
most systems; additional message types and data fields can
be freely defined for the purposes of particular features.

Among the types shown, busy, alerting, answered, unob-
tainable, dialtone, and quiet are of particular importance: they
are the status messages that a receiving LI box must trans-
late into audio tones (or silence) on the external line to the
customer’s telephone, as described in Section 2.11. DTMF
and flash status messages originate at a LI box when the
customer dials a digit or flashes the switchhook while a call
is in progress.

3.10  Call Protocols
The protocol for calls to be executed by feature boxes is in
three parts: a protocol for the caller port; a protocol for the
callee box; and a protocol for the callee port. The protocol
for the switch is given in Section 3.11.

Each protocol is described below in Promela [16]. A mes-
sage of type msg is sent on channel out by the statement
out!msg. A message of type�msg is received on channel LQ

by the statement in?msg. An if statement is executed by
executing exactly one of its executable alternatives; in these
protocols an alternative is executable if it is unguarded or
guarded by a send statement or by a receive statement for a
message that is available as the next message on the chan-
nel. A do statement is like an if statement except that it
continues to execute alternatives until there is an explicit
exit from the loop by means of a EUHDN�or goto�statement.

A callee port on a box is capable of receiving a sequence
of calls. Each of its calls must satisfy the following protocol:
begin: in?init; goto linked;
linked: do

:: out!status
:: in?status
:: out!teardown; goto unlinking
:: in?teardown; out!downack; goto end
od;

unlinking: do
:: in?status
:: in?teardown; out!downack
:: in?downack; goto end
od;

end: skip

A caller port on a box is capable of making a sequence of
calls. Each of its calls must satisfy the following protocol:
begin: out!setup; goto requesting;
requesting:if
 :: in?upack; goto linked

:: in?quickbusy; goto end
fi;

linked: do
:: out!status
:: in?status
:: out!teardown; goto unlinking
:: in?teardown; out!downack; goto end
od;

unlinking: do
:: in?status
:: in?teardown; out!downack
:: in?downack; goto end
od;

end: skip

TABLE 1
MESSAGE TYPES IN THE DFC CALL PROTOCOL

Phase Message Type Data Fields From/To

setup and teardown setup (see Section 3.6) caller to box

phase messages quickbusy initiator: DN box to caller

reserve reserved: port box to switch

upack none switch to caller

init none switch to callee

teardown none caller to callee and callee to caller

downack none caller to callee and callee to caller

status messages busy initiator: DN callee to caller

alerting initiator: DN callee to caller

answered initiator: DN callee to caller

unobtainable unallocated: String DER box to caller

dialtone none caller to callee and callee to caller

quiet none caller to callee and callee to caller

flash none caller to callee and callee to caller

DTMF dialed-char: Char caller to callee and callee to caller

¤ ¤ callee to caller and /or caller to callee
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A dual port can participate in a sequence of calls. During
each call it plays the role of either a caller port or a callee
port. Any port is busy when it is in a requesting, linked, or
unlinking state, and idle otherwise. Once a call is success-
fully established the protocols for caller and callee are
identical. Because communication is asynchronous a port
can receive incoming messages even after it has written a
teardown message.

The life history of a box and its own signaling channels
(those not associated with particular ports) must conform
to the following callee box protocol:

begin: do
:: in?setup; if

:: out!reserve
:: out!quickbusy
fi

od

If the box sends a reserve message, it must be accom-
panied by the identifier of an idle, unreserved callee or dual
port. That port must remain idle and reserved until it re-
ceives its init message from the switch, at which time it
becomes busy and unreserved.

3.11  Switch Call Protocol
The corresponding protocol to be observed by the switch is
more complex because it must take account of the inter-
leaving of many calls and of the connections between them.
In the protocol given below, it is assumed that:

•� There are four arrays of signaling channels p_s, s_p,
b_s, and s_b used, respectively, for sending out-of-
band messages from a port to the switch, from the
switch to a port, from a box to the switch and from
the switch to a box. They are indexed by port and box
identifiers ([p] and [b]). Each channel is an unbounded
reliable FIFO queue.

•� The switch procedures CONNECT[p,q] and DISCON-
NECT[p,q], respectively, create and destroy a voice
path between ports p and q. The order of operands is
immaterial.

•� The function ROUTE: b returns the box identifier b of
the destination box for the most recently read setup
message, determined by the router as described in
Section 3.8.

•� The switch reads its input channels fairly (in some
sense), and is fast enough to ensure that no call suffers
any significant degree of starvation.

The switch maintains internal variables whose values rep-
resent the connection state:

•� Current out-of-band signaling connections between
ports are represented by elements of an array WTF
(“where to forward”). If ports p and q are currently
connected in a call then WTF[p]==q and WTF[q]==p. If
port p is not currently connected to any port, then the
value of WTF[p] is not defined.

•� The array TDF has an element for each port; this array
is used in the processing of teardown and downack
messages, as explained below. Initially the value of
TDF[p] is 0 for all p.

•� There is an array of queues containing a queue for each
box b. The queue for a box holds the port identifiers of
senders of setup messages that have already been sent
to the box but for which the switch has not yet received
a reserve or quickbusy message from the box. The opera-
tion ENQ[x,b] and the function DEQ[b] : p have the ob-
vious meanings.

In the protocol we depart from strict Promela in three
minor ways. First, the use of parentheses rather than square
brackets in the notation

:: p_s(p)?msg;...p...

occurring in a looping or conditional statement is a short-
hand for

:: ps[p1]?msg; p=p1;...p...
:: ps[p2]?msg; p=p2;...p...
:: ps[p3]?msg; p=p3;...p...

etc. The syntax is reminiscent of
:: b_s[b]?reserve(y)

in Promela, which assigns to y the value of the data field of
the reserve message. The same effect can be achieved in
strict Promela with a slight loss of readability. Second, we
index arrays by arbitrary box and port identifiers; in strict
Promela array index values must be integers. Third, we
assume unbounded queues.

The protocol is:
/* switch protocol; initially TDF[p]==0
     for all ports p */
do
:: p_s(x)?setup; b=ROUTE; ENQ[x,b];
     s_b[b]!setup
:: b_s(b)?quickbusy; x=DEQ[b];
   s_p[x]!quickbusy
:: b_s(b)?reserve(y); x=DEQ[b];
   if
   :: TDF[y]==0
   :: TDF[y]==1; z=WTF[y];
      do
      :: p_s[y]?status; s_p[z]!status
      :: p_s[y]?downack; s_p[z]!downack;
           TDF[y]=0; break
      od
   fi;
   CONNECT[x,y]; WTF[x]=y; WTF[y]=x;
     s_p[x]!upack; sp[y]!init
:: p_s(x)?status; y=WTF[x]; sp[y]!status
:: p_s(x)?teardown; y=WTF[x];
     s_p[y]!teardown; TDF[y]=1;
   if
   :: TDF[x]==1
   :: TDF[x]==0; DISCONNECT[x,y]
   fi
:: p_s(x)?downack; y=WTF[x];
     s_p[y]!downack; TDF[x]=0
od

TDF[y]==1 when (and only when) the switch has sent a
teardown message to y and has not yet received the corre-
sponding downack message from y; at all other times
TDF[y]==0. The global initialization TDF[p]=0 for all ports p
is necessary to ensure that if a port y is the callee in its first
call, then TDF[y]==0 is correctly set when the reserve(y)
message for that call arrives at the switch. At the comple-
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tion of every call of port y the value of TDF[y] is guaranteed
to be 0: For a call in which y has received a teardown mes-
sage, the assignment TDF[y]=0 is executed when the
downack sent by y is received at the switch; for a call in
which y receives no teardown message, the value of TDF[y]
is unchanged from the global initialization TDF[y]=0 or
from the completion of y’s preceding call.

When a reserve(y) message is received by the switch, port
y must be idle, since otherwise its box would not have se-
lected it to receive a call. Therefore, it must have received
all its incoming messages and written all of its outgoing
messages of its immediately preceding call c (if there has
been such a call). However, there may be some messages of
call c on the p_s[y] channel that have been sent by y but not
yet received by the switch. If TDF[y]==1, then port y has
been sent a teardown message in call c, but its acknowledg-
ment downack has not yet been received by the switch. The
signal channel p_s[y] from y to the switch must then be
“cleaned,” because it is still in use from call c. If TDF[y]==0,
then the channel p_s[y] must be empty. Either the switch
has already received a downack from port y; or else port y
has itself already received a downack, in which case the final
message of p_s[y] was the teardown of which that downack
was the acknowledgment.

The first teardown message of a call received by the
switch causes the switch to disconnect the voice path.
When a teardown message arrives from port x, the guard
TDF[x]==0 correctly specifies the condition that this is the
first teardown message of the call to pass through the switch.
For if TDF[x]==0 because port x has already received a tear-
down message and its acknowledging downack has already
reached the switch, then that downack would have preceded
the teardown message that has just arrived, contrary to the
port protocol.

3.12  Feature Box Behavior
A feature box and its ports must observe the signaling pro-
tocols described in Section 3.10, and must send only cor-
rectly formed messages as described in Sections 3.6, 3.7,
and 3.9. In this section, we describe the internal voice-
processing behavior of a box.

In a legal box state the external output of each port is ex-
actly one of these four alternatives:

1)� silence,
2)� the external input from another port of the box,
3)� the normalized sum of the external inputs from a set

of other ports of the box, or
4)�a specified sound such as a tone or announcement.

In addition, the external input from a port can be re-
corded or analyzed for recognition of a specified kind of
pattern. Recording and analyzing port states are not mutu-
ally exclusive or exclusive of any port-output state.

A language for box programming must make all legal
voice-processing states achievable. Its semantics or analy-
sis tools should also help the programmer avoid illegal
states and states that waste implementation resources
such as mixers.

The language commands for creating active port states
must specify certain information. A record command must

specify where the recording is to be stored. A play command
must specify the sound to be played; the sound might be
given as a tone frequency, a recording, or even as text (in the
presence of text-to-speech facilities). An analyze command
must specify the kind of pattern to be recognized and the
place where the result of the recognition is to be stored. The
kind of pattern is usually specified in terms of a vocabulary.
In the presence of automated speech recognition this will
typically be a vocabulary of single word commands.

In addition to these commands, a convenient box-
programming language should provide events through
which a program can be notified of the status of ports in ac-
tive states. It should be possible to notify a box program that
an announcement of fixed duration has been played com-
pletely. It should be possible to notify a box program that
recording has been completed, where completion might be
defined in terms of a maximum recording time or a mini-
mum interval of silence. It should also be possible to notify a
box program that recognition has been completed, where
completion might be defined in terms of a maximum se-
quence length of recognized words, a minimum interval of
silence, or recognition of a distinguished “interrupt” word.

4 FEATURE SPECIFICATIONS

In this section, we discuss the specification of various fea-
tures in a DFC setting: the features and their combinations
are chosen to illustrate various aspects of the architecture
and its implications. The suggested specifications are nei-
ther complete nor in any way definitive: they are intended
only to illustrate a possible approach to the features dis-
cussed in a DFC setting. The space limitations of this paper
preclude the presentation of full programs for feature
boxes. Some feature box programs are given in [25]. We,
therefore, present only the barest informal sketches, but we
have tried to address the chief points likely to cause diffi-
culty in each case.

4.1 The Null Feature Box: Transparent and End States
We begin by describing a null feature box. It is completely
transparent: its presence has no effect on any usage into
which it is configured. The description below should be
thought of as that of a process executing in parallel with the
protocols on the active ports and sharing events with them.

The null feature box has a callee port p1 and a caller port
p2. It becomes occupied on receiving a setup message; it ac-
cepts the call on p1. It then places a call on p2, using a copy
of the setup message of the p1 call. If the p2 call attempt
fails, it sends a busy status message followed by a teardown
message on p1, and becomes available on receiving the cor-
responding downack. If the call on p2 succeeds, it enters the
transparent state: that is, it joins the voice channels of p1 and
p2, and proceeds to copy all incoming out-of-band signals
from each port to the other. When the teardown subproto-
col on both ports is complete the box enters an end state and
becomes available again.

4.2 Target Identity: 800-Service, Speed Calling, and
Call Forwarding Always

Three features that change the target of a subscriber call are
Speed Calling (SC), 800-service (800), and Call Forwarding
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Always (CFA). Each is provided by a feature box which is
like the transparent box with one exception. To place the p2
call, it uses an altered copy, not a true copy, of the setup mes-
sage of the incoming call on port p1. In each case the target
field is altered, and the value of command is “update” with a
modifier {“Target”}, ensuring that the target zone of the route
will be recomputed by the switch. Notice that SC, 800 and
CFA are, respectively, Source, Dialed, and Target zone fea-
tures, although each of them changes the target of a call.

The 800-service feature allows a commercial subscriber
to pay for all incoming calls; the calls are placed by dialing
an easily remembered string such as 1-800-123-4567. The
feature is a dialed zone feature: the string is not a DN, and
the 800 feature box determines the required DN from its
operational data relationt

eightDN : String800 |→  DN

The altered value of target is eightDN (dialed), or nul if dialed
· dom eightDN.

The SC (Speed Calling) feature is a source zone feature.
It uses an operational data relation

sourceSpeedDN : DN |→ �(SpeedCode� |→ �DN);

containing each source subscriber’s private mapping from
speed-calling codes to frequently called DNs. The altered
value of target is nul if source · dom sourceSpeedDN or if dialed
· dom sourceSpeedDN �source�; otherwise it is sourceSpeedDN
�source� (dialed).

Call Forwarding Always (CFA) is a target zone feature. It
uses an element of an operational data relation

aForwardDN : DN |→  DN

mapping the target subscriber’s DN to a forward DN. The
altered value of target is aForwardDN (target), or nul if target
· dom aForwardDN.

4.3 Target Identity: OCS
Originating Call Screening (OCS) is a source zone feature;
its function is to prevent calls to barred numbers on a
screening list maintained by a subscriber to the feature.
Subscribers enter their barred numbers as strings (DN is a
proper subset of String). The operational data is:

screenOCS : DN � String

For each number s barred by source, screenOCS has an ele-
ment (source, s). The key choice in specifying OCS is: which
fields of which messages are candidate values of s? Three
possible answers are as follows:

1)�dialed in the setup message. In this case dialed speed-
call codes and 800-numbers can be barred, but for-
ward DNs reached by CFA cannot: a disobedient child
whose parents have barred DN1 simply asks a friend
at DN2 to forward DN2’s calls temporarily to DN1,
and then dials DN2.

2)� target in the setup message. In this case only DNs oc-
curring in setup messages in the source zone can be
barred. 800-numbers cannot be barred even if their
equivalent DNs are known (because 800-numbers are
not DNs and do not appear in the target field; they are
translated to DNs by an 800 feature box in the dialed
zone, too late for OCS to operate). Forward DNs can-

not be barred (because CFA is in the target zone, and
the forwarding, like 800 translation, operates too late
for OCS). DNs accessed by speed-calling codes can be
barred provided that OCS has a later precedence than
SC: if the OCS feature box precedes the SC box then
OCS receives only the dialed string, before SC has
translated it to a target DN.

3)� initiator in an alerting or answered message. In this
case, it is the DN of the LI that is finally reached that
is subject to barring by OCS. Forward DNs are barred,
but an 800-number cannot be barred unless its
equivalent DN is known to the subscriber and entered
explicitly in the screening list.

By suitable design of the feature box, OCS can be specified to
enforce barring of any or all of these fields. If the setup mes-
sage received at port p1 is barred neither by its dialed nor by
its target value, the p2 call is placed with the same setup mes-
sage. If the p2 call is successful, an alerting or busy message
from the LI finally reached will eventually be passed back by
transparent behavior on the part of other feature boxes, and
can be checked for a barred initiator value.

4.4 Joining Usages: Call Waiting
The Call Waiting (CW) feature allows a subscriber to re-
ceive an incoming customer call while already engaged on
an existing usage. The subscriber can switch to the new call
by flashing the switchhook, and back again to the earlier
call by flashing again. CW is both a source zone and a tar-
get zone feature, because the subscriber may be either the
caller or the callee in the existing usage. It must be provided
by a bound box, because clearly the second, incoming, call
must be routed to the CW box already configured into the
existing usage.

Before the second call is received, the CW box behaves
transparently. It receives a call, either from the subscriber or
from another source. If the call is from the subscriber (in
which case the source value in the setup message is the sub-
scriber’s own DN), the call is accepted on port p1 and a call
placed on port p2 with the same setup message field values. If
the call is not from the subscriber the call is accepted on port
p2 and a call placed on port p1. Both p1 and p2 are dual ports.

The CW box has a third port p3, which is a callee port. If a
call arrives at the box while the p1 and p2 calls are still active,
it is accepted at port p3, an alerting signal is sent from port p3,
and the call-waiting indication (two short tones) is played on
the outgoing voice channel of port p1, the speech signal being
temporarily interrupted for the purpose. The box then waits
for one of the following events:

•� A teardown message on port p2/p3. The box tears
down the call on that port, connects port p1 to the re-
maining port p3/p2 if it is active and was not already
connected, and is now ready to receive a call on the
port p2/p3 that has become free. If the remaining port
p3/p2 was inactive, the call on p1 is torn down.

•� A flash message on port p1. The box disconnects p1
from the port p2/p3 to which it is connected, and con-
nects it to the other port p3/p2, provided that there is
an active call on that other port; if not, the flash mes-
sage is passed on to the connected port p2/p3 and is
otherwise ignored.
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•� A teardown message on the port p1. If p1 was con-
nected to p2/p3 and the other port p3/p2 is inactive, the
box tears down both calls and returns to its initial
state. If one of the ports p2 and p3 is active but has not
yet been connected to p1, the caller on that port is
hearing ringback. The box tears down the call on p1
but immediately calls the subscriber back on p1 to
connect it to the waiting caller at the active port.

In this way the CW box allows the subscriber to multiplex
between two calls. Notice that CW does not require an in-
ternal three-way connector, because its two calls are multi-
plexed, not conferenced.

4.5 Splitting a Usage: 3-Way Calling
3-Way Calling (3WC) is a feature in both source and target
zones, provided by a free box with two dual ports p1 and p2
and one caller port. Like CW, the box connects the sub-
scribing customer on port p1 when first activated. It allows
the subscriber, when already engaged in a usage, to make a
second, outgoing, call and to conference the two calls to-
gether. Like CW it uses flash messages to signal the sub-
scriber’s intentions. A flash while only one call is active in-
dicates that the subscriber wishes to make a second call.
The 3WC box then put the existing customer call on hold,
sends a dialtone message to port p1, collects a dialed string
in-band from digits dialed by the subscriber, and places the
dialed call on the currently free port. When that call has
been set up and the subscriber flashes again, the box con-
ferences the two calls, joining the voice signals at all of its
ports at an internal three-way connector.

Disconnection behavior of a 3WC box is as follows:

•� A teardown message on port p2 or p3 occurring when
all three ports are in use makes that port available for
placing another outgoing dialed call when the sub-
scriber flashes again.

•� A teardown message on p1 occurring when all three
ports are in use causes only the call on p1 to be torn
down, leaving the other two ports connected. The
3WC box is then occupied servicing the calls on ports
p2 and p3 until it receives a teardown message on one
of those ports. (The subscriber’s LI box, of course, is
not involved in this residual connection between
ports p2 and p3 of the 3WC box.) Since 3WC is not a
bound box, a fresh 3WC box will be used for a subse-
quent call to or from the subscriber.

•� A teardown message on any port occurring when only
two ports are in use ends both calls and returns the
box to the end state, where it becomes again available.

4.6  CW and 3WC Together
The relationship between CW and 3WC illustrates three DFC
principles. The first principle is that a bound box in a usage
should always come between its line interface and any free
boxes. For CW and 3WC, which are subscribed to in both the
source and target zones, this means that (CW, ”Source”) must
precede (3WC, “Source”), and (3WC, ”Target”) must precede
(CW, ”Target”). Fig. 3a shows why.

If, contrary to the principle, 3WC takes precedence over
CW in the source zone, then the configuration in Fig. 3a
arises when the subscriber has used 3WC to make a second

call while one is already in progress. The second outgoing
call from 3WC does not go through a CW box, because
there is only one such box bound to LI, and it is already
fully occupied as far as outgoing calls are concerned. If the
first party to which the LI was connected hangs up, then
there will be no CW box left in the usage. The second prin-
ciple then applies: externally initiated modifications of
usages are strictly prohibited by the DFC architecture. The
CW box, lost from the usage when the first customer call
was torn down, cannot be spliced into the usage to become
available in the second call. The effect is that subscribers to
3WC are sometimes deprived of CW functionality.

In contrast, Fig. 3b and 3c show configurations that arise
when the precedence relation follows the first principle.
3WC is a free box, so a separate instance can appear on each
fork of the usage.

It is well known that CW and 3WC interact because they
both use flashes from the proximate line interface as their
control command. This situation invokes a third DFC princi-
ple, which is that when two boxes compete for an out-of-
band signal, the box closer to the source of the signal has
priority access to it. The closer box can respond to the signal
and absorb it, or it can ignore the signal and pass it on. Be-
cause of the first principle, CW has priority access to the
flash, which fortunately is what we want (at least most of the
time). The configuration in Fig. 3d arises when the line inter-
face first makes an outgoing call, uses 3WC to create a con-
ference (flashes are forwarded to 3WC1 by the transparent
CW box), and then receives an incoming call through CW.

The behavior produced by always giving CW priority
access to flashes may or may not be considered accept-
able. Even in Fig. 3d some aspects of the user interface
are awkward, and a configuration such as that shown in
Fig. 3e, in which all boxes have reached their full poten-
tial, is not achievable.

If the default priority scheme for access to flash signals
does not yield acceptable behavior, and if enriching the
command vocabulary (usually the strategy that yields the
best user interface) is impermissible, then it becomes neces-
sary to specify explicit cooperation between two features. It
is possible within the DFC architecture to use special status
messages between the CW and 3WC boxes to give 3WC
priority access to flashes at the appropriate times [25]. Of
course, introduction of such special messages is highly un-
desirable because it compromises feature modularity and
independence; but in the circumstances envisaged, such
compromise is unavoidable whatever the underlying ar-
chitecture: the desired behaviors of the two features are in
conflict.

4.7 Using the Direct Routing Command
The Emergency Break-In feature (EBI) makes use of the di-
rect routing command in the setup message. An emergency
caller, such as the Fire Department, subscribes to EBI as a
source feature. An EBIE box is included in the source zone
of every outgoing call made by the emergency caller. This
EBIE box, perhaps after checking the user’s authorization,
places a call with a direct routing command. The configu-
ration that results when the callee subscriber is already en-
gaged in a usage is shown in Fig. 4.
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A customer call is connected between the subscribers at
LI1 and LI2. Both LI1 and LI2 have bound EBI boxes. The
emergency service places an emergency call to the subscriber
at LI2; this call is routed directly from the EBIE box of the
emergency service to the EBI box bound to LI2, and that EBI
box accepts the call and places the call from LI1 on hold. Evi-
dently a regular subscriber’s EBI box must have the highest
precedence, ensuring that it is immediately adjacent to the LI
box to avoid potential interference from other features.

4.8 Rerouting for a Dialed Feature
The Directory Link feature (DL) recognizes when a cus-
tomer has dialed a directory assistance number. It tries to
recognize the number announced by directory assistance,
and offers to connect the customer to that number directly.

DL is a dialed feature, included in the usage whenever
the number dialed (or speed-called) has the form of a di-
rectory assistance DN. In the North American long-distance
network this form is aaa-555-1212, where aaa is the area
code of the destination subscriber for which assistance is
needed. A DL feature box has a callee port p1 and a caller
port p2. On receiving a call on p1, DL engages in a dialogue
in which it offers the DL service to the calling subscriber for
a small charge. If the subscriber refuses the service offer, the

DL box places a call to directory assistance on port p2 and
behaves transparently from that point onwards.

If the subscriber accepts the service offer, the call to di-
rectory assistance is made on port p2. The DL box then
monitors the incoming voice signal on p2, and will nor-
mally detect the number announced by the directory assis-
tance equipment. It then tears down the call on p2, and
places a new call with the announced number as the dialed
string. If DL cannot detect the announced number, it plays a
message to the caller (apologizing and saying that no
charge will be made for the failed service) and tears down
the calls on p1 and p2.

The performance of DL depends on the intelligibility of
the directory assistance announcement of the number and
on the quality of the speech analysis used by the DL box. In
principle DL can work on any of the following announce-
ments:

•� “The number you require is xxx-ssss.” DL places a call
to aaa-xxx-ssss, having stored the value aaa from the
setup message on p1.

•� “The number you require is 800-ppp-qqqq.” DL
places a call to the announced 800-number. Since this
800-number is the dialed string of the newly placed
call, an 800 box will be included in the dialed zone of
the new segment.

•� “The number you require is in area code bbb.” Please
call directory assistance on bbb-555-1212.” DL places a
call to the announced directory assistance number.
Since this number is the dialed string of the newly
placed call, a fresh DL box will be included in the di-
aled zone of the new segment, and the DL service will
be offered again in the new call.

4.9 Interactions Arising from In-Band Signaling
The use of voice recognition and other in-band signaling
can easily give rise to awkward interactions. Whereas a
feature box can absorb an out-of-band signal and prevent it
from reaching other boxes simply by not passing it on, it
cannot absorb an in-band signal in the same way unless it
has previously disconnected the voice channels.

A technique that can be used in the DFC environment is
to inhibit recognition of in-band signals by sending out-of-
band messages to indicate to other boxes that they should
not recognize certain in-band signals until further notice.
Call connection between adjacent boxes in a usage uses a
pair of voice channels, one in each direction. When a box is
about to monitor the signal arriving on an incoming chan-
nel from an upstream box, it sends an inhibit message to its
neighbor or neighbors in the downstream direction, and
vice versa; when it ceases to monitor the signal it sends a
complementary uninhibit message in the same direction. If
all boxes observe the obvious discipline, each allowing a

(a)

(b)

(c)

(d)

(e)

Fig. 3. Configurations of CW and 3WC.

Fig. 4. Direct routing.
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box from which an inhibit is received to take precedence in
monitoring voice signals from the corresponding direction,
the in-band signaling difficulty can be overcome.

This discipline allows the same precedence to be en-
forced for in-band signals as for out-of-band signals. It is
also possible to enforce the opposite precedence or even a
mixture, at the cost of some complexity and reduction in
feature independence. To establish any precedence by such
a discipline requires a taxonomy of in-band signals, and the
definition of field values in the inhibit and uninhibit mes-
sages to represent the signal classes.

4.10  Addressable Boxes and Dialed Features
Addressable boxes are used only where all customers who
dial a given DN must be connected to the same box. By
contrast, a dialed feature is merely one that is applied ac-
cording to the dialed string. Two contrasting examples will
make the point clearer.

800 Service (800) is a dialed feature, configured into any
usage in which the dialed string begins with the characters
‘1-800’. But it is not an addressable box: each call dialing an
800 number is routed to a temporarily dedicated free 800
box, which determines a target DN from the operational
data of the feature—namely, the relation recording the
mapping from 800 numbers to DNs. To make 800 an ad-
dressable box would mean having one feature box for each
800 number, and routing all calls to the number through
that particular box. While this scheme would have the ad-
vantage that the box could contain the maplet for the num-
ber, and so would not need to access operational data, it
would have a far weightier disadvantage: it would require
the box to have enough ports to serve as many customers as
could be calling the 800 number at any one time and a cor-
responding box program able to handle the interleaving of
their call protocols.

By contrast, Large-Scale Conferencing (LSC) requires the
use of a number of addressable boxes. When a conference is
booked, a box of sufficient size to accommodate all partici-
pants is assigned; participants who will take the initiative
in joining the conference are given this number to call,
while other participants may wait for the box to call them
and so will not need to know the number.

4.11  Disconnected Boxes
Some features are provided by boxes that are temporarily
disconnected from all other boxes while engaged in their
tasks. Consider, for example, a Wake-Up Call service
(WUC). WUC is a dialed feature provided by a free box. On
receiving an incoming call the box collects the caller’s DN
and the desired wake-up time from the caller in local vari-
ables. It then tears down the call, and waits until the wake-
up time is indicated on the real-time clock to which it has
access. During this period of waiting, the box is not con-
nected to any other box; but it is occupied, and not avail-
able to service another wake-up call. At the expiry of the
period it places the wake-up call to the subscriber whose
DN is stored in its local variable.

5 SUMMARY

5.1 Simplifications Adopted
In designing and presenting the DFC technology we have
adopted several simplifying assumptions in order to clarify
and focus our work. Although in themselves these simplifi-
cations are unrealistic, we believe that abandoning them
would not invalidate the architecture, but merely force the
introduction of additional detail that would obscure—but
not vitiate—the main ideas. The chief of these simplifica-
tions are the following.

•� We restrict our consideration to analog phones. The
use of ISDN phones would introduce a richer vo-
cabulary of messages that could flow to and from LI
boxes, and a richer feature set. But we see no reason
to think that the additional features would not fit
comfortably into the DFC architecture.

•� We assume that each line interface is associated with a
single DN, and that DNs are not shared.

•� We assume that the interface boxes are all interfaces to
telephones, not to trunks. This allows us to ignore the
addressing complications that arise with trunks (the
relation trunk ��DN is many-to-many), and also the
race condition (‘trunk glare’) that can arise when it is
necessary to seize a trunk.

We have also adopted some other simplifications that
will take further work to abandon. In particular:

•� We do not discuss billing here. However, we have
given some consideration to billing issues, and it ap-
pears to us that the DFC architecture may offer a help-
ful environment for specifying billing features.

•� We do not consider provisioning, either of subscrip-
tion data or of feature operational data. Quite apart
from the additional detail involved, there are issues of
coordination between provisioning and operation. We
see no reason to think that these issues would be
harder to handle in a DFC setting.

•� We assume the absence of resource contention. Al-
though feature boxes are freely conceived as contain-
ing dedicated devices such as conference bridges and
signal processors, we assume that boxes are always
available when needed. We make the same assump-
tion about signaling and voice channels.

•� We have ignored broadband and multimedia tele-
communications services.

An AT&T Technical Memorandum [25] discusses some
aspects of the DFC architecture under less restrictive as-
sumptions.

5.2 Related Work
The most common research approach to the problem of fea-
ture interaction is the application of formal verification tech-
niques to system specifications, with the goal of detecting all
undesired feature interactions [21]. Velthuijsen concludes:

None of the approaches have progressed far beyond a mere
proof-of-concept result. The approaches show that with the
right descriptions and techniques it is indeed possible to detect
certain interactions. But the trick is to come up with the right
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descriptions: the right network and service specifications, and
above all, the right properties. This appears very hard to do well
and presents for the time being a more urgent challenge than
the application of yet another specification formalism to the
same general approach.

We agree with Velthuijsen and are trying to find the right
(modular, complete, and comprehensible) service specifica-
tions. Formal verification and detection of unforeseen inter-
actions are activities we hope to pursue later, building on
this new foundation [25].

There are other architectural approaches to service speci-
fication, the most well-known being the Intelligent Net-
work (IN) architecture [1], [10], [13], [18], [20]. The major
limitation of the IN architecture is that its conceptual model
is strongly oriented towards two-party calls, and is difficult
to extend to multiparty services. We regard the ease with
which DFC handles nonlinear usages and multiparty serv-
ices as an important advantage, as explained below.

More recently other architectures for telecommunica-
tions services have been proposed, for example [15], [22],
[26]. In these architectures a typical component is an agent
representing a subscriber, resource, common function, or
type of connection. These agents determine their call-
processing behavior by negotiating with each other, send-
ing messages to each other as needed. The most important
difference between these agent-based architectures and the
DFC architecture is that agent-based architectures impose
little in the way of limits or structure on communication
among agents. For example, in [26], communication be-
tween agents is presented only loosely and informally,
making it hard to see what constraints are imposed by the
architecture described. For this reason, it will be very diffi-
cult to exploit the modularity of the decomposition into
agents to understand feature interactions or determine
global system properties.

Another characteristic of the DFC approach is that fea-
tures are distinct, first-class modules. Many other formal-
izations of feature behavior have partitioned features into
syntactic modules, for example distinct sets of rules [4], [8],
[11], [19]. But a set of rules shares unrestricted state with
other rules, so the syntactic constraint actually places very
little constraint on semantic interaction among modules. All
interactions among DFC modules, on the other hand, are
strictly limited by the architecture.

The specification technique of [2], [5] is based on layered
state-transition machines; it is similar to ours in having
feature modules communicating by means of a fixed proto-
col. Their feature modules may sometimes require knowl-
edge of each others’ states, so they are more closely coupled
than DFC feature boxes. DFC feature boxes achieve a much
looser coupling by means of the pipe-and-filter arrange-
ment, in which each box has a great deal of independent
control over the voice channels passing through it.

There are as many possible comparisons to related work
as there are research projects on feature interaction, espe-
cially since even research that is focused narrowly on de-
tection must start with some specification formalism. In the
previous paragraphs we have given a representative sam-
ple of comparisons—representative with respect to both
similarities to and differences from the DFC architecture.

We know of no specification approach that is closer to the
DFC architecture than those we have cited.

5.3 Advantages of DFC
The treatment of features as distinct components is not in
itself new. The key novelty of DFC is the choice of an ar-
chitecture in a dynamic pipe-and-filter style, with the ad-
vantages that this brings.

One important advantage already mentioned is the ease
with which nonlinear usages can be handled. and repre-
sented in graphs. The dynamic configuration and recon-
figuration of a usage can be complex. For example, Fig. 5
shows a progression through three configurations.

In Fig. 5a there are two clearly distinct usages: LI1 is
connected to LI2, and LI3 to LI4; in Fig. 5b these usages
have been joined because LI1 has placed a further call to
LI4; in Fig. 5c both LI1 and LI3 have dropped out, leaving
LI2 connected to LI4. Notice that the final connection of LI2
and LI4 depends on continuing use of the 3WC box origi-
nally introduced in LI1’s call to LI2; this causes no difficulty
because 3WC is a free box.

This complexity of configuration is easily handled in
DFC because of its distributed nature. Although the notion
of a usage is convenient for informal explanation of DFC
behavior, it has no formal status in DFC. There are no usage
identifiers to be allocated or manipulated; nothing in the
DFC architecture depends on identifying and distinguish-
ing individual usages over time. Only individual boxes and
individual internal calls are signficant: DFC configurations
arise solely from the internal featureless calls, each involv-
ing just two parties. DFC can, therefore, exploit the sim-
plicity of POTS, while avoiding the traditional, but obscure
and difficult, elaboration of the notion of a call, which is
central in some approaches. Avoiding this notion eliminates
many complications and restrictions that flow from it, and
simplifies the specification of feature behavior.

We believe that the DFC scheme of feature communi-
cation by featureless internal calls offers several advan-
tages in feature specification, analysis, and implementa-

(a)

(b)

(c)

Fig. 5. Usage configurations.
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tion. The primary advantage in feature specification is the
high degree of separability among features. To a very
great extent, at least an initial specification of a feature can
be made without consideration of other features that may
be present, by assuming that any other feature boxes in
the usage are in a transparent state. (Of course, there are
some general concerns that must always be taken into ac-
count. For example, any feature may find itself in a usage
within whose lifetime several customer calls are placed
and answered. The OCS feature, for example, must there-
fore be specified to check a sequence of customer calls, not
just one.)

Another specification advantage is the clear separation
between the behavior of individual features and the un-
derlying mechanism for their composition. As was pointed
out above, the DFC router does not provide any feature
functionality, even for features that might perhaps be
viewed as essentially routing features, such as 800 Service
or CFA. Equally, the individual features play no direct part
in determining the routing. Their contribution to the rout-
ing behavior is at the more abstract level of indicating that
further routing is to be based on a new value of the source
or target field in the setup message.

The chief advantage in analysis is that interaction between
feature boxes is constrained in a well understood way closely
analogous to the interaction between caller and callee in a
traditional POTS call. Just as in the approach of [17], behavior
of individual boxes and their interactions is susceptible to
model checking techniques; properties of the interaction of
the caller and callee protocols given in Section 3.10 with the
DFC switch protocol and with each other have been checked
in Spin [16]. The explicit treatment of voice channels in inter-
nal calls allows feature box states and behaviors to be ana-
lyzed in terms of voice processing states as well as in terms
of sending and receiving out-of-band signals.

Finally, the DFC architecture appears to be relatively
easy to implement on a wide variety of physical telecom
munications architectures [25]. There is an obvious corre
spondence between a DFC usage and a voice path through
the switches and trunks of a physical network.

Furthermore, we have consciously avoided choices in
the definition of the DFC architecture that are likely to be
expensive to implement. For example, the constraint that
source, dialed, and target zones are configured in that or-
der simplifies the assignment of feature functionality to
network nodes. Although the three zones are routed to-
gether in the virtual architecture, the routing of the three
zones can easily be distributed for the purpose of efficient
signaling. Another example is that each feature box has
the narrowest possible scope of action: for instance, Wake-
Up Call, and 800 Service features are provided by free
boxes serving one usage at a time. Engineers are free to
implement these and other feature boxes as individual
physical components or as processes on a large platform
serving many usages concurrently.

5.4 Further Work
So far we have programmed sample feature boxes in
Promela. Our highest-priority task is the development of a
domain-specific language that makes feature boxes easy to
program and easy to analyze for unexpected feature inter-
actions and other interesting properties.

At the same time, we are also working on:

•� the extension of the DFC architecture to aspects of
telecommunications that it does not currently cover;

•� the systematic implementation of the DFC virtual ar-
chitecture on a variety of physical architectures; and

•� investigation of further techniques for abstraction,
classification, and verification of features.

APPENDIX A—RELATION SYMBOLS

Appendix A explains the relation symbols used in this paper. A, B, and C are sets of any elements; R and S are relations.

Relation Symbols Definition

A ↔  B The general relation, consisting of any set of pairs (Ai, Bj).
A →  B A total function. Each element Ai of A occurs in exactly one pair (Ai ,Bj).
A |→  B A partial function. Each element Ai of A occurs in at most one pair (Ai, Bj).
A →→  B A total surjection. Each element Ai of A occurs in exactly one pair (Ai, Bj). Each element Bj of B occurs

in at least one pair (Ai, Bj).
A >→  B A total injection. Each element Ai of A occurs in exactly one pair (Ai, Bj). Each element Bj of B occurs in

at most one pair (Ai, Bj).
ran R The range of R. If R consists of pairs (Ai, Bj), ran R is the set of Bj occurring in R.
dom R The domain of R. If R consists of pairs (Ai, Bj), dom R is the set of Ai occurring in R.
R~ The inverse of R. If R consists of pairs (Ai, Bj), R~ is the set of pairs (Bj, Ai) such that (Ai, Bj) is in R.
C v  R R domain-restricted to C. If R consists of pairs (Ai, Bj), C v  R is the set of pairs (Ai, Bj) occurring in R

such that Ai is in C.
R x  C R range-restricted to C. If R consists of pairs (Ai, Bj), R x  C is the set of pairs (Ai, Bj) occurring in R

such that Bj is in C.
R ( )C The relational image of C under R. If R consists of pairs (Ai, Bj), R ( )C  is the set of elements Bj such that

at for least one Ai (Ai, Bj) occurs in R and Ai is in C.
R ; S The relational composition of R and S. If R consists of pairs (Ai, Bj) and S consists of pairs (Bk, Cn), R ; S

consists of the pairs (Ai, Cn) such that for at least one Bj (Ai, Bj) is in R and (Bj, Cn) is in S.
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