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Abstract— In many IP media services, the media chan-
nels are point-to-point, dynamic, and set up with the par-
ticipation of one or more application servers, even though
the media packets themselves travel directly between media
endpoints. The application servers must be programmed
so that media behavior is globally correct, even though the
servers may attempt to manipulate the same media chan-
nels concurrently and without knowledge of each other. Our
proposed solution to this problem of compositional media
control includes an architecture-independent descriptive
model, a set of high-level programming primitives, a formal
specification of their compositional semantics, a signaling
protocol, an implementation, and partial verification of
correctness. The paper includes performance analysis, com-
parison to related work, and principles for making other
networked applications more compositional.

Index Terms— distributed applications, domain-specific
architectures, protocol design, protocol verification, soft-
ware/program verification, networks, streaming media,
multimedia services, telecommunications, feature interac-
tion

I. IP MEDIA SERVICES

IP media services use the Internet Protocol (IP) to
make real-time audio and video connections. We are
concerned with IP media services having two common
characteristics.

First, the media channels are point-to-point and dy-
namic. This excludes dedicated long-term channels and
multicast applications. It includes, however, a wide range
of interactive applications including Internet telephony,
home networks, computer-supported cooperative work
(teleconferencing, telemonitoring, distance learning, and
virtual reality), and computer-supported cooperative play
(collaborative television, multiplayer games, and net-
worked music performance).

Second, the dynamic setup of a media channel must
sometimes involve the participation of one or more
application servers. The presence and significance of
application servers depends on several aspects of the
architecture of media services, as follows.

In this paper amedia endpointis any source or sink
of a media stream. Endpoints include original sources
of media such as media synthesizers, cameras, and
microphones. Endpoints include ultimate sinks of media
such as user devices or clients with displays or speakers.
Endpoints also include media-processing resources that

perform a wide range of functions such as recording,
playing, mixing, replicating, filtering, transcoding, and
analyzing media streams.

In most media services, user devices act autonomously
with respect to other media endpoints (even if acting
as slaves to their human masters). For example, they
can request connections at any time, and choose to
accept or decline connections that are offered to them.
For a media channel to be established between two
endpoints, the endpoints must cooperate by means of a
signaling protocol. The Session Initiation Protocol (SIP)
is currently the best-known and most commonly used
protocol for this purpose [7], [14].

It is frequently stated that IP media services can be
implemented in the participating media endpoints. User
devices are computers, and any necessary new software
can be installed on them. As user devices become more
powerful, they can even perform the high-level media
processing required by some services.

Although it is certainly true that some IP media
services are best implemented in the participating end-
points, it is also true that many media services are best
implemented in separate application servers. Here are
some of the reasons for using application servers:

† Handheld user devices are often disconnected from
the network. An application server can provide a
persistent network presence, such as voicemail, for
handheld devices. A server can also make a user’s
media files accessible at all times from all devices,
while files stored on an inaccessible device would
not be.

† An application server can provide IP media services
for closed user devices—user devices that were not
designed to download new programs for built-in
IP media services. The most obvious example of
such a device is an ordinary telephone, connected
to the Internet through the circuit-switched telephone
network.

† Many user devices do not reside in trusted adminis-
trative domains. Applications with any kind of trust
or security requirements cannot run on them.

† Without application servers, every multi-party ser-
vice must be implemented in a completely decentral-
ized way. This might be difficult or inefficient com-
pared to implementations with some centralization in
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servers.
† Without application servers, for every service ac-
cessed from a device, application software must be
installed on that device. This is not realistic for
services that are used infrequently by any one person.

We have stated that we are interested in services
where the dynamic setup of a media channel sometimes
involves the participation of one or more application
servers. What if there are application servers, but they
do not make decisions about media channels? There
are such servers, but there are also many servers that
make decisions about which media channels should exist
when. They include servers concerned with switching
and conferencing. They include servers for services that
provide access to media resources as part of the service
being offered. They also include servers for services
that use audio signaling as their user interface. Audio
signaling implements an extensible user interface on any
audio device, by means of announcements, tones, touch-
tone detection, and speech recognition. Audio signaling
is a crucial ingredient of IP services that interoperate
with circuit-switched telephones, because it is the usual
way to augment the user interface of the device.

Wherever there is one application server, there might
be several. A connection between two user devices
might be supervised by two servers in two different
administrative domains, each one serving one of the
users. Often adding new functions to a system means
adding new servers, because adding a new server is far
easier than adding functions to an existing server. The
IP Multimedia Subsystem (IMS) architecture [1], which
is an emerging industry standard for media services,
recognizes the necessity to route a particular signaling
channel through multiple servers within the same service
provider’s configuration.

Whenever there are multiple application servers, it
is likely that they were not programmed to coordinate
with each other, beyond the common denominator of
following a standardized signaling protocol such as SIP.
Application servers representing different users may be
in completely different administrative domains. Appli-
cation servers performing different functions within one
administrative domain may be produced by different
vendors.

In the services we are concerned with, a typical media
channel looks like Figure 1. Most importantly, there is
a separation between the media channel itself and the
signaling channel used to set up and control it. The
signaling channel goes through one or more application
servers, for all the reasons presented above. The media
packets, on the other hand, travel directly between media
endpoints. This is necessary because the media channel
demands high bandwidth, so packets must travel by the
shortest available paths. This is also necessary because

the media channel demands low latency, so packets
cannot incur extra delays from longer paths or server
handling.

signaling
channel

media
channel

AS AS

endpointendpoint

Fig. 1. In IP media services, signaling and media channels are
separate.

The separation of signaling and media channels is
reinforced by other factors besides the presence of ap-
plication servers. Because these channels differ in both
performance and reliability requirements, they use dif-
ferent underlying protocols. Signaling is low-bandwidth
but demands reliability. It is common to use TCP for
signaling, so that a signaling channel can be regarded
as FIFO and reliable. Media is high-bandwidth. It is
common to use RTP for media streams, because limited
packet loss is preferable to delay. RTP can also be
combined with quality-of-service mechanisms such as
resource reservation.

II. T HE PROBLEM OF COMPOSITIONAL MEDIA

CONTROL

Section I described a class of IP-based applications
implemented in application servers. These servers must
be programmed so that media behavior is globally cor-
rect, even though the servers may attempt to manipu-
late the same media channels concurrently and without
knowledge of each other. We refer to this challenge as
“compositional media control.”

Before giving a more detailed description of the prob-
lem, we first show an example of why servers might act
concurrently and independently, and what might happen
if they are not coordinated properly.

A. An example of the problem

Figure 2 is a telephony example in four snapshots. The
snapshots show the same media endpoints and servers at
four different times.

Endpoint A is a telephone in an office with an IP PBX.
Because of this, A has a permanent signaling channel to
the PBX, and all signaling channels connecting A to
other telephones radiate from the PBX. Among other
features, the PBX allows A to switch between multiple
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Fig. 2. An example of erroneous media control. A, B, C are telephones. PC is an application server implementing a prepaid-card feature. V
is a media resource providing a user interface for PC by means of audio signaling. Solid lines are two-way signaling channels, dashed arrows
are media channels, and dotted arrows are signals sent on signaling channels.

outside calls. Before any of the snapshots in the figure
were taken, the user of A was talking to the user of
telephone B, which is why there is a signaling channel
between the PBX and B.

While A was talking to B, a user of telephone C, who
is using a prepaid card, contacted the prepaid-card server
PC and used the card to call A. A received notification
of the incoming call and switched to C. This resulted in
Snapshot 1. Note that in Snapshot 1 there is an audio
channel between A and C. There is no audio channel to
or from B, because A has put B on hold.

Snapshot 2 shows what happens when the funds of
the prepaid card become exhausted. A timer goes off
in PC and the server sends three signals. In protocol-
independent terms, there is a signal to A telling it to
stop sending media. There is a signal to C telling it to
send media to the resource V, and a signal to V telling
it to send media to C.

It is standard behavior for a server receiving a sig-
nal that does not concern itself to forward the signal
untouched. In this example, because the servers are not
coordinated—they are acting as if media signals concern
media endpoints only—they forward all media signals

that they receive. In particular, the PBX forwards thedo
not sendsignal to A.

After the endpoints respond to all commands in Snap-
shot 2, the only audio channel is between C and V. V
will use it to prompt C to supply additional funds, and
to receive authorization by means of touch tones.

Snapshot 3 shows what happens when A next uses the
PBX to switch back to B. The PBX sends three signals
appropriate to this function: a signal to A telling it to
send media to B, a signal to B telling it to send media
to A, and a signal to C telling it to stop sending media.
This last signal passes through PC, which forwards it
untouched to C.

Although the signals are appropriate from the PBX’s
point of view, they have the abnormal effect of leaving V
without audio input from C. Note that the media arrow
between C and V is now one-way.

Finally, Snapshot 4 shows what happens when V
completes verification of the funds from C (presumably
authorized before C was cut off) and reconnects C with
A. PC sends a signal to A telling it to send to C, a signal
to C telling it to send to A, and a signal to V telling it
to stop sending media.
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Although the signals are appropriate from PC’s point
of view, they have abnormal effects. Because the signal
from PC is forwarded blindly by the PBX, the signal
switches A from B to C without A’s permission. Fur-
thermore, B is left transmitting to an endpoint that will
throw away the packets because it has been instructed to
communicate with C.

B. Goals and plan for a solution

We have just shown a very simple example of what
can go wrong without compositional media control. The
goal of our work is to find a comprehensive approach
to this problem. For an approach to be considered
comprehensive, it should have the following three char-
acteristics.

First, it should be general-purpose. It should be pos-
sible to use it to build any media service, and it should
make media control relatively easy in all of them.

Second, it should be architecture-independent. It
should not impose constraints on how functions are
allocated to physical components, or on where physical
components are located. Engineers should be free to base
architectural decisions on other criteria such as cost and
reliability.

Third, it should be automated and verified. Com-
positional media control is inherently complex; it is
not something that every programmer should do afresh.
Rather, application programmers should work with a
set of high-level primitives. These primitives should be
specified formally and implemented once. Further, the
implementation should be verified as correct with respect
to the specification.

Architecture-independence has another advantage be-
yond engineering freedom, as important as that is. If
functions can be distributed arbitrarily across physical
components, they can also be distributed arbitrarily
across virtual components within physical components.
In other words, we have support formodularity.

The value of modularity in developing media services
has been demonstrated by the success of the Distributed
Feature Composition (DFC) architecture [4], [9]. In
DFC, a feature is implemented as an independent, con-
current module in a signaling pipeline. Because of this
independence, each feature can be simple and compre-
hensible, and features are easy to add or change. In this
way, DFC’s goal of feature modularity has been reached.

DFC was used to build the advanced features for a
commercial voice-over-IP service [3]. Using DFC, it was
possible to deliver 11 features to a testing organization,
two months from the inception of the project. Several of
these features were very complex, requiring control of
multiple parties and their audio channels. Nevertheless,
the delivered software proved to be of high quality.
This unprecedented development speed was due to the

modularity and reuse provided by the DFC architecture.
The work reported in this paper was motivated by DFC,
and can be used to automate media control for DFC-like
modules.

In the next three sections, we propose a comprehensive
approach to achieving compositional media control, and
give its formal specification. Section III provides an
architecture-independent model for describing the media
aspect of any service. All definitions are rooted in this
model. Section IV defines a set of primitives for con-
trolling media channels. This set of primitives is a high-
level vocabulary to be used by application programmers.
Section V defines the compositional semantics of these
primitives in terms of temporal logic.

In the subsequent three sections, we present an im-
plementation of the specification. Section VI describes
a protocol for signaling between modules such as appli-
cation servers. Section VII describes the software that
must run on each module. Section VIII describes our
partial verification of the protocol and implementation
code. Relevant limitations are noted in each section.

This presentation of the approach is followed by a
discussion of related work, of which there is relatively
little, as the problem of compositional media control
is not yet widely recognized (Section IX). Because
compositional media control has similarities to other
problems requiring modularity, distribution, and coor-
dination, Section X makes an attempt to extract some
general design principles for supporting composition.

C. An example of the solution

This paper is basically organized in a top-down fash-
ion. Because it can be difficult to see where a top-
down presentation is going, this section sketches how our
approach solves the problem introduced in Section II-A.
Subsequent sections fill in the details of this sketch.

At the highest level, the solution is exemplified by
Figure 3. In this figure, the PBX and PC server are
programmed using a fixed set of primitives for media
control.

When a server program wants media flow between
two media endpoints, it puts the two signaling channels
that extend from the server to those endpoints under the
control of a flowLink object, depicted by a dotted line
in the figure. When a server program wants to interrupt
media flow to an endpoint, it puts the signaling channel
to that endpoint under the control of aholdSlotobject,
depicted by a black dot in the figure. The primitives
also include anopenSlotfor opening media channels and
a closeSlotfor closing them, but these objects are not
employed in the PBX/PC example.

The signaling protocol and the implementation of the
media-control objects are designed to achieve the goals
of the servers in which they reside, subject to the goals of
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Fig. 3. Correct media control for the example, in contrast to Figure 2. Dotted lines are flowlinks, and dots are holdslots.

other servers and the rule for coordinating them. Roughly
speaking, the coordination rule is thatproximity confers
priority. This means that the closer a server is to a media
endpoint, the higher priority it has in controlling media
flow to and from that endpoint.

Figure 3 has the same four snapshots as in Figure 2;
dashed lines show the media flow that results from
each goal state in the servers. In this example, the
semantics of the primitives and the coordinating rule can
be characterized as follows: there is media flow between
two media endpoints if and only if both media endpoints
desire it, and there is an unbroken chain of signaling
channels and flowlinks between them.

To relate this behavior to proximity, consider the PBX.
In every snapshot, A is media-connected to B if the PBX
mandates it, and may be media-connected to C if the
PBX allows it. Because the PBX is closest to A, it has
priority over PC in controlling A. Only if the PBX has
A linked to C do the actions of PC have an effect on A.
Then A may actually be media-connected to C (Snapshot
1) or be silent (Snapshot 2), depending on the actions of
PC.

III. A DESCRIPTIVE MODEL OF THE MEDIA ASPECT

OF A SERVICE

A. Signaling paths

The modules involved in media control may be
physical or virtual. A physical module is a physical
component—usually a user device, application server,
or media resource. A virtual module is a concurrent
software process running within a physical component.

In this paper all modules are peers, whether physical
or virtual. This means that if virtual modules within an
application server appear in an instance of the descriptive
model, then the application server as a whole does not
appear in the descriptive model. We use the wordbox
as a short synonym for “peer module involved in media
control.”

Boxes are connected bysignaling channels. A signal-
ing channel is two-way, FIFO, and reliable. A typical
signaling channel between two physical components is
implemented by TCP. A typical signaling channel within
a physical component is implemented by two software
queues. We do not discuss how the graph of boxes
and signaling channels is configured, as this is outside
the scope of this paper. Configuration is performed in
varying ways by DFC, IMS, and SIP.
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Each signaling channel is partitioned statically into
tunnels, each of which provides a separate two-way
signaling capability. Each tunnel can be used to control
a separate media channel. The endpoint of a tunnel at a
box is called aslot.

Media control requires a signaling protocol through
which boxes communicate and coordinate their efforts.
The signaling protocol (defined in Section VI) operates
separately in each tunnel of each signaling channel. In
other words,each slot is a protocol endpoint.

Within a box, two slots may be assigned to aflowLink
object. A flowlink is a software object that reads all the
signals from its two slots and controls all the signals
written to them. A flowlinkcoordinates the signals of its
two slots; its behavior and implementation are discussed
in several sections of this paper.

A signaling pathis a maximal chain of tunnels and
flowlinks, where the tunnels and flowlinks meet at slots.
Each signaling path corresponds, at any given time, to
an actual or potential media channel between the path
endpoints. Signals traveling through the path can create
the media channel if it does not exist, and can destroy
it if it does exist. Figure 4 illustrates the various pieces
of a signaling path.

actual or potential media channel

box box box

signaling
channel

slot flowlink tunnel

Fig. 4. A signaling path is a maximal chain of tunnels and flowlinks.

In addition to the tunnel signals that control media
channels, signaling channels carrymeta-signalsthat refer
to the signaling channel as a whole, and can affect all
the tunnels within it. Meta-signals set up and tear down
signaling channels. They can indicate that the intended
far endpoint is currently available or unavailable, as well
as other conditions.

All of the statements about programs or protocols in
this paper are made from the perspective of a particular
box. For instance, a box sends a media signal or meta-
signal out on a signaling channel. This signal may be
intended for a user device at the far end of a signaling
path. All the box program can actually do, however, is
to send the signal out on the channel, to be received
and processed by the next box in the chain. That box
may forward it untouched toward the far endpoint, or it

may not. For this reason, we usually describe the box
as sending the signal “toward” the far endpoint, rather
than “to” it. This tension between piecewise and end-to-
end signaling is inherent to distributed applications of
networks. It is at the very heart of compositional control,
the goal of which is to give some behavioral guarantees
to each box, even though the behavior of the overall
system can be affected by every box.

The descriptive model presented here gives us a
vocabulary for talking about media control, without
constraining system architecture in any way. Modules
can be located anywhere; any pair of modules can be
co-located or not. A module can act as a media endpoint,
application server, or both.

The figures in this paper provide a particular view
of media services in which media endpoints are at the
periphery of the system, while non-media-processing
application servers are in its center. This is not the only
possible view. For example, consider a media resource
that is the endpoint of two separate media channels as
defined here. Internally, the resource reads media packets
from one channel, performs some signal processing such
as transcoding on them, and writes the resulting packets
to the other channel. From a user viewpoint, this resource
is an application server in the middle of the system,
performing some almost-transparent operation on one
media stream for the benefit of two user devices at the
periphery. From our viewpoint the two streams are dis-
tinguishable because they use different data encodings.

Cyclic signaling paths are not useful for controlling
media channels. We assume that the configuration pro-
cess prevents cycles, and do not discuss them further.

B. Media channels

Each signaling path corresponds to an actual or po-
tential media channel between the path endpoints. If
the channel exists, its global attributes include an IP
address and IP port for each endpoint, which are used for
sending and receiving media packets. This information
is associated statically with the endpoint slot.

All other attributes of the channel are dynamic, de-
pendent on the desires of its users, or both. Figure 5 is a
nondeterministic finite-state machine specifying the user
interface at one end of a media channel.

Initially the channel isclosed, or does not exist. If
the user chooses toopen the channel, the user must
choose themediumof the channel. Audio and video are
the usual media, but there are other possibilities. For
example, audio or video could be subdivided into media
of different qualities. Also, text, images, or other data
could be considered a medium, or one medium could
encode both audio and video together.

On experiencing anopen request, a user canaccept
or reject it. The channel only gets to aflowing state, in
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Fig. 5. The user interface at one end of a media channel. Events
preceded by exclamation points are chosen by the user, while events
preceded by question marks are chosen by the other end of the channel.
Commas separate unrelated transition labels with the same source and
sink states.

which media can flow, if one end opens it and the other
accepts it. Either end canclosethe channel at any time.

A media channel always offers the potential of media
flow in both directions. However, media should actually
flow in a direction only if both ends desire it. Both
openand acceptevents contain Boolean valuesmuteIn
andmuteOut, indicating whether the user desires inward
or outward media flow, respectively, to be temporarily
suspended. Muting within a channel is dynamic, so a
user can change his intention at any time, by choosing
the modifyevent.1

It is important to note that an end of a media channel is
responsible for saving and implementing themutevalues
chosen at its end only. Figure 5 shows the values chosen
at one end being communicated to the other end, but the
only purpose of that communication is to advise the user,
whose choices might be influenced by it. If we designate
the two ends of the signaling path byleft (L) and right

1It may seem unnecessary to have explicit control of muting, as
an endpoint can simply refrain from sending media packets when it
wants to “muteOut,” and can simply throw away received packets
when it wants to “muteIn.” Nevertheless, explicit control of muting
is customary in media services. It is valuable for efficiency, resource
management, feature interaction, and improving the user experience.

(R), then themuteInvalue chosen at the left end can be
designatedLmuteIn, and the value chosen at the right end
can be designatedRmuteIn. Media should flow from left
to right only if :LmuteOut̂ :RmuteIn, and media should
flow from right to left only if :RmuteOut̂ :LmuteIn.

Implementation of a media channel requires that the
media endpoints agree on a data format (acoder-decoder
or codec) for use in each direction. Although codec
choice is also dynamic, it is an implementation issue,
and the user interface has no control over it.

This description of a media channel is as general as
SIP’s, with one exception. In SIP a media channel can
be one-way only, so that media is permanently muted
in the other direction. This capability could be added to
our description, but it would not add any new behavior,
and we omit it for simplicity.

IV. PRIMITIVES FOR CONTROLLING MEDIA

CHANNELS

A. State-oriented goal primitives

Application programmers manipulate media channels
by controlling slots. Because each slot is a protocol end-
point, the attributes of a slot are completely determined
by the signaling protocol for media control (Section VI).
For now it is sufficient to say that the protocol is an
extension of Figure 5. Each slot has attributesmedium
and state, where the four states in Figure 5 are all
possible slot states.

Most media services are event-driven. Many years
of experience indicates that they are best programmed
using finite-state machines in which the transitions are
triggered by events such as received signals and time-
outs. This style is almost universal in the development
of telecommunication services.

To simplify media programming, we want to conceal
from the programmer most of the signaling involved in
media control. An application program should respond
mostly to meta-signals, rather than handling each media
signal individually.

This leads us to astate-orientedset of primitives
for media control in application servers. In each state
of a box program, annotations or defaults give a static
description of the programmer’sgoal for each slot while
the program is in that state. It is a “goal” rather than a
“command” because the box must have the cooperation
of other boxes and users to achieve it. If the external
situation changes so that a slot should have a different
goal, then the program must change to a state in which
that slot is annotated differently.

Needless to say, we cannot hide slot activity from the
programmer entirely, because program logic sometimes
depends on it. For each slot, there are predicatesis-
Closed, isOpening, isOpened,andisFlowingcorrespond-
ing to the four states in Figure 5. These predicates can be
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used as guards on transitions in box programs. If a state
in a box program has a transition guarded byisClosed(s)
for some slots, then that transition is executable as soon
as the program enters the state, ifs is closed at that time,
or as soon ass becomes closed while the program is still
in the state.

Returning to the goal primitives, there are four of
them. The first three apply to one slot at a time, so they
are used when a slot is acting as a path endpoint. These
goals will be implemented by software objects, each of
which controls a slot. Such a goal object reads all the
signals received from its slot, and writes all the signals
sent to its slot. The goal objects are namedopenSlot,
closeSlot,andholdSlot,respectively.

TheopenSlotgoal is to open a media channel and get
it to the flowing state. The behavior of anopenSlotgoal
object is a refinement of Figure 5 in which the object
takes every possible opportunity to push the slot (and, by
extension, the media channel) toward theflowingstate. If
an openslot sendsopenand receivesreject, then it sends
openagain.

The medium of the channel is an argument to the
openSlotgoal object. The annotationopenSlot(s,m)for
slot s and mediumm can appear in a program state only
if s is in the closedstate when the program enters the
annotated state. TheopenSlotgoal object sends anopen
signal with mediumm. This is the only goal with a state
precondition.

The closeSlotgoal is to get its slot to theclosedstate
and keep it there. Once its slot is closed, if thecloseSlot
goal object receives anopen signal, the object sends
reject immediately. As with anopenSlotgoal object, the
behavior of acloseSlotobject is a refinement of Figure 5
in which the object always chooses certain actions.

The holdSlot goal is to accept a media channel and
get it to the flowing state, but only if the channel is
requested by the other end of the signaling path. The
channel will be closed if the other end closes it, and
will remain closed until the other end asks to open it.
This behavior is also a refinement of Figure 5.2

A box program can change to a state with acloseSlot
or holdSlot goal object at any time in the life of the
controlled slot. This means that, unlike Figure 5, these
objects have no fixed initial state. When the goal object
gains control the slot can be in any of its states, and the
object must proceed from that point.

When any of these goal objects opens or accepts a
channel, it mutes media flow on the channel in both
directions. A slot in an application server may be mas-
querading as a media endpoint, but it is not a genuine
media endpoint, and can neither send nor receive media
packets fruitfully.

2Strictly speakingacceptSlotmight be a better name, but we think
that holdSlotwill make more sense to service programmers.

The fourth primitive was already mentioned in Sec-
tion III-A. It is a flowLink goal object, controlling two
slots. The semantics of aflowLink goal are complex.
Initially, its slots can be in any states. The flowlink
attempts to match their states as if the slots had always
been connected transparently, and to keep them matched.
It has a bias toward media flow, so if a program state
annotatedflowLink(s1,s2)is entered whens1 is in the
flowingstate ands2 is in theclosedstate, it will attempt
to gets2 to flowing rather than closings1. The semantics
of a flowlink will be further elucidated by the formal
specification in Section V and the implementation design
in Section VII.

It is a precondition on the use of theflowLinkgoal that
if both slots have themediumattribute defined, which
means that both slots are not closed, then theirmedium
attributes are the same.

B. Programming examples

Using the primitives, it is easy to program the PC
behavior shown in Figure 3. In Snapshots 1 and 4, the
program is in a state annotatedflowLink(c,a), holdSlot(v),
where the slot names correspond to the endpoints they
are intended to reach. A timeout event (expiration of the
prepaid talk time) causes a transition to the PC state
of Snapshots 2 and 3, which is annotatedflowLink(c,v),
holdSlot(a). A signal from V that the user has paid causes
a transition from this state to the other one.

Figure 6 shows a program for a Click-to-Dial box.
Most guards and actions on the transitions are written in-
formally, because they are implemented by meta-signals.

The program takes its initial transition when a user 1,
who is browsing a Web site, clicks on a “click-to-dial”
link. This box is configured with the address of user 1’s
IP telephone, and responds to the click by creating a
signaling channel 1 toward the IP telephone, with a slot
1a. The program sets a timer and enters stateoneCall,
annotatedopenSlot(1a,audio)so that the implementation
will attempt to open an audio channel to the telephone.
At the telephone, theopen signal will initiate some
change in the user interface, usually ringing.

The transition from stateoneCall to statetwoCalls is
triggered by the entrance of slot1a into theflowingstate,
which in turn is caused by an accept action from user 1.
If user 1 does not accept, the timer will eventually cause
a timeout, causing the program to destroy channel 1 and
terminate. Destroying channel 1 is a meta-action that
of course destroys all its tunnels and slots. It is typical
of single-medium applications such as Click-to-Dial that
when a media channel is no longer needed, the entire
signaling channel is destroyed, so that thecloseSlotgoal
is seldom used.

If isFlowing(1a), the program has successfully
reached its first audio device, and is now ready to attempt
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"ringback" to generator

1 destroyed / destroy 2

openSlot(1a,audio)

oneCall:

create signaling channel 1 and slot 1a; set timer
user 1 clicks on Web site /

channel T and slot Ta; signal

flowLink(1a,2a)

1 destroyed / destroy 2

destroy 2; create signaling channel T
and slot Ta; signal "busyTone" 

to generator

device 2 is available / create signaling 

timeout / destroy 1

flowLink(1a,Ta)

ringback:

destroy 2; destroy T
1 destroyed /

isFlowing(2a) /

destroy T

openSlot(2a,audio)

isFlowing(1a) / create signaling channel 2 and slot 2a

device 2 is  unavailable /

2 destroyed / destroy 1

1 destroyed /
destroy T transparent:

twoCalls:

openSlot(2a,audio)
openSlot(1a,audio)

busyTone:

flowLink(1a,Ta)

Fig. 6. A program for a Click-to-Dial box.

reaching the second one. It creates a signaling channel
2 toward the IP telephone at the clicked address on the
Web site, with slot2a. In statetwoCallsthe goal for slot
1a remains the same (which means control of the slot
is implemented by the same object), while the program
also puts slot2a under the control of an openslot.

In statetwoCalls the program is waiting for a meta-
signal that the telephone at the end of channel 2 is avail-
able or unavailable. If user 1 gives up in the meantime,
his action will destroy channel 1, which will result in
the program’s destroying channel 2 and terminating.

If the device is unavailable, then the program destroys
channel 2, and creates a signaling channel T to a tone-
generator resource. In statebusyToneslots1a andTa are
flowlinked. On entrance to this program state, the slot
state of1a is flowing, and the slot state ofTa is closed.
The flowLink implementation will match the states of
these two slots by openingTa; once the resource accepts
the audio channel, it will generate a busy tone, and user
1 will be able to hear it. Eventually user 1 will abandon
the call, and the program can terminate.3

3It may seem strange to implement audio tones this way, and not
in user 1’s telephone. The fact is that tone generation in the device is
often not feasible, because the device will not generate tones when it
believes it is playing the role of the called party. The implementation
technique shown here is commonly used [15].

If the device is available, then the program uses the
same technique as above to play a ringback tone for
user 1 in stateringback. At the same time, it continues
to try to open an audio channel to user 2. Because the
annotation controlling slot2a is the same in both states
twoCalls and ringback, the openLinkobject controlling
2a is also the same.

Finally, if and whenisFlowing(2a), the program will
destroy channel T and flowlink slots1a and 2a. The
flowLink implementation will automatically reconfigure
IP addresses, ports, and codecs so that user 1 and user
2 can talk to each other.

Although conferencing is used by many applications
for many different purposes, the implementation of con-
ferencing always looks approximately the same. The sig-
naling graph of a three-way audio conference is shown in
Figure 7. The conference server is an application server,
while the conference bridge is a media resource that
performs audio mixing.

As can be seen in the figure, during the conference
the conference server flowlinks the tunnel for each user
device to a tunnel leading to the bridge. Each tunnel
corresponds to a two-way audio channel. In the direction
toward the bridge, an audio channel carries the voice of
a single user. In the direction away from the bridge, an
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Fig. 7. The signaling model of an audio conference. Only the media
flow for endpoint C is shown.

audio channel carries the mixed voices of all the users
except the user the channel goes to.

Various conference applications require different kinds
of muting. Full muting separates one user from the con-
ference entirely. The conference server can accomplish
this by temporarily replacing a flowlink by two holdslots.

Partial muting is more interesting and more varied.
If the conference is a large business meeting, it may
be desirable to mute the audio input from nonspeaking
participants, so that they can hear the meeting, but
background noise at their locations does not degrade
overall audio quality. If the conference is part of IP-based
emergency services, on the other hand, A may be a call-
taker, B may be a person who has called emergency
services, and C may be an emergency responder in
the police or fire department. In this case it must be
possible to retain the audio input from B while muting
the conference output to B, so that B cannot hear what
the emergency personnel are saying [2]. This is the
opposite of business muting.

For a final example of partial muting, let A be a
new customer-service agent, B be a customer calling
for service, and C be the supervisor of A. In a training
situation, the requirement is that A and B can hear each
other clearly, C can hear both of them clearly, B cannot
hear C, and A hears a whispered version of what C
is saying. This enables C to advise A without being
apparent to B.

The four primitives cannot achieve any of these
partial-muting scenarios directly. They can be achieved
easily by the conference bridge, however, because they
are just different mixes of the three audio inputs. The ap-
plication server simply connects all the user devices to a
media server (conference bridge), and uses standardized
meta-signals to tell the media server how to mix them
[10].

Our final example shows a scenario in the use of

collaborative television (Figure 8). The scenario is taken
from [11], although our approach to the application is
more distributed and compositional than the architecture
proposed there.

In this scenario, endpoint A is a large television in
a family room. C is a laptop in a daughter’s bedroom.
They are sharing a particular movie, which means that
both are seeing the same movie at the same time point in
the movie. The signaling channel from the collaborative-
control box for A to the movie server is associated in
the server with this movie and time pointer.

This signaling channel has five active tunnels control-
ling five media channels. Because they are all in the same
signaling channel, the media is all from the same movie
at the same time point. There are video and English audio
channels for the two video devices, which differ because
the two devices have different media quality and use
different codecs. There is also a French audio channel
to the headphones of a French-speaking friend in the
family room (endpoint B).

The control box for A has control of the movie, so that
commands to pause or play the movie are mediated by
it, and affect all five media channels. The signaling paths
from all three devices to the movie server go through this
box so that they are watching the movie collaboratively.

In the scenario from [11], the daughter decides to
leave the collaboration and fast-forward to the end of the
movie. After this change is completed, the collaboration
box of C would have its own signaling channel to
the movie server, associated with the same movie but
a different time pointer. There would no longer be a
signaling channel between the two collaboration boxes.
Because C has its own collaboration box, other devices
could now join and share this new view of the movie.

We believe that the four primitives are sufficient for
all media programming in application servers, and we
have tested them for completeness on numerous small
examples. The only way to know for sure is to gain ex-
tensive experience with programming compositional IP
media services. At present no one has much experience,
primarily because such applications are so difficult to
build.

V. SPECIFICATION OF COMPOSITIONAL SEMANTICS

To specify correctness, we assume that media end-
points are programmed using theopenSlot, closeSlot,
and holdSlot goal primitives as presented above, with
the exception that users at media endpoints have full
freedom to choose the values of themute flags. Pro-
gramming endpoints in this state-oriented way would be
far clumsier than implementing the events of Figure 5
directly, but it is no less complete. With this assumption,
all box behavior reduces to the behavior of theopenSlot,
closeSlot, holdSlot,andflowLink primitives.
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Fig. 8. A scenario in collaborative television. Only the media flow for endpoint C is shown.

The other factor that affects media behavior is the
graph of signaling channels and boxes. We take this
graph into account by specifying correctness in terms of
individual signaling paths. Signaling paths depend on the
graph of signaling channels and boxes. Signaling paths
also depend on the configuration of flowlinks within
boxes, determining which slots and tunnels form a path.

Signaling paths are an indirect encoding of the rule
of proximity confers priority.This is because, from the
perspective of a media endpoint, each box in a signaling
path leading away from the endpoint has complete
control over where the far side of the path is going. The
rule ofproximity confers priorityhas been used to govern
media-control feature interactions in many applications
built using the IP-based implementation of DFC [3], [4].
It is convenient, intuitive, and sufficient for a wide range
of applications, provided that there is enough control of
the configuration graph in which proximity is measured.

For each signaling path, we specify correct behavior
in terms of stability or recurrence properties in temporal
logic. This is necessary because a set of signaling paths
is a snapshot of a system, and can change at any time as
the flowlinks change. Stability properties express the idea
that if a particular path is allowed to persist long enough,
the goal primitives and protocol will do their work,
and eventually achieve a desired path state. Recurrence
properties express the same idea, plus the additional idea
that if something is perturbed while the path persists,
the path state will eventually adjust to the perturbation.
If the system is thrashing and paths do not persist long
enough to stabilize, then this specification of correctness
does not say anything about their behavior.

For convenience, we identify the two ends of a sig-
naling path asleft (L) andright (R). For each path, there
are two stable states that we might wish to achieve. The
first is thebothClosedstate, in which both endpoints are
in the closedstate and there is no possibility of media
flow. This path state is defined as

Lclosed̂ Rclosed

where the predicates refer to the endpoint states as
defined in Figure 5. The second stable path state is
the bothFlowing state, in which both endpoints are in
the flowing state. To specify a correct state completely,
we need to ensure that themediumattribute of both
endpoints is the same. We also need to ensure that the
implementation state correctly reflects themuteattributes
of the endpoints. The implementation state of the end-
points is captured by the new history variablesLenabled
and Renabled. If Lenabledis true, both endpoints are
ready for packets in the right-to-left direction. They
have agreed on a codec, they have agreed to enable
transmission, and they have each other’s IP address
and port number. IfRenabledis true, both endpoints
are ready for packets in the left-to-right direction. The
complete definition of thebothFlowingpath state is

Lflowing^ Rflowing^ (Lmedium= Rmedium) ^
(Lenabled= :LmuteIn^ :RmuteOut) ^
(Renabled= :RmuteIn̂ :LmuteOut)

The implementation of the new history variables
LenabledandRenabledis described in Section VI-C.
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Each signaling path has two ends, each of which is
controlled by an openslot, closeslot, or holdslot. Taking
symmetry into account, there are six possible path types
based on classification of their end slots. A path of a
given type can have any number of tunnels and flowlinks,
as these should be transparent with respect to observable
behavior.

If one end of a path is controlled by a closeslot and
one end is controlled by a closeslot or holdslot, then
correctness is:

3 2 bothClosed

This stability property in linear temporal logic says that
eventually the path will reach a state in which both
end slots are closed, and will remain there forever. In
practice, of course, the slots are only required to remain
closed until the environment changes the path in some
way, at which time a different specification may apply.

The specification of a path with one end controlled
by a closeslot and one end controlled by an openslot is
weaker, because the path will not stabilize—the openslot
will continue trying to open it. All we can be sure of is
that once the objects have had a chance to do their work,
there will be no media flow in either direction. This is
expressed by the stability property:

3 2 :bothFlowing

The specification for a path with one end controlled
by an openslot and one end controlled by an openslot
or holdslot requires that the path reach abothFlowing
state. However, once this state is reached, the path may
leave it temporarily because amodify event in a user
interface changes amuteflag. It will take time for the
implementation to send the signals to restore theboth-
Flowing state.4 Unlike the previous path specifications,
this is a recurrence property, saying that the signaling
path will always eventually return to thebothFlowing
state:

2 3 bothFlowing

Finally, the specification of a path with both ends
controlled by holdslots is more complex because either
bothClosedor bothFlowingis acceptable. (What actually
happens depends on the state of the path when it was
formed.) Thus the specification is a disjunction of a
stability property and a recurrence property:

(32bothClosed) _ (23bothFlowing)

4At the implementation level, an endpoint can also change its IP
address, port number, or codec choice without changing its muting.
Because the implementation uses the same mechanism for all such
modifications in theflowing state, we do not consider these other
modifications separately.

All of these formulas are idealized specifications that
will not be satisfied in the face of network or hardware
failures. They are reasonable for our purposes, however,
because there should be no defects in the software of
application servers.

Bandwidth limitations would not prevent an imple-
mentation from satisfying the specification, because the
specification is based on the software state at the ends of
a signaling path, not on actual packet transmission. More
relevantly, if there are bandwidth constraints on which
media channels should be opened or accepted, then these
constraints should be enforced by the endpoints and
applications. Application servers should make decisions
wisely, then rely on our primitives to carry out their
decisions.

VI. SIGNALING PROTOCOL

A. Practical requirements

To set up media flow between two endpoints, as
explained in Section III-B, each endpoint must know the
IP address and port number that the other will be using.
The endpoints must also agree on acodecfor the media
stream in each direction.

A codec is a data format for a medium. For example,
G.726 is a lower-fidelity and lower-bandwidth codec
for audio, while G.711 is a higher-fidelity and higher-
bandwidth codec for audio. G.711 is approximately
equivalent in fidelity to circuit-switched telephony. Note
that it is not necessary for the two directions of a channel
to use the same codec.

Although many endpoints can interpret more than one
codec, it is still important for them to know which
codec they are expected to interpret at a given time.
This is because they allocate resources dynamically to
whichever codec they are using, and need to reconfigure
before changing codecs. Surprising as it may seem,
media sources may wish to send using different codecs
even within the same media episode. For example, a
resource that plays recorded speech may have speech
files that were stored in several different codecs.

We use noMedia as the name of a distinguished
pseudo-codec indicating no media transmission. For sim-
plicity of presentation, we assume that any two devices
supporting the same medium have at least one real codec
in common.

The separation of signaling and media channels can
cause synchronization problems. Mediaclipping results
when media packets are lost because they arrive at an
endpoint before the endpoint is set up to receive them.
Clipping should be minimized, although it is not always
cost-effective to eliminate it entirely.
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Fig. 9. Specification of the protocol at each protocol endpoint.?
meansreceived, ! meanssent. ?oack / !selectmeans sendselectif and
when oack is received.!oack / !selectmeans send the two signals in
sequence. Commas separate unrelated transition labels with the same
source and sink states.

B. Protocol definition

Recall from Section III-A that the actual scope of
the protocol is one tunnel in one signaling channel. For
reference as the protocol description proceeds, Figure 9
shows a finite-state machine specification of the protocol
at each protocol endpoint, i.e., slot.

At the same time, the use and meaning of the protocol
is best described as if the protocol endpoints were media
endpoints, which is what we will do. Figure 10 is a
scenario in which the protocol is used to open, modify,
and close a media channel between two media endpoints.
Figure 10 represents a signaling path in which there are
no flowlinks. The conceptual gap between the piecewise
and end-to-end views must be bridged by the correct
operation of application servers.

Either end of a tunnel can attempt to open a media
channel by sending anopensignal. The other end can
respond affirmatively withoackor negatively withclose.
Either end can close the media channel at any time by
sendingclose, which must be acknowledged by the other
end with acloseack. Note thatclosenow plays the role

select(sel’2)

select(sel2)

oack(desc2)

open(medium,desc1)

describe(desc3)

select(sel1)

closeack

close

select(sel3)

endpointendpoint

Fig. 10. Use of the protocol.

of both closeand reject in Figure 5.
Eachopensignal carries the medium being requested,

and a descriptor. A descriptor is a record in which
an endpoint describes itself as a receiver of media.
A descriptor contains an IP address, port number, and
priority-ordered list of codecs that it can handle. If the
endpoint does not wish to receive media, i.e.,muteIn is
true, then the only offered codec isnoMedia.

Eachoacksignal also carries a descriptor, describing
the channel acceptor as a receiver of media. These
descriptors are shown in Figure 10 but not in Figure 9.

A selectoris a record in which an endpoint declares
its intention to send to the endpoint described by a
descriptor, and indicates the codec it will be using. A
selector contains identification of the descriptor it is
responding to, the IP address of the sender, and the
port number of the sender. If the selecting endpoint does
not wish to send media, i.e.,muteOutis true, then the
selector containsnoMedia; otherwise, it contains a single
codec selected from the list in the descriptor. For optimal
codec choice, the sender should choose the highest-
priority codec that it is able and willing to send. The
only legal response to a descriptornoMediais a selector
noMedia.

When a channel is first being established, the opened
end sends anoacksignal and then aselectsignal carrying
a selector. The selector is a response to the descriptor in
theopensignal. The initiator’s response to the descriptor
in the oack signal is carried in anotherselect signal.
In Figure 10, descriptors and selectors have numbers to
indicate which selector is responding to which descriptor.

Either endpoint can send media as soon as it has sent
a selector with a real (notnoMedia) codec. An endpoint
should be ready to receive media as soon as it has
received a selector with a real codec. This is the most
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relaxed approach to synchronization of the signaling and
media channels.5

At any time after sending the first selector in response
to a descriptor, an endpoint can choose a new codec from
the list in the descriptor, send it as a selector in aselect
signal, and begin to send media in the new codec. In
Figure 10,select(sel’2)shows this possibility.

At any time after sending or receivingoack, an end-
point can send a new descriptor for itself in adescribe
signal. The endpoint that receives the new descriptor
must begin to act according to the new descriptor. This
might mean sending to a new address or choosing a new
codec. In any case, the receiver of the descriptor must
respond with a new selector in aselectsignal, if only
to show that it has received the descriptor. In Figure 10,
descriptor3andselector3illustrate this interaction.

It is possible that a race condition, with twoopen
signals traveling in opposite directions, could occur
within a tunnel. The race is easily detectable by both
slots, because each sends an open and receives an open
in return. In this case the winner of the race is always
the end of the tunnel that initiated setup of the signaling
channel, which is fixed and unambiguous. The losing
open signal is simply ignored. This aspect of protocol
behavior is not illustrated in Figure 9.

C. Properties of the protocol

At each end of a signaling path, the user interface
(Figure 5) translates straightforwardly to its protocol
implementation (Figure 9). There is an extra protocol
stateclosingnot observable in the user interface.Accept
events are replaced byoack signals.Modify events are
replaced bydescribeandselectsignals. The values of the
mutevariables are communicated through descriptors, as
presented in the previous section.

The history variableLenabled (Renabled)is initially
false. It becomes true when the left (right) endpoint of
the signaling path sends a selector with a real (notnoMe-
dia) codec. It becomes false again when the left (right)
endpoint leaves theflowingstate or sends a selector with
noMediaas the codec. As required by Section V, when
Lenabled (Renabled)is true both endpoints are ready
for packets in a left-to-right (right-to-left) direction: they
have agreed on a real codec and have each other’s IP
address and port number.

A describesignal makes it possible for a media end-
point to change its characteristics as a receiver of media.

5To make absolutely sure that no media is lost, even if media packets
travel through the network faster than signals, an endpoint must begin
“listening” for media in accordance with a descriptor as soon as it has
sent the descriptor, and must be able to accept packets in any allowed
codec at any time. This is possible because codecs are self-describing.
It is easier, however, for an endpoint to wait forselectsignals and
risk the loss of a few packets that arrive before their corresponding
selectors.

This is sometimes useful, but—because the protocol is
used piecewise, and every box is a protocol endpoint—
mostdescribesignals are sent by application servers.

For example, consider the transition from Snapshot 1
to Snapshot 2 in Figure 3. To implement this transition,
PC sends adescribesignal withnoMediato A, adescribe
signal with the descriptor of C to V, and adescribesignal
with the descriptor of V to C. (PC has these descriptors
available because it has recorded them as they passed
through in previous signals.) The answeringselectsignal
from A is absorbed by PC, and the answeringselect
signals from C and V are sent to each other. These
signals will cause the actual media paths to change as
indicated in the figure.

To make media control as easy as possible,describe
signals (and their answeringselects) going in opposite
directions of the same tunnel do not constrain each other.
This means that changes initiated in both directions can
proceed concurrently. There is no need to introduce the
complexity and overhead of serializing them.

Another simplifying design decison is that the protocol
has no enforced pairing ofdescribe/selectsignals rele-
vant to media transmission in one direction. Adescribe
can be sent at any time, even if noselect has been
received in response to the lastdescribe. A selectcan be
sent at any time, even if nodescribehas been received
since the lastselect was sent. This makes box state
simpler and eliminates unnecessary constraints.

This protocol was designed specifically to facilitate
composition. It is radically different from SIP [7], [14],
which is the dominant protocol in use for media control.
Section IX compares the two and explores the conse-
quences of their differences.

VII. I MPLEMENTATION SOFTWARE

Implementation of compositional media control re-
quires Java code resident in each application server.Box
objects contain the high-level code that calls onGoal
and Slot objects when necessary. Figure 11 shows the
hierarchical structure of method invocations amongBox,
Goal, andSlot objects.

A Slot object sees all signals received from a slot and
sends all signals to the slot. Because of this complete
view, it is able to maintain the complete implementation-
level state of the slot, consisting of protocol state,
medium,and descriptor.The descriptor of a slot in an
application server is the most recent descriptor received
in an open, oack,or describesignal.

The first action of a goal object is to query its slots,
usingslotStateandslotDesc, to get their protocol states
and descriptors. Then, having completed this initializa-
tion, the goal object proceeds to control its slot or slots
until its slots are moved elsewhere and this goal object
becomes garbage.
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goalReceive(Slot,Signal)
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Slot(SigChan)
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Box
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Fig. 11. The hierarchy of method invocations among Java objects.

There is also aMapsobject that maintains the dynamic
association between slots and goal objects. When a box
receives a signal, the box uses these associations to find
the goal object to which it should show the signal via
goalReceive.

The openSlot, closeSlot,and holdSlot programs are
all reasonably straightforward, because each controls a
single slot. The code of each is structured as a finite-
state machine that follows the structure of Figure 9.
The design of theflowLink code, as described below,
is considerably more complex.

The primary organization of theflowLinkcode is based
on slot states. There is a flowlink state for each pair
of slot states; any combination of slot states is possible
because a flowlink can be instantiated to control two
slots that were previously independent. Based on its pair
of slot states, the flowlink performsstate matchingas
shown in Figure 12. The state labels use the shorthands
live anddead, as defined in the caption.

live, one
one

live

?open both

dead

closed
eitherboth

flowing

either?close

both live

?close

both dead

Fig. 12. State matching in a flowlink. Thelive states areopening,
openedandflowing. The deadstates areclosedandclosing.

The dashed arrows indicate the work of state match-
ing, which consists of sending signals and waiting for
signals, as needed, to push toward a goal. Which of

the three superstates the flowlink is in, at any time, is
chosen by the flowlink’s environment. This is because
the superstate depends on theopenandclosesignals that
the flowlink receives. The dashed arrows show that the
flowlink works from whichever of the three superstates
it is currently in to one of the two heavily outlined
substates. These are the two goal statesboth flowingand
both closed.

There is a close relationship between Figure 12 and
the formal specification of path semantics. To see this
relationship, it is necessary to realize that:
† a closeSlotobject emitsclosesignals, and neveropen
or oacksignals;

† an openSlotobject emitsopenand accept/oacksig-
nals, and neverclosesignals;6

† aholdSlotobject emitsaccept/oacksignals, and never
openor closesignals.

For each type of path, the objects at its endpoints
determine which signals will be coming toward the
flowlinks. For each type of path, these signals lead to
one or two goal states in Figure 12, and these are the
same goals as found in the temporal formula for that
type of path.

The secondary organization of the flowlink is based on
descriptors. A flowlink caches the most recently received
descriptor of each of its slots. The code design is built
around two concepts:

† A slot is described if the object has received a
current descriptor for it. Slots in theopenedand
flowing states aredescribed, while slots in other
states are not.

† Each slot has a Boolean variableup-to-date (utd)
that is true if and only if the other slot is described
and this slot has been sent its most recent descriptor.

In any live state, the flowlink is working to make theutd
variables true. This depends on the slot states, because an
utdvariable can only be true if the other slot is described,
and if its slot is in a state allowing sending of a new
descriptor if necessary.

To see how these structures make a bewildering array
of cases comprehensible, consider a flowlink state in
which slot 1 is flowing and slot 2 isopening. This
state could not have arisen if the two slots were always
flowlinked to each other; it could only have arisen if one
or both slots were previously linked elsewhere.

From the perspective of this flowlink, either (1) slot
2 wasopeningwhen it entered the flowlink, or (2) slot
2 was originally dead and the flowlink made it live by
sending anopen. Both utd variables in a flowlink are
initialized as false. In Case 1, when anoack is received
from slot 2, slot 2 will be in theflowing state but with

6Usually it emits onlyopensignals, but in the case of a race between
two opens in a tunnel, it may back off and be the acceptor instead.
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utd2 = false. This makes sense because the descriptor
carried by theopensignal that opened slot 2 had nothing
to do with this flowlink. To setutd2 = true, the flowlink
must senddescribewith the descriptor of slot 1.

In Case 2, when anoack is received from slot 2, it
will reach theflowingstate. Is slot 2 up-to-date? Variable
utd2became true when the flowlink sent it anopensignal
with the then-current descriptor of slot 1. If it is still true,
there is no more work to do.

However, between sendingopen to slot 2 and re-
ceiving oack from it, slot 1 may have received a new
descriptor for some reason. If it has, thenutd2 has been
set to false again. It can be made true again by sending
slot 2 adescribewith the new descriptor of slot 1. This
shows how the relevant history of three different cases
is maintained concisely by theutd2 variable.

Interestingly, handling ofselectsignals is much sim-
pler. In all cases in which a flowlink succeeds in reaching
its goal state ofboth flowing, it sends a descriptor of
the other slot to each slot. A selector always responds
to a descriptor, and in theboth flowingstate both slots
have received fresh descriptors. This means that only
fresh selectors matter, so the flowlink need not keep any
history of them.

When a flowlink receives a selector and is in a
state to forward it to the other slot, it checks before
forwarding that the selector is a response to the other
slot’s descriptor. If it is not a proper response, then the
selector is obsolete and is discarded.

VIII. V ERIFICATION AND PERFORMANCE

A. Partial verification

Partial verification has been performed by modeling
the Java code in Promela and checking the Promela
models with the Spin model checker [8].

The scope of each model is a signaling path. We
modeled and checked 12 signaling paths: six paths
with no flowlinks and every possible combination of
closeslots, openslots, and holdslots at their ends, and six
paths similar to the first six paths but with one flowlink
each.

In every Promela model, every slot is controlled by
a goal object. Each goal object has two phases. In a
goal object’s initial phase, the behavior of the slot or
slots it controls is allowed to be completely nondeter-
ministic, and to have nothing to do with the goal. At
some nondeterministically chosen point, the goal object
switches permanently to a second phase in which it
behaves according to the specified goal. Because of the
existence of the nondeterministic initial phases, model
checking covers traces in which the goal objects begin
their real work in all possible initial states of the slots
and of the signaling tunnels that connect the slots.

We performed two checks on each model. First, a
safety check was run to make sure that the path model
had no deadlocks or other abnormal terminations. The
check ensured that in any final state, each slot isclosed
or flowing, and all signaling channels are empty. Second,
we verified that each model satisfies its specification as
given in Section V.

The definition of thebothFlowingpath state in Sec-
tion V is:

Lflowing^ Rflowing^ (Lmedium= Rmedium) ^
(Lenabled= :LmuteIn^ :RmuteOut) ^
(Renabled= :RmuteIn̂ :LmuteOut)

The definition that we used in model checking is some-
what different:

Lflowing^ Rflowing^
(LdescRcvd= RdescSent) ^ (RdescRcvd= LdescSent) ^
(LselRcvd= LdescSent) ^ (RselRcvd= RdescSent)^

This definition uses history variables that store the de-
scriptors and selectors most recently sent and received
at path endpoints. It abuses notation slightly in assuming
that a selector responding to a descriptor is “equal” to
it. The definition says that in thebothFlowing state,
each end has most recently received the descriptor most
recently sent by the other end, and each end has most
recently received a selector responding to its own most
recent descriptor. From this definition and the rules about
protocol behavior in Section VI, it is easy to derive the
original definition ofbothFlowing.

It may not be feasible to model-check signaling paths
with more than one flowlink. Even with partial order
reduction, compression, and a few simplifying assump-
tions, a typical check of a signaling path with a flowlink
takes 20 minutes and 3 Gb of memory on a Sun Solaris
M9000 SMP machine with dual-core 2.4 GHz SPARC
processors.7 More importantly, when we compare similar
checks of two paths, varying only in that one has a
flowlink and the other does not, adding a flowlink causes
the memory to grow by a factor of 300 on the average,
and the time to grow by a factor of 1000 on the average.
This suggests that checking a path with two flowlinks
might take something like 900 Gb of memory and 300
hours. Even if these numbers over-estimate the impact
of another flowlink by an order of magnitude, they are
still forbidding.

B. Toward complete verification

Even if it were possible to model-check signaling
paths with several flowlinks, this would still not yield

7The variance among checks is considerable. The biggest check took
161 minutes and 19 Gb of memory.
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a proof of correctness for signaling paths of any length.
Such a proof can only be constructed inductively.

Although we leave this inductive proof for future
work, it seems that the most promising approach would
be to construct the proof in terms of lemmas that could
be verified by model-checking. For example, imagine a
lemma whose scope is an arbitrary contiguous segment
of a signaling path, no larger than two tunnels and three
boxes (in other words, a segment with no more than
one internal flowlink). It is plausible that such a lemma
could be verified by model-checking, and could be used
inductively to prove a theorem over whole signaling
paths of any length.

In the meantime, we give an informal argument that a
signaling path with openlinks on both endpoints always
converges to the correct state. This argument does not
focus on getting slots to theflowing protocol state, but
rather on the exchange of descriptors and selectors. The
argument is illustrated by the message-sequence chart in
Figure 13. It shows a scenario in which, starting from
Snapshot 3 of Figure 3, PC completes authorization and
the PBX switches back to C at about the same time. This
means that the transition from Snapshots 3 to 4 (in which
PC changes linkages) and the transition from Snapshot 4
back to Snapshot 1 (in which the PBX changes linkages)
are proceeding concurrently.

Control of media flow in each direction is independent
and symmetric. Thus, without loss of generality, we
consider only media flow from A to C.

The new flowlink in the PBX begins by sending to
the left its most recent descriptor from the right, which
is noMedia. When A receives thedescribe signal, it
responds withselect(noMedia).

Concurrently, the new flowlink in PC begins by send-
ing to the left its most recent descriptor from the right,
which is that of C. When the flowlink in the PBX
receives it, to remain up-to-date, it forwardsdescribe(C)
to the left. This new descriptor supersedesnoMediaat
A, so A replies withselect(C).

Along the entire signaling path from left to right,
select(C)matches the most recent descriptor from the
right, and is therefore forwarded all the way to C. Now
media flow from A to C is fully established.

To generalize from this example, after a signaling path
stabilizes, eventually the descriptor of an endpoint will
propagate along the entire signaling path as the most
recent descriptor from that end. When it reaches the
other end, the other end will respond with a new selector.
Because the descriptor has now stabilized along the path,
the selector will be accepted and forwarded by each box
in the path.

To reiterate a point made in Section V, if signal-
ing paths do not remain stable long enough for the
distributed algorithm to converge, then nothing can be

expected of the system.

C. Performance

We have tested our Java code with a suite of test
drivers, as a check on aspects of the code not modeled in
Promela. Unfortunately, it is not possible to test the code
on live IP media. The reason is that testing on live media
would require a great deal of hardware and software
infrastructure, all of it using this protocol. Although we
have developed such an infrastructure in our laboratory
and are accustomed to using it for live media [3], [4],
the infrastructure is all based on SIP. The significance of
this situation is discussed in Section IX.

Fortunately, the behavior of our protocol is simple
enough so that its performance can be studied analyt-
ically. The most important performance measure for a
signaling protocol is its latency. In our protocol, an
endpoint can transmit media as soon as it has received
a descriptor and sent a corresponding selector.

We now consider the latency of the protocol in the
compositional scenario of Figure 13. Letc be the average
time it takes for a server to read a new stimulus from
an input queue and compute the next signal to send.
Let n be the average time it takes for the network or
server infrastructure to accept a signal and deliver it to its
destination box. In Figure 13 both endpoints can transmit
after an average delay of2n+ 3c.

The actual values ofn and c can vary greatly. How-
ever, to make the analysis more concrete, a typical
value of c might be 20 ms. In a few experiments on
a typical carrier network with multiple geographic sites,
n averaged 34 ms. With these numbers the latency of
Figure 13 is 128 ms.

This latency is not directly affected by other activity
in the system, such as changes to other media channels
controlled by the same signaling path (needless to say,
it can be affected indirectly by processor overload). Be-
cause its behavior is fundamentally simple, the analysis
can be generalized as follows.

The latency of providing media flow from a signaling
path should be measured from the moment that the last
flowlink in the path is initialized. Before this moment
the path did not exist, and all its other flowlinks were
elements of other signaling paths. From the pattern of
Figure 13, it is easy to see that the average signaling
delay after that moment will be

pn+ (p+ 1)c

wherep is the number of hops between the last flowlink
and its farther endpoint. In Figure 13p is the path length
minus 1, which is the maximum for any path.



18

select(noMedia)

select(C)

describe(noMedia)

describe(C)

PC C

describe(A) describe(C)

select(C)

PBX

select(A)

select(A)

select(A)

select(C)

describe(noMedia)

describe(A)

select(noMedia)

A

Fig. 13. Behavior of the solution when the PBX and PC change state concurrently.

IX. RELATED WORK

A. Research on media control

Very little work has been done on compositional media
control, because the problem is not yet widely recog-
nized. In the public circuit-switched telephone network
compositional media control is easy, because there is
no signaling/media separation. There is only one path
between communicating endpoints, carrying both signals
and media; that path can be switched by any network el-
ement it goes through, using stricly local manipulations.

As explained in Section I, compositional media con-
trol is often needed when different administrative do-
mains, each with their own application servers, interop-
erate. In IP-based telecommunications (“voice-over-IP”
or “VoIP”) there are many administrative domains, but
there are almost no instances in which these domains
interoperate directly. Rather, all VoIP domains interop-
erate with the circuit-switched network, so that the VoIP
domains only interoperate with each other through the
circuit-switched network! A telephone call from one
VoIP domain to another may have separate signaling and
media paths in each VoIP domain, but those paths will
join where the call passes through the circuit-switched
network. Clearly compositional media control will be
needed for VoIP to reach its full potential.

The problem of feature interaction in telecommuni-
cation systems is well known [5]. Controlling media is
one of the things that features do, and affecting the same

media channels is one of the ways that features interact.
Nevertheless, there has been little previous work on
media-related feature interactions, because most research
on feature interactions does not consider features of
sufficient complexity.

In the first IP-based implementation of DFC [4], the
problem of compositional media control is addressed in
a limited way. In a particular application server or cluster
of cooperating application servers, all of the boxes report
all changes to the graph of signaling channels and boxes,
and all changes to the links within the boxes, to a central
media-control module [6]. The media-control module
maintains an explicit graph of the media state; this graph
has the same information as graphs like Figure 3. Based
on the current graph, the module computes what the
media state should be and acts as a central controller
to achieve it.

This approach has two obvious deficiencies: (1) the
central computation is a performance bottleneck, and
(2) the approach does nothing to coordinate the actions
of servers that are administratively independent. Less
obvious but also important is a third deficiency: (3) codec
choice is managed in anad hoc manner that does not
guarantee an optimal result.

Despite these deficiencies, our first approach was
successful enough to support compositional development
and deployment of a feature-rich, nation-wide, consumer
voice-over-IP service [3].

The solution reported in this paper, first presented
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in [16], is different in almost every detail. The media-
control protocol has been improved to support optimal
codec choice and easier composition. The API has been
refined and formally specified. Most important of all,
we have discovered a way to implement compositional
media control in a distributed, rather than centralized,
fashion. And we have taken significant steps toward
verifying our implementation.

Today most IP-based media applications are being
built using SIP [7], [14]. SIP was designed for com-
munication between endpoints, with little or no logical
processing in the network between them. This anti-
compositional design philosophy was typical in the early
days of the Internet. The problem for industry today is
that prospects and plans for IP media have moved beyond
what was envisioned in those days. As a result, vendors
are finding it increasingly difficult to deploy services and
ensure interoperation of system components.

In an attempt to bridge the gap, a document on
best current practices for SIP [13] explains how a SIP
application server, acting as an intermediary, can control
the media streams of endpoints. However, the document
does not have any mention of the problem of composi-
tion. All of the examples assume that the server being
discussed is the only server in the signaling path. All of
the signaling techniques are presented only as orderly
scenarios in which everything proceeds in the best way,
with no events occurring at inconvenient times.

In the next section, we compare SIP to our protocol
with respect to some of the relevant criteria.

B. Protocol comparison

First we compare our protocol and SIP using an
end-to-end perspective. From this perspective, media
channels are opened, closed, and modified only by their
endpoints. There are three major differences between the
protocols.

The first difference concerns basic synchronization.
With respect to basic synchronization, the design of
SIP was based on HTTP, and is thereforetransactional.
When SIP signals travel in unreliable UDP datagrams,
which is allowed but not recommended, SIP agents use
the transactional structure to recover from lost signals.

In SIP, a media channel is opened or modified by
a three-signal transaction composed of aninvite from
an endpoint, asuccessfrom the other end, and anack
from the initiator. Such an invite transaction cannot
overlap with any other invite transaction on the same
signaling path. If a race between two invite transactions
is detected, both fail immediately. The initiator of each
failed invite is supposed to wait for a randomly chosen
period and then retry.

Our protocol is not transactional. It depends on an
underlying mechanism such as TCP for reliability. Once

a channel has been opened, an agent can send new
describeor selectsignals at any time. The signals that
modify media flow in one direction are completely
independent of the signals that pertain to media flow
in the other direction. Our protocol can be described as
idempotent, becausedescribeandselectsignals provide
updated information without changing the fundamental
state, which is why they can be so unconstrained.

In terms of both programming complexity and per-
formance, there is a great difference between these
two protocol designs. In our protocol, if an endpoint
needs to modify a media channel, it simply sends a
new describe immediately. When the other endpoint
receives the descriptor, it can send a correspondingselect
immediately.

In SIP, on the other hand, initiating a media change
can be arduous. First the endpoint must wait for any
ongoing transaction that it knows about to complete.
Next the initiator sends aninvite signal. If it next
receives a correspondingsuccess, it can sendackand be
finished. If it receives aninvite, however, it has detected a
race. The initiator must receive and acknowledgefailure,
wait for some period, check that there is no ongoing
transaction, and start over.

The second difference concerns codec choice. For
codec choice, SIP uses anegotiation model. To open
a media channel or modify an existing one, an endpoint
sends in itsinvite signal anoffer containing a set of
possible codecs that it can handle. The responder sends
in its successsignal ananswer that is a subset of the
offer codecs, all of which the responder can handle.
Henceforth any of the codecs in the answer subset can
be used.

Our protocol decouples codec choice in the two di-
rections, as there is no technical necessity to use the
same codec in both directions. In each direction, one
endpoint sends a set of possible choices in a descriptor,
and the other end chooses one in a selector. This has the
advantage of guaranteeing that, once an endpoint has
received a selector, it knows exactly which codec it is
expected to interpret.

In our protocol, a descriptor is aunilateral description
of an endpoint. In SIP, an answer is arelativedescription
of an endpoint, i.e., a description of one endpoint with
respect to (in negotiation with) another. The decision
to make a protocol transactional or idempotent, and the
decision to choose codecs by negotiation or unilaterally,
are not independent. Negotiation requires a transaction,
while unilateral codec choice does not.

Negotiation takes a toll on performance, because the
description of the responder to the initiator (in an an-
swer) must follow the description of the initiator to the
responder (in an offer). With unilateral codec choice,
descriptors in both directions can travel concurrently, and
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selectors in both directions can travel concurrently. This
is illustrated by Figure 13. When we consider the case
of application servers, we will see that negotiation has
additional costs in increased latency and programming
complexity.

The third difference between our protocol and SIP
concerns media bundling. We consider every tunnel
within a signaling path, controlling one media channel,
to be completely independent of every other tunnel. Each
SIP signal for controlling media, in contrast, refers to all
media channels of the path simultaneously. It contains a
list with an entry for each potential media channel, so
that a list entry has the same purpose as a tunnel.

SIP’s media bundling makes it more difficult to pro-
gram an application server that splits or joins media
channels controlled by a signaling path, such as a collab-
orative control server in Figure 8. Using SIP, the server
must reconstruct every media signal that passes through
it, because the bundles are different on each side.

Another problem with media bundling is that it
increases the probability of race conditions between
transactions, with their significant performance penalty.
Because of media bundling, a transaction to control a
video channel contends with a transaction to control an
audio channel on the same signaling path. If the channels
were controlled by signals in separate tunnels, as in our
protocol, this contention could not occur.

Sometimes use of our protocol will entail sending
several signals simultaneously on the same signaling
path, for example to open audio and video channels
simultaneously. As an optimization, these signals can be
bundled into one packet.

This completes the comparison from an end-to-end
perspective. Now we consider the functions of applica-
tion servers. An application server running an openslot,
closeslot, or holdslot is acting as an endpoint, so it
is really the flowlink case that concerns us. Typical
behavior of flowlinks with our protocol is illustrated by
Figure 13.

Using SIP, if a box in the middle of a signaling path
wishes to function as a new flowlink and create media
flow between its slots, it must first send to one end of the
path a signal soliciting a fresh offer. This takes the form
of an invite with no offer in it. The endpoint responds
with successcontaining an offer (instead of an answer,
which is what asuccesssignal usually contains). When
the other endpoint receives this signal, it responds with
an ack signal containing an answer (instead of nothing,
which is what anack usually contains) [13].

This variation causes yet another increase in program-
ming complexity. It has greater latency than our protocol
for yet another reason, which is that our unilateral
descriptors can be cached and re-used by the boxes
that receive them. In SIP, answers can never be re-used

because they are relative, and offers are not supposed
to be re-used. Hence there is additional delay while the
server solicits fresh information.

Figure 14 shows a SIP solution to the same control
problem as in Figure 13. Flowlinks in both servers solicit
fresh offers. When each receives its solicited offer in
a successsignal, it forwards it in aninvite, because
the signaling channel on the server’s other side is in a
different state.

In this scenario the twoinvites are in a race, which
each flowlink knows as soon as it receives aninvite after
sending aninvite. Because both transactions fail, both
servers send dummy answers on their other sides to finish
off the related transactions. Then there is a random delay
to allow both servers to clean up their failed transactions,
and one server (here the PBX) to retry its transaction.
After this delay PC retries its entire operation, this time
successfully. Thus what the PBX initiates during the
delay is the mirror image of what PC does after the
delay, and is actually redundant.

Using the same units as Section VIII-C, the latency
of this solution is

10n+ 11c+ d

where d is a random variable with expected value 3
seconds. With the same time estimates as before, this
comes to 3560 ms. This compares unfavorably to the
128 ms latency of Figure 13 for three reasons: (1) there
is extra delay to solicit a fresh offer rather than using a
cached descriptor (2n+2c); (2) there is extra delay to fail
and retry because of contention (3n+4c+d); (3) there is
extra delay to describe each end to the other sequentially
rather than in parallel (3n + 2c). The situation causing
delay (2) is relatively rare, but delays (1) and (3) occur
whenever media is controlled by an application server.
Thus, in the common situation, the comparison is 378
ms versus 128 ms.

Despite the difficulties presented by SIP, we are cur-
rently working on implementing the formal specification
in SIP. Even if it is not used in current applications,
the implementation in this paper is a precursor to im-
plementing the specification with less-suitable protocols,
and hopefully an inspiration for future designs.

X. COMPOSITIONAL DESIGN PRINCIPLES

Most Internet applications are not designed composi-
tionally. Yet if we listen to the press releases, we have
expectations that Internet services will work together
synergistically, or at least interoperate without breaking
each other. To meet these expectations of the public, we
have to stop thinking of each application server as the
center of its own universe, and start thinking of each
application server as a member of anad hocteam.
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Fig. 14. Behavior of a SIP solution when the PBX and PC change state concurrently.

Our solution to compositional media control has
several characteristics that might be useful in making
other protocols and application programs friendlier to
composition.

A. Piecewise protocol

The protocol is designed to be used in apiecewise
fashion, so that there is no externally observable differ-
ence between a tunnel and two tunnels connected by a
module acting transparently (Section III-A). It should be
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obvious that this facilitates the use of application servers.
Because SIP is not designed for piecewise use, it is an
open problem how to build a SIP application server that
is truly transparent with respect to the protocol.

B. Idempotent and unilateral protocol

Transactions are widely used in distributed program-
ming, and they are very successful for client/server
interactions. The comparison in the previous section
shows, however, that real-time communication is not
an asymmetrical client/server application, but something
fundamentally different. In real-time communications the
ends of a signaling path are symmetric, and either end
(or a server in the middle) can produce a stimulus that
reverberates throughout the path.

We have designed our protocol to be idempotent
and unilateral rather than transactional and based on
negotiation. The comparison in Section IX-B suggests
that idempotent signaling and unilateral description may
be superior to transactions and negotiation for control
of real-time communications. They are faster and re-
quire less protocol state, both of which are important
in a compositional context. There may also be other
distributed applications where these opposing design
principles should be compared before making a final
choice between them.

C. Goal-oriented programming

State-based, declarative, goal-oriented programming
primitives are much more abstract for this purpose than
event-oriented primitives would be. The application’s
current goal for a media channel can be independent
of the actual state of the media channel, for example
because there is a timeout in the application, or because
the environment changes the state of the channel in
some unexpected way. Thus there is a wide variety of
event sequences that might be needed to match the slot
states in a flowlink, and these are best determined by
the implementation of the programming primitives. The
same observations might be true of other programming
tasks.

D. Path specification

Attaching temporal-logic specifications to signaling
paths, where the interior of each path is an arbitrary-
length sequence of identical elements (flowlinks), was a
breakthrough in our understanding of this problem.

A path is a small part of the system, measured in both
space and time. In space, it is one of a large number
of signaling paths that can exist, even among a small
set of network nodes. In time, it is a narrow window
during which no box on the path changes the goal for

any of its slots. Because of this limited scope, paths are
straightforward formal objects, simple enough to reason
about.

At the same time, a path-based specification com-
pletely captures the requirements for compositional me-
dia control. It includes, whether explicitly or implicitly,
user intentions, network topology, and feature priority.

In Section III-A we characterized compositional media
control as needing to give some behavioral guarantees
to each box, even though the behavior of the overall
system can be affected by every box. What guarantees
can we give to each box, particularly boxes in application
servers? We can answer this question in terms of paths.

If a box in an application server owns a slot, then the
box has the power to treat that slot as the endpoint of
its signaling path (by not assigning it to a flowlink). If
the box chooses to make it a path endpoint, then the
other end of the signaling path may be a box in another
application server, or it may be a media endpoint. If the
other end of the signaling path is a media endpoint, then
the box is guaranteed that the media endpoint has no
media flow associated with that signaling path.

Not surprisingly, a box gets no “positive” guarantees,
i.e., guarantees that it has the power to allow media flow.
Media flow is always allowed by a consensus of boxes.

E. Implementation design

The last principle is the most difficult to general-
ize. Our flowlink implementation went through many
iterations, because the earlier versions were extremely
difficult to understand and debug. The key to successful
code design was the combination of cached descriptors,
the concept ofdescribed(which says that a slot has a
good cached descriptor), and the concept ofup-to-date
(which says that the good cached descriptor from the
other side of the flowlink has been sent to this slot).
These concepts are likely to be useful for working with
other idempotent, unilateral protocols.

F. Application to mobility

As an example of another application where these
principles might be applied, consider the problem of
providing persistent IP connections to mobile endpoints.
The difficult trade-off affecting this much-studied prob-
lem concerns the number of special-purpose mobile
routers that know the current location of a mobile host.
If there are many such routers, the path of a packet
to a mobile host can be quite direct. Unfortunately,
many routers in many different subnets are required,
and they must all have access to location information.
If there is only one locating router for each mobile host,
however, mobile routers need not be everywhere, and
each location update is easy. Unfortunately, if the unique
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locating router for a host is far from the sender and the
current location of the host, the path of each packet can
be triangular and very long [12].

In addition to this unresolved trade-off, all proposed
solutions to this problem seem to favor—if not require—
isolation. It can be difficult to see how they would
accommodate multiple layers of mobility, or compose
with a variety of other applications.

In the cases where signaling and data streams are
separable, and where other applications operate directly
only on the signals, it might be possible to find a
better solution that is similar to compositional media
control. Unique locating routers could be interspersed
on signaling paths with servers for other applications.
Triangular routing of data packets would be avoided by
signaling/data separation, and data packets could travel
between endpoints by the most direct routes.

XI. CONCLUSION

This paper has defined the problem of compositional
control of IP media, and explained its importance in
providing desired network services. We have presented
a comprehensive solution in the form of an architecture-
independent descriptive model, a set of high-level pro-
gramming primitives, a formal specification of their
compositional semantics, a signaling protocol, an imple-
mentation, and partial verification of correctness. The
performance of the implementation compares favorably
to the performance of the best comparable implemen-
tation in SIP. The overall solution illustrates several
principles that may be useful for making other networked
applications more compositional.

Although our implementation simulates IP media con-
trol, it cannot be tested with live IP media. The reason
is that use of IP media in practical services requires
a great deal of hardware and software infrastructure.
Although we have developed such an infrastructure in
our laboratory and are accustomed to using it [3], [4],
it is all based on SIP rather than the protocol defined in
Section VI.

Despite this limitation, the architecture-independent
descriptive model, set of high-level programming prim-
itives, and formal specification of their compositional
semantics are all protocol-independent. We are currently
working on implementing the specification in SIP.

Work on the protocol, implementation, and verifica-
tion have not been wasted, despite the fact that they
cannot be used in current applications. Without them,
we would have no idea where to begin with SIP. The
protocol and implementation provide compositionality in
a straightforward, relatively comprehensible form that il-
lustrates some potentially useful design principles. They
are patterns for thinking about how the Internet applica-
tion environment can be made more compositional.
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