Compositional Network Mobility

Pamela Zave! and Jennifer Rexford?

L AT&T Laboratories—Research, Florham Park, New Jersey, USA,
pamela@research.att.com
2 Princeton University, Princeton, New Jersey, USA,
jrex@cs.princeton.edu

Abstract. Mobility is a network capability with many forms and many
uses. Because it is difficult to implement at Internet scale, there is a
large and confusing landscape of mobility proposals which cannot easily
be compared or composed. This paper presents formal models of two dis-
tinct patterns for implementing mobility, explaining their generality and
applicability. We also employ formal verification to show that different
instances of the patterns, used for different purposes in a network archi-
tecture, compose without alteration or interference. This result applies
to all real implementations that are refinements of the patterns.

1 Introduction

By “mobility,” people usually mean a network capability that enables all of a
machine’s communication services to continue working as the machine moves
geographically. In fact, network mobility is much more general. Because it is the
machine’s attachment to the network that is moving, the machine might also
be changing from one transmission medium to another (e.g., cellular to WiFi)
or from one service provider to another. Also, communication services can be
provided by layers of middleware, supporting higher-level, application-oriented
abstractions. With these abstractions a communicating entity could represent,
e.g., a person’s bank account. The account could be attached to the network
through a numbered account at a particular bank, and mobility would allow the
person to change banks without disrupting automated banking transactions.

Mobility is tremendously important. Today, mobile services are the major
area of growth for many network service providers. In the near future, “ubiqui-
tous computing” will cause an explosion in the number and variety of networked
mobile devices. Robust middleware for application-level mobility would be a
valuable enhancement to service-oriented architectures.

Mobility is also complex, subtle, and notoriously difficult to implement at
Internet scale. The classic Internet architecture [3] has a hierarchical address
space in which the hierarchy reflects a combination of geographic, topological,
and administrative relationships. Machines are assigned Internet Protocol (IP)
addresses according to their locations in the hierarchy. Subtrees of the hierarchy
are treated as address blocks, and routing works at Internet scale only because of

block aggregation. A mobile machine breaks the rules of this scheme by carrying
an individual IP address to a location where it does not belong.

Because of these difficulties, the landscape of mobility implementations is a
confusing picture. A recent survey [17] cites 22 mobility proposals, and we know
of at least 10 others. With the exception of GTP (used by cellular networks) and
Ethernet protocols for mobility within local area networks (LANSs), none have
been widely deployed. These proposals are extremely difficult to compare, so
that network service providers struggle to make wise choices for future growth.
Even though mobility obviously occurs at different levels of the protocol stack,
for many different reasons, and with many different performance profiles, most
of these proposals would be impossible to compose with each other, or to re-use
in different contexts, with any confidence.

In short, mobility is too complex to understand and reason about without the
aid of formal methods. The purpose of this paper is to give the study of mobility a
firm foundation by modeling and analyzing abstract implementations of mobility.
The abstractions are general enough to describe all proposed implementations,
with some slight modifications to improve separation of concerns. Our major
result, that implementations of mobility can be safely composed, applies to all
implementations that are refinements of the abstract implementations.

We begin with a basic model of network architecture called the “geomorphic
view” of networking (Section 2). This model provides consistent terminology and
a global framework in which specific implementation mechanisms can be placed.
It is precise enough so that proposed network architectures have unique descrip-
tions within the framework, which is essential for purposes of comparison. This
section introduces two new formal models of different aspects of the geomorphic
view.

Because the geomorphic view is an abstraction of real implementations that
hides detail and separates concerns, it makes it possible to see that there are
two very distinct patterns for implementing mobility (Section 3). Although ev-
ery well-known mobility proposal fits into these two patterns [16], these two
patterns have never been observed before. Section 3 describes the patterns both
informally and formally. It also contains brief discussions of the applicability
constraints, design choices, and cost/performance trade-offs of each pattern. Al-
though mobility is an enhancement to the implementation of a point-to-point
communication channel, preserving the channel even while its endpoints move,
we do not consider black-box specifications of channel or mobility behavior (e.g.,
[1,2,5]).

Section 4 introduces the goal of a design space of mobility in which engineers
could handle each instance of mobility with exactly the right implementation
mechanism at exactly the right place in a layered network architecture. This
goal requires, of course, that different instances of the mobility implementations
compose—without alteration or interference. This section also includes an ex-
ample of the benefits of a compositional design space.

Section 5 presents arguments, based on our formal models, that the two
implementation patterns as described in the geomorphic view are indeed com-

Fig. 1. Members and links of a layer.

positional. These arguments include analysis with the Alloy Analyzer [8] and the
Spin model checker [6]. This automated verification is no mere exercise, as the
inherent subtlety of composed mobility mechanisms is too great for reliable in-
formal reasoning. The implication of our result is that any real implementations
that are refinements of our abstract implementations are also compositional.

2 The geomorphic view of networking

In the geomorphic view of networking, the architectural module is a layer. Each
layer is a microcosm of networking—it has all of the basic ingredients of net-
working in some form. In a network architecture there are many layer instances;
they appear at different levels, with different scopes, with different versions of
the basic ingredients, and for different purposes.

2.1 Components of a layer

A layer has members, each of which has a unique, persistent name. For example,
Figure 1 is a snapshot of a layer with five members, each having a capital letter
as a name. In general a member is a concurrent process, i.e., a locus of state
and control with the potential for autonomous action.

The members of a layer communicate with each other through links, shown
by lines in Figure 1. A link is a communication channel. In general, a layer does
not have a link between each pair of members.

One of the two primary functions of a layer is to enable members to send mes-
sages to each other. To do this, a layer needs routes indicating how one member
can reach another through links and intermediate members. For example, (4,
B, D, E) is a route from A to E. It also needs a forwarding protocol that runs
in all members. The forwarding protocol enables members to send and receive
messages. In addition, when a member receives a message on an incoming link
that is not destined for itself, its forwarding protocol uses the route information
to decide on which outgoing link or links it will forward the message.

A channel is an instance of a communication service. As mentioned above,
a link is a channel. Sometimes a layer implements its own links internally. Most
commonly, however, the links of a layer are implemented by other layers that
this layer uses, placing the other layers lower in the “uses” hierarchy.

If an underlay (lower layer) is implementing a link for an overlay (higher
layer), then the basic attributes of the channel must be stored in the states of

processes on
one machine

—

@ ®
registration .

O—O—0—0

Fig. 2. Implementation of a link in an overlay by a session in an underlay.

both layers. In the overlay, the channel object is one of its links. In the underlay,
the channel object is one of its sessions. There must be two names for the sets
of channels of interest to a layer, because a typical layer both uses links and
implements sessions.

The second primary function of a layer is to implement enriched communi-
cation services on top of its bare message transmission. Typical enrichments for
point-to-point services include reliability, FIFO delivery, and quality-of-service
guarantees. This function is carried out by a session protocol. A layer can imple-
ment sessions on behalf of its own members, as well as or instead of as a service
to overlays.

For a link in an overlay to be implemented by a session in an underlay,
both endpoint machines must have members in both layers, as shown in Fig-
ure 2. A machine is delimited by an operating system that provides fast, reliable
communication between members of different layers on the machine. This fast,
reliable operating-system communication is the foundation on which networked
communication is built.3

A registration is a record that relates an overlay member to an underlay
member on the same machine. Registrations must be stored as data in both
layers. In the overlay they are called attachments, because they indicate how a
member is attached to the network through a lower layer. In the underlay they
are called locations, because they indicate that a member is the location of a
process in a higher layer.

The session protocol creates and maintains sessions data in its layer, and
uses locations data. For example, in Figure 2, A sent a request to a for a session
with F. To create this session, a learned from its layer’s locations that E is
currently located at e. Messages sent from A to F through the link in the overlay

3 Although layer members have been described as concurrent processes, they are not
usually “processes” as defined by the operating system; processes in an operating
system have many more properties and associations. A virtual machine can be re-
garded as a machine, in which case communication through the hypervisor and soft
switch of the physical machine is regarded as networked communication.

primary function state component maintenance algorithm

members €——— member algorithm
locations «——— location algorithm

session protocol ——» sessions
attachments €——— attachment algorithm
forwarding protocol links €—— link algorithm

routes €—————— routing algorithm

Fig. 3. Major components of a layer. Arrows show which protocol or algorithm writes
a state component.

travel through a, b, d, and e; the first and last steps uses operating-system
communication, while the middle three steps use networked communication.

The six major components of the state of a layer are listed in Figure 3. All
can be dynamic. We have seen that the session protocol creates and maintains
sessions; the other five are created and maintained by their own maintenance
algorithms.

2.2 Layers within a network architecture

The geomorphic view may seem familiar and obvious because both the classic
Internet architecture [3] and the OSI reference model [7] also describe network
architecture as a hierarchy of layers, but in fact there are several radical differ-
ences, which the name “geomorphic” has been chosen to emphasize.

In the Internet and OSI architectures, each layer has a specialized function
that is viewed as different from the function of the other layers. In both archi-
tectures, there is a fixed number of global layers. In the geomorphic view, each
layer is viewed as the same in containing all the basic functions of networking,
and there can be as many layers as needed. Consequently, the network (IP)
and transport (TCP/UDP) layers of the classic Internet architecture fit into one
“Internet core” layer of the geomorphic view (see Figure 4). In this layer, IP is
the forwarding protocol and TCP and UDP are variants of the session protocol
offering variants of Internet communication service.

Because layers instantiated at different levels have different purposes, their
functions take different forms. For one example, the best-known routing algo-
rithms are in the Internet core, where their purpose is reachability. A higher-level
middleware layer might offer security as part of its communication services. Im-
plementing security might entail routing all messages to a particular destination
through a particular filtering server, so that, in this layer, part of the purpose
of routing is security. An application layer might have a link or potential link
between any two members, implemented by communication services below, so
that in this layer the routing algorithm is vestigial.

The scope of a layer is its set of potential members. In the Internet and OSI
architectures scope is not precisely defined, so diagrams usually show exactly one

Application 1

: Application 2

O—0—0

Internet core

gateway gateway

010202030

LAN 1 LAN 2 LAN 3

Fig. 4. Geomorphic view of the classic Internet architecture. Internet links are labeled
with the LAN that implements them.

layer at each level of the hierarchy, each with global scope. In the geomorphic
view, as shown in Figure 4, a layer can have a small scope, and there can be
many layers at the same level of the hierarchy.

Figure 4 also shows that each application is a layer with its own members,
name space, and communication services. These layers overlap geographically,
while sharing the resources of the Internet core. The overlapping and abutting
shapes in Figure 4 are common to both geological diagrams and networking.

Today’s Internet is host to many customized architectures running simulta-
neously [14,15]. Middleware is an important part of the ecosystem, while cloud
services and virtual private networks add extra layers to the classic Internet
architecture. It is self-evident that fixed layer structures cannot describe these
architectures adequately. The geomorphic view is intended not only to describe
them, but also to generate a design space including many others not yet explored.

We will use two formal models of the geomorphic view for reasoning about
mobility. One is a model of shared state written in Alloy [8]. Shared state is
state of a layer that may be read or written by more than one layer member.
The other is a Promela [6] model of an end-to-end channel protocol. The states
model private control information of each endpoint, so they are complementary
to the Alloy model. Both models are available at http://www2.research.att.
com/~pamela/mobility.html.*

4 As a bonus, the Promela model is organized and documented as a tutorial on modular
verification. Different properties require different forms of verification, so approxi-
mately 16 different verification techniques and Spin features are explained.

user layer user layer

@ link @ @ link @

implementing layer implementing layer
o Session Lo Seslon
O=O—0—06 O-O0—0—06
: LAN1 : LAN 2
d 2

Fig. 5. Two stages in an instance of dynamic-routing mobility.

3 Implementations of mobility

In this section we show that there are two completely different patterns for
implementing mobility. They differ in where the mobility appears with respect
to the implementing layer, in which algorithms and protocols of the implementing
layer are involved in implementing mobility, and in which parts of the shared
state are altered. They also differ in their detailed design decisions, and in their
cost, performance, and scalability issues. Although there are many examples of
both kinds of mobility in the literature, it has never before been observed that
there are two major and radically different approaches. This finding is a result
of taking the geomorphic view of networking.

3.1 Dynamic-routing mobility

Figure 5 has two stages depicting the effect of mobility on an inter-layer channel.
Recall that the channel is a link in the state of the layer that uses it, and a session
in the state of the layer that implements it; its higher endpoints are in the user
layer, while its lower endpoints are in the implementing layer.

The precise site of mobility here is the lower endpoint A. In Stage 1 A is
attached to al in LAN 1. Recall that al is the location of A, and the association
between them is a registration. a1 and A are connected to the rest of their layers
through Links 1 and 2, respectively. Link 2 is implemented by LAN 1, which
might be an Ethernet or wireless subnetwork.

Between Stage 1 and Stage 2 Link 1 stops working, possibly because the
machine on which A and al reside has been unplugged from an Ethernet, or
has moved out of range of a wireless subnetwork. In a cascading sequence of
events, Link 1 is destroyed, Link 2 is destroyed, and the registration of A at al
is destroyed. A is now disconnected from the rest of its layer.

Eventually the mobile machine may become plugged into another Ethernet
or enter the range of another wireless subnetwork, as shown in Stage 2. In a
cascading sequence of events, member a2 (which is the mobile machine’s member
in the new LAN 2) connects to the rest of its layer through Link 3, A becomes
attached to new location a2, and new Link 4 is created in the mobility layer
and implemented by LAN 2. Note that A is now linked to C rather than B; this
change is necessary because C'is attached to LAN 2 and B is not.

Between Stages 1 and 2 there may be an interval during which A has no
connection with the rest of its layer. The hard problem to be solved in Figure 5
is that even after A is again reachable by other members of its layer such as D
and F, they do not know how to find it because the routes to it are obsolete.
Dynamic-routing mobility relies on the routing algorithm of the layer, which must
learn about new links, recompute routes, and disseminate new routes. After this
is accomplished, D will know that it can reach A by forwarding to C.

There are three ways in which actual dynamic-routing mobility can differ
from the example in Figure 5. Fortunately, none of them affect what the imple-
mentation has to do, so none of them need be discussed separately. First, the new
attachment a2 could be in the same layer as a1, rather than in a different layer.
Because a1 and a2 are different locations, after the move A is probably linked
to a different member of its own layer, even though the new link is implemented
by the same lower layer as before.

Second, in Figure 5 the mobile member A has only one attachment and one
necessary link. As shown in Figure 4, members such as gateways have multiple
simultaneous attachments to different underlays. Because each such attachment
is necessary for the gateway’s purpose and supports its own link or links, the
mobility of each attachment is a separate problem to be solved.

Third, occasionally a layer implements sessions for the benefit of its own
members, rather than as a service to a higher user layer. In this case there is no
A or E, and the beneficiaries of the mobility implementation are A and E.

Often the tasks of forwarding and executing the routing algorithm are dele-
gated to specialized layer members called routers. The principal costs of dynamic-
routing mobility are update cost (to compute new routes and disseminate them
to all routers) and storage cost (to store routes to individual mobile nodes in
all routers that need them). As mentioned in Section 1, these costs can be
prohibitive in a large layer that requires aggregated routing to work at scale.
Dynamic-routing mobility is most used in LANSs, which have smaller scopes and
can function without hierarchical name spaces and aggregated routing.

Another common design approach is to reduce update and storage costs by
drastically reducing the number of routers that know the routes to mobile mem-
bers. Because this approach introduces a separate set of routes and a separate
routing algorithm, in the geomorphic view it must be described in two separate
layers—even though it is usually described in one layer with ad hoc “tunneling.”
This is an example of a modified description of an implementation to improve
separation of concerns, as was mentioned in Section 1.

The performance of this approach is sensitive to the number of mobile routers.
If many routers know the route to a mobile member, then update and storage
costs are higher. If few routers know the route to a mobile member, then update
and storage costs are low, but there is path stretch because every message to a
mobile member must pass through one of these routers, regardless of where the
source, router, and mobile member are located. More details can be found in
[16], where we compare 5 well-known proposals for dynamic-routing mobility.

3.2 Mobility in the model of shared state

Figure 6 shows the signatures of the Alloy model of shared state used to study
mobility. With one exception (see below), all the state components in Figure 3
correspond to relations in the signature of a layer. In Alloy time and events are
explicit, so that a layer has a member with name m at time ¢ if and only if the
pair (m, t) is in the members relation of the layer. Members of the basic type
name play many roles in these relations, which the comments attempt to clarify.

In this model each channel is point-to-point, having initiator and acceptor
endpoints that must be hosted on different machines. Each channel has a user
layer and an implementing layer, which may be the same or different. If they are
different, the channel is one of the links in the user layer, and one of the sessions
in the implementing layer. If they are the same, the channel is either a link or a
session of that layer (but not both).

The overlays and underlays of a layer determine the “uses” hierarchy. The
attachments and locations are the registrations as presented in Section 2.1.

The directoryServer, directory, initFarLoc, and accptFarLoc relations will be
explained in Section 3.3. Except for these relations, the model says nothing about
how the shared state of a layer is distributed and replicated across the layer.

In the model, links are partitioned into inter-layer (implemented) links and
intra-layer (primitive) links. Primitive links are further partitioned into active
and inactive links; this partitioning is dynamic, as a primitive link’s current
partition represents its current state. There are DeactivateLink and ActivateLink
events that make primitive links inactive and active, respectively. There are
DestroyLink events that destroy links of any type. There are CreateLink events
that create implemented or active primitive links.

For implemented links, there is a predicate ImplementationActive that deter-
mines whether the link is active or inactive, based on the state of its implemen-
tation. Among the necessary conditions in this predicate, both higher endpoints
must be registered at lower endpoints in the implementing layer, and the lower
endpoints must be mutually reachable in that layer.

The challenge of implementing mobility is to bring an inactive implemented
link back to an active state, after occurrences such as those discussed in Sec-
tion 3.1 cause it to be suspended. The two patterns for implementing mobility
operate on attachments, locations, links, and sessions. Coordination among these
changes has little to do with dynamic routing itself, which is a self-contained algo-
rithm assuming no more than reachability. Taking advantage of this separation,
the model does not contain routes, and simply assumes that a routing algorithm

sig Time { }
sig Event { pre: Time, post: Time }
sig Name { }
sig Channel {
userLayer: Layer,
implLayer: Layer,

initiator: Name, -- name: member of userLayer

acceptor: Name } -- name: member of userLayer
sig Machine { hosted: Layer -> Name -> Time } -- name: member of layer
sig Layer {

overlays: set Layer,
underlays: set Layer,

members: Name -> Time, -- name: member of layer
directoryServer: Name, -- name: member of layer
attachments: underlays -> Name -> Time, -- name: attached
locations: overlays -> Name -> Name -> Time, -- names: attached->location
directory: overlays -> Name -> Name -> Time, -- names: attached->location

sessions: Channel -> Time,
initFarLoc: Channel -> Name -> Time, -- name: endpoint’s location
accptFarLoc: Channel -> Name -> Time -- of far endpoint

links: Channel -> Time,

activelLinks: Channel -> Time, -- self-implemented
inactivelLinks: Channel -> Time, -- self-implemented
implementedLinks: Channel -> Time,

reachable: Name -> Name -> Time, -- names: from -> to

Fig. 6. Signatures of the Alloy model of shared state.

is present in each layer and working correctly. Instead, each layer has a dynamic,
binary, symmetric relation reachable on members. By definition, a pair (m1, m2)
is in this relation if and only if there is a path between m1 and m2 consisting of
active links, whether implemented or primitive. The model assumes that if such
a path exists, the routing algorithm will find it and the forwarding protocol will
be able to use it.

The basic model includes a large number of consistency constraints on the
instantiation of these signatures. One example is that the overlays and underlays
fields in layers are consistent and form a directed acyclic graph that is the “uses”
hierarchy of layers. Another example is that if there is a link in layer L1 naming
L2 as the implementing layer, then there is a corresponding session in L2 naming
L1 as the user layer.

The model also includes CreateRegistration and DestroyRegistration events.
A layer member can have at most one location in an underlay. Thus the model

excludes mobility implementations that allow a higher endpoint to have multiple
simultaneous locations (lower endpoints) during handoff.

How does Figure 5 correspond to the Alloy model? Assume that all links at
the LAN level are primitive and active. In Stage 1 the link in the user layer is
active. After Stage 1, Link 1, Link 2, and the registration between A and al are
destroyed by modeled events. Between Stage 1 and Stage 2 the benefiting link in
the user layer is inactive because its lower endpoints A and E are not mutually
reachable. Before Stage 2, Link 3, Link 4, and the registration between A and
a2 are created by modeled events. In Stage 2 the benefiting link is active again.

3.3 Session-location mobility

Figure 7 is similar to Figure 5. One difference is that A’s location in the imple-
menting layer changes from A1 to A2, rather than staying the same. Another
difference is that the LAN level is not shown. This is because the relevant change
of attachment is now between the user layer and the implementing layer, not be-
tween the implementing layer and the LAN level, so what happens at the LAN
level is irrelevant.®

This is a crucial difference from the perspective of the implementing layer,
and requires a completely different mechanism for implementing mobility. The
bulk of the work of implementing session-location mobility lies in ensuring that
A’s correspondents know that it is now located at A2 rather than AI. The
distributed version of the locations mapping that is used for lookup must be
updated. Each lower endpoint that was participating in a session with A1 on
behalf of A must be informed that it should now be corresponding with A2
instead.

user layer ﬂ 2 user layer
link link
® ® ® ®
implementing layer . implementing layer
session : : session .
T = = = ~N- e T - - - - - = N
O—E—0—0® —0—0—0O®

Fig. 7. Two stages in an instance of session-location mobility.

® Most often layer members A7 and al at the LAN level would be destroyed, and
members A2 and a2 created. In this case there would be no mobility between their
levels because each of the Aj is attached to the same aj throughout its lifetime.

The change of registration from A1 to A2 should be familiar from observing
what happens when a laptop containing an application layer member A moves
to a new subnetwork of the Internet, and gets a new IP address from DHCP.
From the perspective of the Internet, the laptop has died as member A1 and
become reborn as member A2. Fortunately it is easy to transfer session state
from lower endpoint A1 to lower endpoint A2, because A1 and A2 are on the
same machine, and are actually the same process with different names.

It should be apparent that session-location mobility is a natural choice for
implementing mobility in a hierarchical layer, because the lower endpoint of a
session can change names when it moves with respect to the hierarchy. Strictly
speaking some dynamic routing could be involved, because A2 is a new member
of the layer and there must be routes to it. In practice this is rarely an issue,
because the name A2 is part of some larger address block to which routes already
exist.

The principal costs of implementing session-location mobility are the cost of
a scalable distributed implementation of locations, the cost of updating it when
there is a move, and the cost of updating the session states of correspondents.
Some implementations have a new lower endpoint send updates to all its cor-
respondent lower endpoints, while other endpoints have a lower endpoint poll
for refreshed locations of its correspondent upper endpoints. More details can
be found in [16], where we compare 5 well-known proposals for session-location
mobility.

To capture the challenges of implementing this pattern, the Alloy model has
a relation directory with the same type as locations. Locations is understood
to represent the ground truth about which overlay members are attached to
which locations in this layer. This ground truth is stored locally in the machines
where the registrations are created, and cannot be accessed globally. Directory
represents a public copy stored in a distinguished directoryServer, and part of
the implementation work is to keep directory as faithful to locations as possible.

In addition, the shared state of each session is augmented with a dynamic
initFarLoc name and acceptFarLoc name, storing the current location of the
initiator’s and acceptor’s far ends. For example, suppose that the channel in
Figure 7 is initiated by A. When the channel is set up, the initFarLoc of the
session is F and the acceptFarLoc of the session is A 1. After the move from Stage
1 to Stage 2, the acceptFarLoc of the session is A2. The predicate Implemen-
tationActive, determining whether a link is active or inactive, also includes the
necessary condition that both far locations are correct.

When there is a CreateRegistration event after a move, it should be followed
by an UpdateDirectory event in which the directory relation is updated with the
new location. The preconditions of this event include that the new location and
the directory server are mutually reachable in the implementing layer.

Generally the fastest handoffs are achieved when a new lower endpoint sends
updates directly to all its correspondent lower endpoints. This is modeled by the
UpdateFarLocFromEndpoint event, which updates the initFarLoc or acceptFar-
Loc of a single channel from a single mobile endpoint. Its preconditions include

that both higher endpoints of the channel are registered in the implementing
layer, the two current lower endpoints are mutually reachable, and the endpoint
sending the update has the correct FarLoc for the other endpoint, so that it can
send a message to it.

Interesting behavior arises if both endpoints of a channel move concurrently.
In this case the last precondition of UpdateFarLocFromEndpoint will be false at
both ends of the channel, and neither endpoint will be able to update the other.

In this case a mobile endpoint, finding that it cannot reach a far endpoint to
update it, knows that the far endpoint has moved also. The endpoint can update
its own FarLoc from the directory by using UpdateFarLocFromDirectory. The
preconditions of this event are that the far endpoint’s directory entry is correct
and the lower endpoint requesting the update can reach the directory server.
After a double handoff these preconditions will eventually be true on both ends,
and both ends can be updated successfully. The UpdateFarLocFromDirectory
event also models the behavior of implementations that poll for fresh locations
rather than sending updates to correspondents.

4 Composition of mobility implementations

4.1 The design space of mobility

One of our goals is to give network architects the freedom to handle any instance
of mobility with any mobility implementation. The first step was to identify
the two possible implementation patterns and to provide sufficiently abstract
versions of them. The next step, taken in this section, is to show that any instance
of mobility can be implemented with either pattern at almost any level of the
layer hierarchy. The final step, taken in Section 5, will be to show that multiple
implementations can be freely composed.

In the left column of Figure 8, top half, we see a fundamental instance of
mobility in which the old and new locations are in the same layer at Level 0.
As notated, the channel at Level 1 can be preserved by session-location mobility
(SLM) at Level 0. In the left column, bottom half, we see a fundamental instance
of mobility in which the old and new locations are in different layers at Level 0.
As notated, a channel at Level 2 can be preserved by dynamic routing mobility
(DRM) at Level 1.

The middle column of the figure shows the effects of a “lifting” transformation
in which each mobility implementation is moved up a level in the hierarchy. The
purpose is to show that mobility can be implemented in many different places,
if the current architecture allows it or the designer has control of the content
and design of relevant layers. In each case member m at Level 1 is replaced by
two members m1 and m2. Neither m1 nor m2 is mobile, as each has a stationary
registration in Level 0 throughout its lifetime. Now member m’ at Level 2 is
mobile. As shown in the figure (top), a channel in Level 2 with m’ as its higher
endpoint can be preserved by SLM at Level 1. Or, as shown at the bottom, a
channel in Level 3 with m” as its higher endpoint and m’ as its lower endpoint
can be preserved by DRM at Level 2.

SO — 2| @O—
1| @— 1|@'SLM @ 1| @ DRM
[@ s @ [(@ ©

3| @—
o= Co= o=
'] @ DRM 1] @ "@ '] @"SLM"@
@ [@ [0 @ @ @

Fig. 8. Generating the design space.

The right column of the figure shows where one implementation pattern can
be replaced by the other. To replace SLM by DRM (top right), it is necessary
to lift the channel up one level. To replace DRM by SLM (bottom right), the
channel can stay at the same level, but the mobility must be lifted up a level.

4.2 An example of composition

In this section we consider a user’s laptop as a mobile endpoint. Sometimes the
user gets on a bus. During the ride, the laptop is attached to a LAN (wired
or wireless) on the bus, and the bus maintains its connection to the Internet
by means of a series of roadside wireless networks. This mobility problem is
interesting because there are two mobile machines, one of which is sometimes a
router on the path to the other.

Figure 9 illustrates a possible solution. The top layer contains a member M
representing the laptop, and a member S with an ongoing link to M. The middle
layer, which has hierarchical naming and routing, implements session-location
mobility for M. When M is on the bus, it is attached to a member bm in the
name block of the bus LAN. When M is off the bus, it has some other attachment
nm. Session-location mobility must be active when M moves with respect to the
bus, but not when the bus moves.

The middle layer contains a member b representing the router on the bus.
There is a link between b and bm implemented by the bus LAN. Attachments
to the bus LAN have no mobility.

In the middle layer, b also needs a channel to bc, the bus company router, that
is preserved as the bus moves and b changes its attachment from one roadside
LAN to another. In this example the channel is an intra-layer session, and it

B link preserved by W
session-location mobility)
session preserved by Do

1
dynamic routing mobility : 1

: \

\ \

roadside

- : N \
- N N \
\ bus
XandY

Fig. 9. One implementation of mobile laptops on a bus. Mobile attachments are drawn
with dotted lines, while stationary attachments are drawn with dashed lines.

is preserved by dynamic routing mobility in the middle layer. As explained in
Section 3.1, this is the same as mobility preserving an inter-layer channel, except
without the inter-layer interface. Dynamic routing mobility must be active when
the bus moves, but not when M moves with respect to the bus. Note that when
M is off the bus and attached to nm, it is reached by another route (not shown
in the figure) that does not go through bc or b.

To our knowledge, this is the first solution to this problem in which bus
mobility and laptop mobility are completely independent.

5 Verification of compositional properties

The purpose of this section is to show that instances of the abstract implemen-
tations of mobility presented in Section 3 can be used anywhere within a layer
hierarchy, concurrently, without alteration or interference.

5.1 Composition of control states

As we have seen, an inter-layer channel has both higher endpoints and lower
endpoints. The channel is created and destroyed on the volition of the higher
endpoints, and each of the four processes involved has its own private control
state. Channel creation is independent of mobility, and is not considered here.

A higher endpoint of a channel can detect that the channel is not meeting
its performance requirements, primarily by monitoring round-trip times. On de-
tecting such a failure, the endpoint may respond by destroying the channel and
initiating failure-recovery procedures such as retry or an attempt to create an
alternative channel.

When a channel is not responsive at a higher endpoint because the lower
endpoint is disconnected from its layer, the higher endpoint should know it.

This information might prevent the higher endpoint from destroying a channel
that will be restored to full utility by a mobility implementation. It should cer-
tainly prevent the higher endpoint’s initiating replacement attempts, as these
are doomed to failure. For these reasons the inter-layer interface should be aug-
mented with suspend and resume events. A lower endpoint signals suspend to its
higher endpoint when it becomes disconnected from its layer, and resume when
it becomes connected again.

To verify this augmentation we wrote a Promela [6] model of a channel with
suspension/resumption at either or both endpoints. The model includes higher
and lower processes at each end, with buffered communication between them to
be implemented by an operating system. The lower endpoints communicate with
each other through network links, which can lose or re-order messages in transit.
To make up for the unreliable network, the lower endpoints implement a simple
protocol for reliable, FIFO, duplicate-free transmission. Model-checking with the
Spin model-checker proves that the model has all the necessary properties. These
include: (1) there are no safety violations such as deadlocks; (2) if the channel
is not destroyed and both endpoints are eventually active, then all data sent
is eventually received; (3) the control states of higher and lower endpoints are
eventually consistent; (4) channels terminate cleanly in all cases.

For composition of the implementation patterns we need a different view,
shown as a finite-state machine in Figure 10. The primary state labels (in bold-
face type) indicate the states of a layer member implementing dynamic-routing
mobility. (For simplicity, the model assumes that the member has at most one
link at a time to the rest of its layer.) The transitions caused by the member are
labeled in boldface type. The member should attempt to stay linked, so that it
can do its job in its layer.

The states in the figure are oval when the member is attached to a member
in an underlay, and half-oval when it is not. The oval states are compositions
of the states of two processes, overlay member and underlay member (both on
the same machine). States and transitions of the underlay member are shown in
Ttalic type.

The overlay member is attempting to stay linked, but can only do so if it is
attached and the underlay member is active. At any time the process can aban-
don its attachment and eventually make another, but its links are attachment-
dependent and cannot be preserved across this change.

Next we consider the states and transitions of the underlay member. It can
suspend and resume according to its diagnosis of its own condition. This view
is slightly more general than the description in the first part of this section,
because it can suspend and resume with respect to the attachment, regardless of
whether the attachment is currently being used to implement a link or not.

The underlay member can also implement session-location mobility. When
it is already suspending because of poor performance, the underlay member can
first destroy its registration with the overlay member. Now the overlay mem-
ber has no official attachment/location, but the underlay member still exists
as a software process and is maintaining session state. Eventually, while in this

suspended

suspending
no location,

create
Registration

destroy create link
Registration Link Rejected destroy
Link
detached

create
Registration

unlinked unlinked unlinked

suspending
no location

resume

create active suspending

Registration \

suspend destroyRegistration
~ e

Fig. 10. A finite-state machine representing private control states of a layer member
and the underlay member to which it is currently attached, if any. The dashed contour
is a superstate.

state, the underlay member changes identity within its layer as described in Sec-
tion 3.3, effectively becoming a different member of its layer. It then creates a
new registration with the overlay member, and eventually resumes activity.

Most interestingly, the same process can play both roles in Figure 10, be-
ing an underlay member and an overlay member at the same time. Consider
what happens when such a member is not linked as an overlay member, and
is therefore suspending as an underlay member. It can choose dynamic routing
mobility, in which case it causes destroyRegistration as an overlay member,
and seeks to find a better attachment below under its own current identity. Or it
can choose session-location mobility, in which case its current identity and state
as an overlay member are irrelevant, because they will disappear. It will take on
a new identity as an overlay member, and get an initial attachment below under
its new identity.

To behave correctly, a process playing both roles should seek to be linked
as an overlay member whenever possible, so that it can be active as an underlay
member. Whenever it is not linked as an overlay member, it should suspend
as an underlay member. Whenever it becomes linked again, it should resume
as an underlay member. The important observation is that the suspend/resume
events are in a different instance of Figure 10 than the linked state, so the two
are independent, and the process is always free to perform them.

5.2 Composition in the model of shared state

The Alloy model of shared state includes all the events required for implemen-
tations of mobility. Each event of the Alloy model has a set of preconditions

with the following purposes: (1) They ensure that the arguments make sense.
For example, if the argument list includes a name, it names a current member
of the appropriate layer. (2) They ensure that two layer members associated
by a registration are hosted on the same machine, and that two layer members
associated by a channel are hosted on different machines. (3) They ensure that
the event will change the state of the model. (There are no idempotent events.)
Each event of the Alloy model also has a safety assertion stating that it preserves
the overall consistency of the model state and makes the intended change.

Verifying these safety assertions shows that mobility implementations are
compositional in the sense that each event is safe regardless of context. This
means that events from many simultaneous instances of mobility can be safely
interleaved. The limitation of this verification is that although the effect of each
event is localized within a layer, its enabling preconditions are global.

All of the Alloy correctness assertions have been checked with the Alloy
Analyzer, which means that they have been verified for models of bounded size
(scope) by means of exhaustive enumeration of model instances. In debugging
the Alloy model, all counterexamples to conjectures were found with a scope of
2 layers, 5 names, 5 machines, and 5 channels. Nevertheless, we have verified
the properties in this paper for scopes of 5 layers, 6 names, 6 machines, and 12
channels.

The next step is to establish that progress is always possible, i.e., that if
any link is inactive, it can eventually become active. The proof is inductive,
starting from the bottom of a layer hierarchy, at a layer in which all links are
primitive rather than implemented. We verified with the Alloy Analyzer that in
any state of such a layer, either each pair of members is mutually reachable, or
the preconditions are satisfied to either (1) activate an inactive primitive link or
(2) create a new active primitive link between previously disconnected members.
After a finite number of such steps, all members must be mutually reachable.

Assuming that all members of an implementing layer can become mutually
reachable, an inactive implemented link can always become active in three stages:
(1) both its higher endpoints must become registered in the implementing layer;
(2) in addition, both its higher endpoints must have correct directory entries in
the implementing layer; (3) in addition, both its far locations in the session state
in the implementing layer must be correct. For the first stage, we verified that
in any state, either each higher endpoint is registered or the precondition for
its CreateRegistration event is satisfied. Recall that all events change the model
state, so that it is not possible for an event to occur without making progress.
For the second stage, we verified that in any state, if both higher endpoints
are registered, either each directory entry is correct or the precondition for its
UpdateDirectory event is satisfied. For the third stage, we verified that in any
state, if both higher endpoints have correct directory entries, either each far
location is correct or the precondition for its UpdateFarLocFromDirectory event
is satisfied.

If a bottom layer of a hierarchy is at Level 0, this shows that any imple-
mented link at Level 1 can eventually become active. By informal reasoning,

the “reachability progress” result now applies to a layer at Level 1, so that it
can be substituted as the implementation layer in the reasoning above. By in-
formal induction, an inactive implemented link at any level of the hierarchy can
eventually become active.

6 Related and future work

For historical reasons, the discipline of networking suffers from a scarcity of
abstractions [13]. This deficiency is becoming more obvious as the complexity of
networking grows and the needs for common vocabulary, modularity, separation
of concerns, compositional reasoning, and design principles become more acute.

Loo et al. show that it is feasible to generate network software from declara-
tive programs [10]. In further work, Mao et al. generate new layers by composing
multiple existing layers, described declaratively [11]. Both have the limitation of
focusing exclusively on routing. Their abstractions are not generalizations over
all implementations, but rather lead to implementations in which there is a
logic-programming engine on each participating machine, serving as the runtime
environment for declarative programs.

The geomorphic view of networking was inspired by the work of Day [4], al-
though we have made many changes and additions in both content and presenta-
tion. Day points out that mobility is a change of registration, but assumes that
all mobility is dynamic-routing mobility, and discusses it only briefly. Mysore
and Bharghavan claim to explore the design space of mobility, but cover only
dynamic-routing mobility [12]. Karsten et al. aim to “express precisely and ab-
stractly the concepts of naming and addressing” as well as routing and forwarding
[9]. Although they include many mobility examples, there is no recognition of
session-location mobility.

There is a great deal of future work to do on mobility. The models should be
enhanced to include distribution of shared state and localized evaluation of event
preconditions. They should also be generalized to include process migration (in
which a layer member’s new attachment is on a different machine) and cases
in which a layer member’s old attachment overlaps in time with its new one.
Furthermore, our understanding of mobility should be extended to include re-
source and performance measures, and our understanding of composition should
be extended to include the quantitative effects of composition on these measures.
Perhaps most importantly, we need to find ways to bridge any gaps that exist
between real implementations and the slightly more modular, but composable,
abstractions of them.

We have looked at many other aspects of networking through the lens of the
geomorphic view, including multihoming, anycast, broadcast, failure recovery,
middleboxes, and autonomous-domain boundaries. Although none of these as-
pects have been studied in the same detail as mobility yet, they appear to fit well
into the geomorphic view. When we add them to the formal models, interesting
challenges may arise if new structures introduce new dependencies that falsify
previous verifications.

Despite these reservations, our work on network mobility reduces an ex-
tremely complex subject to concise and comprehensible formal models. It yields
new insights into the design space of mobility, and enables us to reason rigor-
ously about the composition of mobility mechanisms. This constitutes significant
progress toward bringing the benefits of abstraction to the exceedingly important
discipline of networking.

References

1. Steve Bishop, Matthew Fairbairn, Michael Norrish, Peter Sewell, Michael Smith,
and Keith Wansbrough. Rigorous specification and conformance testing techniques
for network protocols, as applied to TCP, UDP and sockets. In Proceedings of
SIGCOMM “05. ACM, August 2005.

2. Luca Cardelli and Andrew D. Gordon. Mobile ambients. Theoretical Computer
Science, 240(1):177-213, June 2000.

3. David D. Clark. The design philosophy of the DARPA Internet protocols. In
Proceedings of SIGCOMM. ACM, August 1988.

4. John Day. Patterns in Network Architecture: A Return to Fundamentals. Prentice
Hall, 2008.

5. Dominikus Herzberg and Manfred Broy. Modeling layered distributed communi-
cation systems. Formal Aspects of Computing, 17(1):1-18, May 2005.

6. Gerard J. Holzmann. The Spin Model Checker: Primer and Reference Manual.
Addison-Wesley, 2004.

7. ITU. Information Technology—Open Systems Interconnection—Basic Reference
Model: The basic model. ITU-T Recommendation X.200, 1994.

8. Daniel Jackson. Software Abstractions: Logic, Language, and Analysis. MIT Press,
2006, 2012.

9. M. Karsten, S. Keshav, S. Prasad, and M. Beg. An axiomatic basis for communi-
cation. In Proceedings of SIGCOMM, pages 217-228. ACM, August 2007.

10. Boon Thau Loo, Tyson Condie, Joseph M. Hellerstein, Petros Maniatis, Timothy
Roscoe, and Ion Stoica. Implementing declarative overlays. In Proceedings of the
20th ACM Symposium on Operating System Principles, pages 75-90. ACM, 2005.

11. Yun Mao, Boon Thau Loo, Zachary Ives, and Jonathan M. Smith. MOSAIC:
Unified declarative platform for dynamic overlay composition. In Proceedings of
the 4th Conference on Future Networking Technologies. ACM SIGCOMM, 2008.

12. Jayanth Mysore and Vaduvur Bharghavan. A new multicasting-based architecture
for Internet host mobility. In Proceedings of the 3rd Annual ACM/IEEE Interna-
tional conference on Mobile Computing and Networking. ACM, 1997.

13. Jennifer Rexford and Pamela Zave. Report of the DIMACS Working Group on
Abstractions for Network Services, Architecture, and Implementation. ACM SIG-
COMM Computer Communication Review, 43(1):56-59, January 2013.

14. Timothy Roscoe. The end of Internet architecture. In Proceedings of the 5th
Workshop on Hot Topics in Networks, 2006.

15. Oliver Spatscheck. Layers of success. IEEE Internet Computing, 17(1):3-6, 2013.

16. Pamela Zave and Jennifer Rexford. The design space of network mobility. In Olivier
Bonaventure and Hamed Haddadi, editors, Recent Advances in Networking. ACM
SIGCOMM, 2013. To appear.

17. Z. Zhu, R. Wakikawa, and L. Zhang. A survey of mobility support in the Internet.
IETF Request for Comments 6301, July 2011.

