Compositional Control of IP Media

Pamela Zave and Eric Cheung
AT&T Laboratories—Research, Florham Park, New Jersey USA
pamela,cheung@research.att.com

Abstract—In many IP media services, the media chan- perform a wide range of functions such as recording,
nels are point-to-point, dynamic, and set up with the par- playing, mixing, replicating, filtering, transcoding, and
ticipation of one or more application servers, even though analyzing media streams

the media packets themselves travel directly between media | t medi . devi t autonomousl
endpoints. The application servers must be programmed N MOSt media Services, user devices ac y

so that media behavior is globally correct, even though the With respect to other media endpoints (even if acting
servers may attempt to manipulate the same media chan- as slaves to their human masters). For example, they

nels concurrently and without knowledge of each other. Our can request connections at any time, and choose to
proposed solution to this problem of compositional media accept or decline connections that are offered to them.

control includes an architecture-independent descriptive . .
model, a set of high-level programming primitives, a formal For a media channel to be established between two

specification of their compositional semantics, a signaling €ndpoints, the endpoints must cooperate by means of a
protocol, an implementation, and partial verification of signaling protocol. The Session Initiation Protocol (SIP)
correctness. The paper includes performance analysis, com- s currently the best-known and most commonly used
ﬁg{\l;gpketz ;ela:_ed _Nork, and prlnuplgs_ forlmaklng other protocol for this purpose [7], [14].
pplications more compositional. It is frequently stated that IP media services can be

Index Terms—distributed applications, domain-specific jmplemented in the participating media endpoints. User
architectures, protocol design, protocol verification, soft- yeyices are computers, and any necessary new software
ware/program verification, networks, streaming media, . .
multimedia services, telecommunications, feature interac- &N be installed on them. As user deV'C_es become mpre
tion powerful, they can even perform the high-level media
processing required by some services.

Although it is certainly true that some IP media
services are best implemented in the participating end-

IP media services use the Internet Protocol (IP) taoints, it is also true that many media services are best
make real-time audio and video connections. We ai@plemented in separate application servers. Here are
concerned with IP media services having two commasome of the reasons for using application servers:
characteristics. t Handheld user devices are often disconnected from

First, the media channels are point-to-point and dy- the network. An application server can provide a
namic. This excludes dedicated long-term channels and persistent network presence, such as voicemail, for
multicast applications. It includes, however, a wide range handheld devices. A server can also make a user's
of interactive applications including Internet telephony, media files accessible at all times from all devices,
home networks, computer-supported cooperative work while files stored on an inaccessible device would
(teleconferencing, telemonitoring, distance learning, and not be.
virtual reality), and computer-supported cooperative play t An application server can provide IP media services
(collaborative television, multiplayer games, and net- for closed user devices—user devices that were not
worked music performance). designed to download new programs for built-in

Second, the dynamic setup of a media channel must IP media services. The most obvious example of
sometimes involve the participation of one or more such a device is an ordinary telephone, connected
application servers The presence and significance of to the Internet through the circuit-switched telephone
application servers depends on several aspects of thenetwork.
architecture of media services, as follows. T Many user devices do not reside in trusted adminis-

In this paper anedia endpoints any source or sink trative domains. Applications with any kind of trust
of a media stream. Endpoints include original sources or security requirements cannot run on them.
of media such as media synthesizers, cameras, and Without application servers, every multi-party ser-
microphones. Endpoints include ultimate sinks of media vice must be implemented in a completely decentral-
such as user devices or clients with displays or speakers.ized way. This might be difficult or inefficient com-
Endpoints also include media-processing resources that pared to implementations with some centralization in

I. IP MEDIA SERVICES

servers. the media channel demands low latency, so packets
T Without application servers, for every service aceannot incur extra delays from longer paths or server
cessed from a device, application software must b&andling.
installed on that device. This is not realistic for
services that are used infrequently by any one person.

We have stated that we are interested in services
where the dynamic setup of a media channel sometimes
involves the participation of one or more application signaling
servers. What if there are application servers, but they channel
do not make decisions about media channels? There
are such servers, but there are also many servers that
make decisions about which media channels should exietdpoint|< - - - - - - - - - - - - - - — - — — =l endpoint
when. They include servers concerned with switching media
and conferencing. They include servers for services that channel
provide access to media resources as part of the service
being offered. They also include servers for servic{ﬁ,‘arla‘ue_
that use audio signaling as their user interface. Audio

sign_aling i_mplements an extensible user interface on anyne separation of signaling and media channels is

audio device, by means of announcements, tones, toUglinforced by other factors besides the presence of ap-

tone detection, and speech recognition. Audio signalingjcation servers. Because these channels differ in both

is a crucial ingredient of IP services that interoperaigerformance and reliability requirements, they use dif-

with circuit-switched telephones, because it is the usuent underlying protocols. Signaling is low-bandwidth

way to augment the user interface of the device. but demands reliability. It is common to use TCP for
Wherever there is one application server, there mighfgnaling, so that a signaling channel can be regarded

be several. A connection between two user devicgg FIFO and reliable. Media is high-bandwidth. It is

might be supervised by two servers in two differenéommon to use RTP for media streams, because limited

administrative domains, each one serving one of thecket loss is preferable to delay. RTP can also be

users. Often adding new functions to a system meagsmbined with quality-of-service mechanisms such as

adding new servers, because adding a new server is fg&ource reservation.

easier than adding functions to an existing server. The

IP Multimedia Subsystem (IMS) architecture [1], which || T4E PROBLEM OF COMPOSITIONAL MEDIA

is an emerging industry standard for media services, CONTROL

recognizes the necessity to route a particular signaling

channel through multiple servers within the same s,erviceslect'ontIdd_escr'b?d ? class of IP:IPhased apphcatlonst
provider's configuration, implemented in application servers. These servers mus

Whenever there are multiple application servers, kﬂe programmed so that media behavior is globally cor-

- .~ rect, even though the servers may attempt to manipu-
is likely that they were not programmed to coordinat . .

. . te the same media channels concurrently and without
with each other, beyond the common denominator

X ; . ; owledge of each other. We refer to this challenge as
following a standardized signaling protocol such as SIp. > . i
¢ompositional media control.

Application servers representing different users may beBefore giving a more detailed description of the prob-

in completely different administrative domains. App“_lem, we first show an example of why servers might act

cation servers performing different functions within one . .
administrative domain may be produced by differen oncurrently and independently, and what might happen

vendors. IT they are not coordinated properly.

In the services we are concerned with, a typical media
channel looks like Figure 1. Most importantly, there i€\ An example of the problem
a separation between the media channel itself and theFigure 2 is a telephony example in four snapshots. The
signaling channel used to set up and control it. Th&hapshots show the same media endpoints and servers at
signaling channel goes through one or more applicatidour different times.
servers, for all the reasons presented above. The medi&ndpoint A is a telephone in an office with an IP PBX.
packets, on the other hand, travel directly between meddacause of this, A has a permanent signaling channel to
endpoints. This is necessary because the media charthel PBX, and all signaling channels connecting A to
demands high bandwidth, so packets must travel by théher telephones radiate from the PBX. Among other
shortest available paths. This is also necessary becafesgtures, the PBX allows A to switch between multiple

In IP media services, signaling and media channels are

B B
PBX do not
N\ send
PC PC send
send L 10C
V...
= \
4 C =<------------- -V
———————————————— > B ——-—--------------B
send
toA
PBX _send
. to C
PC)
do not . do not
send PC \. send
= !
C = v v

Fig. 2. An example of erroneous media control. A, B, C are telephones. PC is an application server implementing a prepaid-card feature. V
is a media resource providing a user interface for PC by means of audio signaling. Solid lines are two-way signaling channels, dashed arrows
are media channels, and dotted arrows are signals sent on signaling channels.

outside calls. Before any of the snapshots in the figuteat they receive. In particular, the PBX forwards the
were taken, the user of A was talking to the user afot sendsignal to A.
telephone B, which is why there is a signaling channel After the endpoints respond to all commands in Snap-
between the PBX and B. shot 2, the only audio channel is between C and V. V
While A was talking to B, a user of telephone C, whawill use it to prompt C to supply additional funds, and
is using a prepaid card, contacted the prepaid-card sert@rreceive authorization by means of touch tones.
PC and used the card to call A. A received notification Snapshot 3 shows what happens when A next uses the
of the incoming call and switched to C. This resulted iPBX to switch back to B. The PBX sends three signals
Snapshot 1. Note that in Snapshot 1 there is an audippropriate to this function: a signal to A telling it to
channel between A and C. There is no audio channeld¢end media to B, a signal to B telling it to send media
or from B, because A has put B on hold. to A, and a signal to C telling it to stop sending media.
Snapshot 2 shows what happens when the funds Tiis last signal passes through PC, which forwards it
the prepaid card become exhausted. A timer goes eoiffitouched to C.
in PC and the server sends three signals. In protocol-Although the signals are appropriate from the PBX’s
independent terms, there is a signal to A telling it tpoint of view, they have the abnormal effect of leaving V
stop sending media. There is a signal to C telling it twithout audio input from C. Note that the media arrow
send media to the resource V, and a signal to V tellingetween C and V is now one-way.
it to send media to C. Finally, Snapshot 4 shows what happens when V
It is standard behavior for a server receiving a siggompletes verification of the funds from C (presumably
nal that does not concern itself to forward the signaluthorized before C was cut off) and reconnects C with
untouched. In this example, because the servers are AoPC sends a signal to A telling it to send to C, a signal
coordinated—they are acting as if media signals concetm C telling it to send to A, and a signal to V telling it
media endpoints only—they forward all media signal® stop sending media.

Although the signals are appropriate from PC’s poirmodularity and reuse provided by the DFC architecture.
of view, they have abnormal effects. Because the sigritihe work reported in this paper was motivated by DFC,
from PC is forwarded blindly by the PBX, the signaland can be used to automate media control for DFC-like
switches A from B to C without A's permission. Fur-modules.
thermore, B is left transmitting to an endpoint that will In the next three sections, we propose a comprehensive
throw away the packets because it has been instructedafgproach to achieving compositional media control, and

communicate with C. give its formal specification. Section Il provides an
architecture-independent model for describing the media
B. Goals and plan for a solution aspect of any service. All definitions are rooted in this

We have just shown a very simple example of whdpodel. Section IV defines a set of primitives for con-
can go wrong without compositional media control. ThE©lling media channels. This set of primitives is a high-
goal of our work is to find a comprehensive approacﬁvel vocabulary to be used by application programmers.
to this problem. For an approach to be considerecection V defines the compositional semantics of these

comprehensive, it should have the following three chaPlimitives in terms of temporal logic. ,
acteristics. In the subsequent three sections, we present an im-

First, it should be general-purpose. It should be poglementa’[ion of the specification. Section VI describes
sible to use it to build any media service, and it shoul@ Protocol for signaling between modules such as appli-
make media control relatively easy in all of them. cation servers. Section VII descr_lbes the softvyare that

Second, it should be architecture-independent. RUSt run on each module. Section VIII describes our
should not impose constraints on how functions afeartial verificatio_n _of Fhe protocol an_d implemenFation
allocated to physical components, or on where physic%@de; Relevant limitations are noted in each section.
components are located. Engineers should be free to bas&iS Presentation of the approach is followed by a

architectural decisions on other criteria such as cost afigcussion of related work, of which there is relatively
reliability. little, as the problem of compositional media control

Third, it should be automated and verified. ComlS Not yet widely recognized (Section IX). Because
positional media control is inherently complex; it jcompositional media contro_l ha; si_milgrities to other
not something that every programmer should do afresf?{c’b'?ms requiring modularity, distribution, and coor-
Rather, application programmers should work with gination, Section X makes an attempt to extract some
set of high-level primitives. These primitives should bgeneral design principles for supporting composition.
specified formally and implemented once. Further, the]
implementation should be verified as correct with respet An example of the solution
to the specification. This paper is basically organized in a top-down fash-

Architecture-independence has another advantage . Because it can be difficult to see where a top-
yond engineering freedom, as important as that is. diown presentation is going, this section sketches how our
functions can be distributed arbitrarily across physicalpproach solves the problem introduced in Section II-A.
components, they can also be distributed arbitrarilBubsequent sections fill in the details of this sketch.
across virtual components within physical components. At the highest level, the solution is exemplified by
In other words, we have support farodularity. Figure 3. In this figure, the PBX and PC server are

The value of modularity in developing media serviceprogrammed using a fixed set of primitives for media
has been demonstrated by the success of the Distributeahtrol.

Feature Composition (DFC) architecture [4], [9]. In When a server program wants media flow between
DFC, a feature is implemented as an independent, cdmo media endpoints, it puts the two signaling channels
current module in a signaling pipeline. Because of thikat extend from the server to those endpoints under the
independence, each feature can be simple and compentrol of aflowLink object, depicted by a dotted line
hensible, and features are easy to add or change. In tinighe figure. When a server program wants to interrupt
way, DFC’s goal of feature modularity has been reacheshedia flow to an endpoint, it puts the signaling channel

DFC was used to build the advanced features forta that endpoint under the control ofteldSlotobject,
commercial voice-over-IP service [3]. Using DFC, it waslepicted by a black dot in the figure. The primitives
possible to deliver 11 features to a testing organizatioalso include ampenSlofor opening media channels and
two months from the inception of the project. Several dd closeSlotfor closing them, but these objects are not
these features were very complex, requiring control @mployed in the PBX/PC example.
multiple parties and their audio channels. Nevertheless,The signaling protocol and the implementation of the
the delivered software proved to be of high qualitymedia-control objects are designed to achieve the goals
This unprecedented development speed was due to tiehe servers in which they reside, subject to the goals of

C

Fig. 3. Correct media control for the example, in contrast to Figure 2. Dotted lines are flowlinks, and dots are holdslots.

other servers and the rule for coordinating them. Roughlyll. A DESCRIPTIVE MODEL OF THE MEDIA ASPECT
speaking, the coordination rule is thabximity confers OF A SERVICE

priority. This means that the closer a server is to a medjig Signaling paths

endpoint, the higher priority it has in controlling media

flow to and from that endpoint. The modules involved in media control may be

physical or virtual. A physical module is a physical

. o component—usually a user device, application server,
Figure 3 has the same four snapshots as in Figure ¢. media resource. A virtual module is a concurrent

dashed lines show the media flow that results fro@ufware process running within a physical component.
each goal state in the servers. In this example, thej, this paper all modules are peers, whether physical
semantics of the primitives and the coordinating rule ca} y;ryal. This means that if virtual modules within an
be characterized as follows: there is media flow betwegpjjication server appear in an instance of the descriptive
two media endpoints if and only if both media endpomtﬁ]odeL then the application server as a whole does not
desire it, and there is an unbroken chain of signalin&;ppear in the descriptive model. We use the wbos
channels and flowlinks between them. as a short synonym for “peer module involved in media
control.”

To relate this behavior to proximity, consider the PBX. Boxes are connected sjgnaling channelsA signal-
In every snapshot, A is media-connected to B if the PBKg channel is two-way, FIFO, and reliable. A typical
mandates it, and may be media-connected to C if tisggnaling channel between two physical components is
PBX allows it. Because the PBX is closest to A, it hagnplemented by TCP. A typical signaling channel within
priority over PC in controlling A. Only if the PBX has a physical component is implemented by two software
A linked to C do the actions of PC have an effect on Aqueues. We do not discuss how the graph of boxes
Then A may actually be media-connected to C (Snapshemd signaling channels is configured, as this is outside
1) or be silent (Snapshot 2), depending on the actionsthe scope of this paper. Configuration is performed in
PC. varying ways by DFC, IMS, and SIP.

Each signaling channel is partitioned statically intonay not. For this reason, we usually describe the box
tunnels each of which provides a separate two-wags sending the signal “toward” the far endpoint, rather
signaling capability. Each tunnel can be used to contrtiian “to” it. This tension between piecewise and end-to-
a separate media channel. The endpoint of a tunnel at¢rrd signaling is inherent to distributed applications of
box is called aslot networks. It is at the very heart of compositional control,

Media control requires a signaling protocol througlhe goal of which is to give some behavioral guarantees
which boxes communicate and coordinate their effortto each box, even though the behavior of the overall
The signaling protocol (defined in Section VI) operatesystem can be affected by every box.
separately in each tunnel of each signaling channel. InThe descriptive model presented here gives us a
other words.each slot is a protocol endpoint. vocabulary for talking about media control, without

Within a box, two slots may be assigned tl@vLink constraining system architecture in any way. Modules
object. A flowlink is a software object that reads all thean be located anywhere; any pair of modules can be
signals from its two slots and controls all the signalso-located or not. A module can act as a media endpoint,
written to them. A flowlinkcoordinates the signals of its application server, or both.
two slots its behavior and implementation are discussed The figures in this paper provide a particular view
in several sections of this paper. of media services in which media endpoints are at the

A signaling pathis a maximal chain of tunnels andperiphery of the system, while non-media-processing
flowlinks, where the tunnels and flowlinks meet at slot@pplication servers are in its center. This is not the only
Each signaling path corresponds, at any given time, pwssible view. For example, consider a media resource
an actual or potential media channel between the patiat is the endpoint of two separate media channels as
endpoints. Signals traveling through the path can createfined here. Internally, the resource reads media packets
the media channel if it does not exist, and can destrégpm one channel, performs some signal processing such
it if it does exist. Figure 4 illustrates the various pieceas transcoding on them, and writes the resulting packets

of a signaling path. to the other channel. From a user viewpoint, this resource
is an application server in the middle of the system,
actual or potential media channel performing some almost-transparent operation on one
g m - media stream for the benefit of two user devices at the
’ . periphery. From our viewpoint the two streams are dis-
V4
’ . tinguishable because they use different data encodings.
box box Cyclic signaling paths are not useful for controlling
cecceee 0oO0Qe00 media channels. We assume that the configuration pro-
/ cess prevents cycles, and do not discuss them further.
signaling slot flowlink tunnel B. Media channels
channel

Each signaling path corresponds to an actual or po-
tential media channel between the path endpoints. If
Fig. 4. A signaling path is a maximal chain of tunnels and flowlinksthe channel exists, its global attributes include an IP

address and IP port for each endpoint, which are used for

In addition to the tunnel signals that control medigending and receiving media packets. This information
channels, signaling channels camgta-signalséhat refer is associated statically with the endpoint slot.
to the signaling channel as a whole, and can affect all All other attributes of the channel are dynamic, de-
the tunnels within it. Meta-signals set up and tear dowmendent on the desires of its users, or both. Figure 5 is a
signaling channels. They can indicate that the intend@dndeterministic finite-state machine specifying the user
far endpoint is currently available or unavailable, as weithterface at one end of a media channel.
as other conditions. Initially the channel isclosed or does not exist. If

All of the statements about programs or protocols ithe user chooses topenthe channel, the user must
this paper are made from the perspective of a particuleinoose thanediumof the channel. Audio and video are
box. For instance, a box sends a media signal or methe usual media, but there are other possibilities. For
signal out on a signaling channel. This signal may bexample, audio or video could be subdivided into media
intended for a user device at the far end of a signalirgf different qualities. Also, text, images, or other data
path. All the box program can actually do, however, isould be considered a medium, or one medium could
to send the signal out on the channel, to be receivedcode both audio and video together.
and processed by the next box in the chain. That boxOn experiencing ampenrequest, a user caaccept
may forward it untouched toward the far endpoint, or ibr rejectit. The channel only gets to fowing state, in

(R), then themutelnvalue chosen at the left end can be
designated.muteln and the value chosen at the right end
can be designateldmuteln Media should flow from left
to right only if - LmuteOuf* - Rmuteln and media should
flow from right to left only if - RmuteOut® - Lmuteln

Implementation of a media channel requires that the
media endpoints agree on a data formatdder-decoder
or codeg for use in each direction. Although codec
choice is also dynamic, it is an implementation issue,
and the user interface has no control over it.

This description of a media channel is as general as
SIP’s, with one exception. In SIP a media channel can
be one-way only, so that media is permanently muted
in the other direction. This capability could be added to
our description, but it would not add any new behavior,
laccept and we omit it for simplicity.

(muteln,muteOut)

closed

?open(medium,
muteln,muteQut)

lopen(medium,
muteln,muteOut)

Iclose, Ireject,

?reject ?close

opening

?accept
(muteln,muteQOut)

IV. PRIMITIVES FOR CONTROLLING MEDIA
CHANNELS

A. State-oriented goal primitives

Application programmers manipulate media channels
!modify(muteln,muteOut), by controlling slots. Because each slot is a protocol end-
?modify(muteln,muteOut) point, the attributes of a slot are completely determined

by the signaling protocol for media control (Section VI).

Fig. 5. The user interface at one end of a media channel. Eveff®" NOW it is sufficient to say that the protocol is an

preceded by exclamation points are chosen by the user, while eveaitension of Figure 5. Each slot has attributesdium

preceded by question marks are chosen by the other end of the chang_‘alléj state where the four states in Figure 5 are all

Commas separate unrelated transition labels with the same source and .

sink states. possible slot states.

Most media services are event-driven. Many years

of experience indicates that they are best programmed

which media can flow, if one end opens it and the othéising finite-state machines in which the transitions are

accepts it. Either end caslosethe channel at any time. triggered by events such as received signals and time-

A media channel always offers the potential of medi@uts. This style is almost universal in the development
flow in both directions. However, media should actuallpf telecommunication services.

flow in a direction only if both ends desire it. Both To simplify media programming, we want to conceal

openand acceptevents contain Boolean valuesuteln from the programmer most of the signaling involved in

andmuteOut indicating whether the user desires inwarénedia control. An application program should respond
or outward media flow, respectively, to be temporarilynostly to meta-signals, rather than handling each media
suspended. Muting within a channel is dynamic, so fgnal individually.

user can change his intention at any time, by choosingThis leads us to astate-orientedset of primitives

the modify event! for media control in application servers. In each state

It is important to note that an end of a media channel & @ box program, annotations or defaults give a static
responsible for saving and implementing thatevalues description of the programmergoal for each slot while

chosen at its end only. Figure 5 shows the values choséf Program is in that state. It is a “goal” rather than a

at one end being communicated to the other end, but tf@mmand” because the box must have the cooperation

only purpose of that communication is to advise the uséf other boxes and users to achieve it. If the external
whose choices might be influenced by it. If we designaﬁgtuation changes so that a slot should have a different

that slot is annotated differently.

1t may seem unnecessary to have explicit control of muting, as Needless to S_ay’ we cannot hide slot aCt'Y'ty from_the
an endpoint can simply refrain from sending media packets whenprogrammer entirely, because program logic sometimes
wants to “muteOut,” and can simply throw away received packe@epends on it. For each slot, there are predica’ﬂes
when it wants to “muteln.” Nevertheless, explicit control of muting
is customary in media services. It is valuable for efficiency, resourc@losem isOpening, |sOpeneﬂhd|sFIOW|ngcorrespond-
management, feature interaction, and improving the user experiencg to the four states in Figure 5. These predicates can be

Iclose,

?close

used as guards on transitions in box programs. If a stateThe fourth primitive was already mentioned in Sec-
in a box program has a transition guardeds@losed(s) tion IlI-A. It is a flowLink goal object, controlling two

for some slos, then that transition is executable as sooslots. The semantics of #iowLink goal are complex.

as the program enters the states i§ closed at that time, Initially, its slots can be in any states. The flowlink
or as soon as becomes closed while the program is stilattempts to match their states as if the slots had always
in the state. been connected transparently, and to keep them matched.

Returning to the goal primitives, there are four oft has a bias toward media flow, so if a program state
them. The first three apply to one slot at a time, so thennotatedflowLink(s1,s2)is entered whersl is in the
are used when a slot is acting as a path endpoint. Thélgsving state ands2is in theclosedstate, it will attempt
goals will be implemented by software objects, each o6 gets2to flowing rather than closingl The semantics
which controls a slot. Such a goal object reads all thef a flowlink will be further elucidated by the formal
signals received from its slot, and writes all the signalspecification in Section V and the implementation design
sent to its slot. The goal objects are nanmuknSlot, in Section VII.
closeSlotandholdSlot, respectively. It is a precondition on the use of tflewLinkgoal that

The openSlotgoal is to open a media channel and gef both slots have thenediumattribute defined, which
it to the flowing state. The behavior of aopenSlotgoal means that both slots are not closed, then thedium
object is a refinement of Figure 5 in which the objecattributes are the same.
takes every possible opportunity to push the slot (and, by
extension, the media channel) toward flesvingstate. If B. Programming examples
an open;lot sendgpenand receiveseject, then it sends Using the primitives, it is easy to program the PC
openagain. _ behavior shown in Figure 3. In Snapshots 1 and 4, the

The medium of the channel is an argument 10 thg,gram is in a state annotatawLink(c,a), holdSlot(v)
opensSlotgoal object. The annotatioopensSIoi(s,mjor \yhere the slot names correspond to the endpoints they
slots and mediumm can appear in a program state only e intended to reach. A timeout event (expiration of the
if s is in the closedstate when the program enters thg enaid talk time) causes a transition to the PC state
annotated state. ThepenSlogoal object sends abpen ot spapshots 2 and 3, which is annotafevLink(c,v),
signal with mediumm. This is the only goal with a state ,4|4sot(a) A signal from V that the user has paid causes
precondition. _ _ a transition from this state to the other one.

The cIos_eSIo1goaI is to_ get |ts.slot to the_losedstate Figure 6 shows a program for a Click-to-Dial box.
and keep it there. Once its slot is closed, if teseSIot o5t guards and actions on the transitions are written in-
goal object receives aopen signal, the object sendstqrmally, because they are implemented by meta-signals.
rejectimmediately. As with aropenSlogoal object, the The program takes its initial transition when a user 1,
behavior of acloseSlobbject is a refinement of Figure 5,14 is browsing a Web site, clicks on a “click-to-dial”
in which the object always chooses certain actions. jink This box is configured with the address of user 1's

The holdSlotgoal is to accept a media channel angb (elephone, and responds to the click by creating a
get it to theflowing state, but only if the channel is 5jynajing channel 1 toward the IP telephone, with a slot
requested .by the other 'end of the signaling pth. The, The program sets a timer and enters staieCall
channel will be closed if the other end closes it, angnnqtatebpenSlot(la,audicgo that the implementation
will remain closed until the other end asks to open ity attempt to open an audio channel to the telephone.
This behavior is also a refinement of Figuré 5. At the telephone, theopen signal will initiate some

A box program can change to a state withlaseSlot 5046 in the user interface, usually ringing.
or holdSlotgoal object at any time in the life of the g yransition from stateneCallto statetwoCallsis
controlled slot. This means that, unlike Figure 5, thesgggered by the entrance of slbainto theflowing state,
objects have no fixed initial state. When the goal objegiich in turn is caused by an accept action from user 1.
gains control the slot can be in any of its states, and th&,ser 1 does not accept, the timer will eventually cause
object must proceed from that point. a timeout, causing the program to destroy channel 1 and

When any of these Qoa' objects opens or agceptsté?minate. Destroying channel 1 is a meta-action that
channel, it mutes media flow on the channel in botl .orse destroys all its tunnels and slots. It is typical
directions. A slot in an application server may be mag; single-medium applications such as Click-to-Dial that
querading as a media endpoint, but it is not a genuig&,en "3 media channel is no longer needed, the entire

media endpoint, and can neither send nor receive megianaling channel is destroyed, so that theseSlogoal
packets fruitfully. is seldom used.

2strictly speakingacceptSlotmight be a better name, but we think If |sF_Iow_|ng(1a)_ the) program has successfully
that holdSlotwill make more sense to service programmers. reached its first audio device, and is now ready to attempt

user 1 clicks on Web site /

create signaling channel 1 and slot 1a; set timer

‘ timeout / destroy 1 oneCall:

openSlot(1a,audio)

isFlowing(la)/ create signaling channel 2 and slot 2a

‘ 1 destroyed / destroy 2

twoCalls:
openSlot(1a,audio)
openSlot(2a,audio)

device 2 is available / create signaling
channel T and slot Ta; signal

device 2 is unavaila e "
ringback" to generator

signaling channel T
a; signal "busyTone"

ringback:

busyTone:
flowLink(1a,Ta)

to generator openSlot(2a,audio)

flowLink(1a,Ta)
isFlowing(2a) /

destroy T

1 destroyed / 1 destroyed /
destroy T transparent:
wﬁn k(1a,2a) destroy 2; destroy
1 destroyed / destroy 2 2 destroyed / destroy 1

Fig. 6. A program for a Click-to-Dial box.

reaching the second one. It creates a signaling channelf the device is available, then the program uses the
2 toward the IP telephone at the clicked address on tkame technique as above to play a ringback tone for
Web site, with sloRa. In statetwoCallsthe goal for slot user 1 in stategingback At the same time, it continues
la remains the same (which means control of the sltt try to open an audio channel to user 2. Because the
is implemented by the same object), while the prograannotation controlling slo2a is the same in both states
also puts sloRa under the control of an openslot. twoCalls and ringback the openLinkobject controlling

In statetwoCallsthe program is waiting for a meta-2a is also the same.

signal that the telephone at the end of channel 2 is avail-,:ina"y, if and whenisFlowing(2a) the program will

his action will destroy channel 1, which will result infioy| ink implementation will automatically reconfigure
the program’s destroying channel 2 and terminating. |p addresses, ports, and codecs so that user 1 and user
If the device is unavailable, then the program destroyscan talk to each other.
Generator resoure. In sidasyTonaiots 1aand Taare - Aough conferencing is used by many appiications
?Iowlinked On entrlance to tr)llis rogram state, the slf?r many different purposes, the implementation of con-
" : prog ! ?erencing always looks approximately the same. The sig-
state ofla is flowing, and the slot state ofa is closed

The flowLink implementation will match the states Ofnallng graph of a three-way audio conference is shown in

A Figure 7. The conference server is an application server,
these two slots by openinty, once the resource accepts °. .) '

. S while the conference bridge is a media resource that
the audio channel, it will generate a busy tone, and user

. . . erforms audio mixing.

1 will be able to hear it. Eventually user 1 will abandort) 9])
the call, and the program can terminate. As can be seen in the figure, during the conference
the conference server flowlinks the tunnel for each user
3t may seem strange to implement audio tones this way, and ndevice to a tunnel leading to the bridge. Each tunnel
in user 1's telephone. The fact is that tone generation in the deviced@rresponds to a two-way audio channel. In the direction
often not feasible, because the device will not generate tones Whe%t d the brid di h | . h . ;
believes it is playing the role of the called party. The implementatio ward the bridge, an audio channel carries the voice o

technique shown here is commonly used [15]. a single user. In the direction away from the bridge, an

10

A e collaborative television (Figure 8). The scenario is taken

conference from [11], although our approach to the application is
server more distributed and compositional than the architecture
proposed there.
170eeeel.] P I In this scenario, endpoint A is a large television in
B ceccccccccedeccccccccdecccccnns| erence a family room. C is a laptop in a daughter's bedroom.
Cveaesereneeen,| bridge They are sharing a particular movie, which means that
L1 ’ both are seeing the same movie at the same time point in
S the movie. The signaling channel from the collaborative-
C audio input ,* control box for A to the movie server is associated in
C . ﬁr_- —2/ the server with this movie and time pointer.
- == ===="""" nixed audio output This signaling channel has five active tunnels control-

ling five media channels. Because they are all in the same
Fig. 7. The signaling model of an audio conference. Only the medﬁ-{gna“ng Channel’ t_he media is aII.from the Same mowg
flow for endpoint C is shown. at the same time point. There are video and English audio
channels for the two video devices, which differ because
the two devices have different media quality and use
audio channel carries the mixed voices of all the usedsfferent codecs. There is also a French audio channel
except the user the channel goes to. to the headphones of a French-speaking friend in the
Various conference applications require different kind@mily room (endpoint B).
of muting. Full muting separates one user from the con- The control box for A has control of the movie, so that
ference entirely. The conference server can accomplisbmmands to pause or play the movie are mediated by
this by temporarily replacing a flowlink by two holdslots.it, and affect all five media channels. The signaling paths
Partial muting is more interesting and more variedrom all three devices to the movie server go through this
If the conference is a large business meeting, it md@Xx so that they are watching the movie collaboratively.
be desirable to mute the audio input from nonspeakingIn the scenario from [11], the daughter decides to
participants, so that they can hear the meeting, bg¢ave the collaboration and fast-forward to the end of the
background noise at their locations does not degrati@vie. After this change is completed, the collaboration
overall audio quality. If the conference is part of IP-baseldox of C would have its own signaling channel to
emergency services, on the other hand, A may be a cdlle movie server, associated with the same movie but
taker, B may be a person who has called emergen@ydifferent time pointer. There would no longer be a
services, and C may be an emergency responder signaling channel between the two collaboration boxes.
the police or fire department. In this case it must bBecause C has its own collaboration box, other devices
possible to retain the audio input from B while mutingould now join and share this new view of the movie.
the conference output to B, so that B cannot hear whatWe believe that the four primitives are sufficient for
the emergency personnel are saying [2]. This is til media programming in application servers, and we
opposite of business muting. have tested them for completeness on numerous small
For a final example of partial muting, let A be aexamples. The only way to know for sure is to gain ex-
new customer-service agent, B be a customer callifgnsive experience with programming compositional IP
for service, and C be the supervisor of A. In a trainin§edia services. At present no one has much experience,
situation, the requirement is that A and B can hear eagfimarily because such applications are so difficult to
other clearly, C can hear both of them clearly, B cannéuild.
hear C, and A hears a whispered version of what C
is saying. This enables C to advise A without bemgV SPECIFICATION OF COMPOSITIONAL SEMANTICS
apparent to B. To specify correctness, we assume that media end-
The four primitives cannot achieve any of theseoints are programmed using tlepensSlot, closeSlot,
partial-muting scenarios directly. They can be achievethd holdSlot goal primitives as presented above, with
easily by the conference bridge, however, because thiéye exception that users at media endpoints have full
are just different mixes of the three audio inputs. The afreedom to choose the values of theute flags. Pro-
plication server simply connects all the user devices toggamming endpoints in this state-oriented way would be
media server (conference bridge), and uses standardif&dclumsier than implementing the events of Figure 5
meta-signals to tell the media server how to mix themiirectly, but it is no less complete. With this assumption,
[10]. all box behavior reduces to the behavior of tigenSiot,
Our final example shows a scenario in the use afoseSlot, holdSlotand flowLink primitives.

11

llaborative contrdl
for A

A
B

)

...
.
..'... o: :'::.'.:.'o.
o® o o oy "o, .. LI
P LY oy e e, T, .
bo° . teltelte] movie
L] L]
.. Seu.tc.] server
D Se.
LI 9
LI
LI P
L4
a.o. 'l'
C o.o’ ¢”
% o,
cececcssccccccsssscceh . audio for C, *,
V4 - collaborative R
R control for C RIS
R . * e *video for C
- i . - e
= m gy L d

Fig. 8. A scenario in collaborative television. Only the media flow for endpoint C is shown.

The other factor that affects media behavior is the For convenience, we identify the two ends of a sig-
graph of signaling channels and boxes. We take thialing path agdeft (L) andright (R). For each path, there
graph into account by specifying correctness in terms afe two stable states that we might wish to achieve. The
individual signaling paths. Signaling paths depend on ttiiest is thebothClosedstate, in which both endpoints are
graph of signaling channels and boxes. Signaling pathsthe closedstate and there is no possibility of media
also depend on the configuration of flowlinks withirflow. This path state is defined as
boxes, determining which slots and tunnels form a path.

Signaling paths are an indirect encoding of the rule Lclosed™ Rclosed
of proximity confers priority.This is because, from the .)
perspective of a media endpoint, each box in asignaliH‘d“ere the predicates refer to the endpoint states as
path leading away from the endpoint has Compmf@efined in Figure 5. The second stable path state is
control over where the far side of the path is going. TH&€ bothFlowing state, in which both endpoints are in
rule of proximity confers priorityhas been used to governthe flowing state. To specify a correct state completely,
media-control feature interactions in many applicatiol¥® need to ensure that threediumattribute of both
built using the IP-based implementation of DFC [3], [4]gandp0|nts is the same. We also need to ensure that the
It is convenient, intuitive, and sufficient for a wide rangdMpPlementation state correctly reflects theteattributes
of applications, provided that there is enough control & the endpoints. The implementation state of the end-
the configuration graph in which proximity is measured?0ints is captured by the new history variablesabled

For each signaling path, we specify correct behavignd Renabled If Lenabledis true, both endpoints are
in terms of stability or recurrence properties in tempordfady for packets in the right-to-left direction. They
logic. This is necessary because a set of signaling paft/® agreed on a codec, they have agreed to enable
is a snapshot of a system, and can change at any time"@gsmission, and they have each other's IP address
the flowlinks change. Stability properties express the id@®d port number. [fRenabledis true, both endpoints
that if a particular path is allowed to persist long enougl@r® ready for packets in the left-to-right direction. The
the goal primitives and protocol will do their work,complete definition of théothFlowingpath state is
and eventually achieve a desired path state. Recurrenc))))
properties express the same idea, plus the additional idd2©Wing” Rflowing”™ (Lmedium= Rmedium
that if something is perturbed while the path persists, (Lenabled= :Lmuteln”® :RmuteOut™
the path state will eventually adjust to the perturbation. (Renabled= : Rmutelm - LmuteOu}

If the system is thrashing and paths do not persist long
enough to stabilize, then this specification of correctne¥he implementation of the new history variables
does not say anything about their behavior. Lenabledand Renableds described in Section VI-C.

12

Each signaling path has two ends, each of which is All of these formulas are idealized specifications that
controlled by an openslot, closeslot, or holdslot. Takingill not be satisfied in the face of network or hardware
symmetry into account, there are six possible path typ&slures. They are reasonable for our purposes, however,
based on classification of their end slots. A path of bbecause there should be no defects in the software of
given type can have any number of tunnels and flowlinkapplication servers.
as these should be transparent with respect to observablgandwidth limitations would not prevent an imple-
behavior. mentation from satisfying the specification, because the

If one end of a path is controlled by a closeslot angpecification is based on the software state at the ends of
one end is controlled by a closeslot or holdslot, thea signaling path, not on actual packet transmission. More
correctness is: relevantly, if there are bandwidth constraints on which
media channels should be opened or accepted, then these
¢ 0O bothClosed constraints should be enforced by the endpoints and

This stability property in linear temporal logic says tha?ppllcanons. Application SEIVeTs should make deuspns
eventually the path will reach a state in which botl{/iSely. then rely on our primitives to carry out their

end slots are closed, and will remain there forever. [FECISIONS.

practice, of course, the slots are only required to remain

closed until the environment changes the path in some

way, at which time a different specification may apply. VI. SIGNALING PROTOCOL
The specification of a path with one end controlle

by a closeslot and one end controlled by an openslot’i

weaker, because the path will not stabilize—the openslotty set up media flow between two endpoints, as

will continue trying to open it. All we can be sure of isexplained in Section I1I-B, each endpoint must know the

that once the objects have had a chance to do their wos, address and port number that the other will be using.

there will be no media flow in either direction. This isThe endpoints must also agree onaecfor the media

expressed by the stability property: stream in each direction.

- - A codec is a data format for a medium. For example,
¢ B :bothFlowing G.726 is a lower-fidelity and lower-bandwidth codec
The specification for a path with one end controlleépr audio, while G.711 is a higher-fidelity and higher-
by an openslot and one end controlled by an opensi@ndwidth codec for audio. G.711 is approximately
or holdslot requires that the path reactbathFlowing €quivalent in fidelity to circuit-switched telephony. Note
state. However, once this state is reached, the path ni§t it is not necessary for the two directions of a channel
leave it temporarily because modify event in a user to use the same codec.
interface changes muteflag. It will take time for the Although many endpoints can interpret more than one
implementation to send the signals to restore ltbéh- codec, it is still important for them to know which
Flowing state? Unlike the previous path specificationscodec they are expected to interpret at a given time.
this is a recurrence property, saying that the signalinghis is because they allocate resources dynamically to
path will always eventually return to thieothFlowing Wwhichever codec they are using, and need to reconfigure
state: before changing codecs. Surprising as it may seem,
media sources may wish to send using different codecs
0 < bothFlowing even within the same media episode. For example, a

resource that plays recorded speech may have speech

Finally, the specmcayon of a path with both er_‘d‘cﬁles that were stored in several different codecs.
controlled by holdslots is more complex because either . o
We use noMedia as the name of a distinguished

bothClosecbr bothFlowingis acceptable. (What actually seudo-codec indicating no media transmission. For sim-

happens depends on the state of the path when it vhs, ; .
formed.) Thus the specification is a disjunction of R ICity of presentation, we assume that any two devices

stability property and a recurrence property: ;upporting the same medium have at least one real codec
in common.
(¢&ObothClosed _ (O<¢bothFlowing The separation of signaling and media channels can
cause synchronization problems. Medigping results
4At the implementation level, an endpoint can also change its When media packets are lost because they arrive at an

address, port number, or codec choice without changing its mU“”@ndpoint before the endpoint is set up to receive them.
Because the implementation uses the same mechanism for all s

modifications in theflowing state, we do not consider these othe ﬁpping Shomd be_ minimiz_ed- a_llthough it is not always
modifications separately. cost-effective to eliminate it entirely.

Practical requirements

13

endpoint open(medium,desc) endpoint
?close / Icloseack *
@ed/ oack(desc2)

select(sel2) select(sell)
?open lopen
. describe(desc3)
opening /
%
loack / Iselect ?oack / Iselect *,
closeack
?describe / Iselect, \
?select,
!describe, Fig. 10. Use of the protocol.
Iselect
of both closeandrejectin Figure 5.
Eachopensignal carries the medium being requested,
Souck and adescriptor A descriptor is a record in which
‘) desc’n_be an endpoint describes itself as a receiver of media.
closing ")select ’ A descriptor contains an IP address, port number, and

?closeack

priority-ordered list of codecs that it can handle. If the
endpoint does not wish to receive media, iraytelnis
Fig. 9. Specification of the protocol at each protocol endpdint. true, then the_only offered c_odec nuaMegMa .
meansreceived ! meanssent ?oack / Iselectneans sendelectif and Eachoacksignal also carries a descriptor, describing
whenoackis received.loack / Iselectmeans send the two signals inthe channel acceptor as a receiver of media. These
zgﬂ;J:engerz].dcsci)rr]l;n;?;esse.parate unrelated transition labels with the S?iB%criptors a-re shown in_ Figu_re 10 but not_in Figure 9.
A selectoris a record in which an endpoint declares
its intention to send to the endpoint described by a
B. Protocol definition descriptor, and indicates the codec it will be using. A
selector contains identification of the descriptor it is
Recall from Section llIl-A that the actual scope ofesponding to, the IP address of the sender, and the
the protocol is one tunnel in one signaling channel. F@ort number of the sender. If the selecting endpoint does
reference as the protocol description proceeds, Figure,§t wish to send media, i.emuteOutis true, then the
shows a finite-state machine specification of the protoceblector containoMedia otherwise, it contains a single
at each protocol endpoint, i.e., slot. codec selected from the list in the descriptor. For optimal
At the same time, the use and meaning of the protocgbdec choice, the sender should choose the highest-
is best described as if the protocol endpoints were megigiority codec that it is able and willing to send. The
endpoints, which is what we will do. Figure 10 is eonly legal response to a descriptusMediais a selector
scenario in which the protocol is used to open, modifysoMedia
and close a media channel between two media endpointswhen a channel is first being established, the opened
Figure 10 represents a signaling path in which there ased sends anacksignal and then aelectsignal carrying
no flowlinks. The conceptual gap between the piecewigeselector. The selector is a response to the descriptor in
and end-to-end views must be bridged by the corregte opensignal. The initiator’'s response to the descriptor
operation of application servers. in the oack signal is carried in anotheselect signal.
Either end of a tunnel can attempt to open a medla Figure 10, descriptors and selectors have numbers to
channel by sending aapensignal. The other end canindicate which selector is responding to which descriptor.
respond affirmatively wittoackor negatively withclose Either endpoint can send media as soon as it has sent
Either end can close the media channel at any time byselector with a real (hatoMedig codec. An endpoint
sendingclose which must be acknowledged by the otheshould be ready to receive media as soon as it has
end with acloseack Note thatclosenow plays the role received a selector with a real codec. This is the most

?close / closeack

14

relaxed approach to synchronization of the signaling aridis is sometimes useful, but—because the protocol is
media channels. used piecewise, and every box is a protocol endpoint—

At any time after sending the first selector in respongaostdescribesignals are sent by application servers.
to a descriptor, an endpoint can choose a new codec fronfor example, consider the transition from Snapshot 1
the list in the descriptor, send it as a selector isetect to Snapshot 2 in Figure 3. To implement this transition,
signal, and begin to send media in the new codec. RC sends describesignal withnoMediato A, adescribe
Figure 10,select(sel’2)shows this possibility. signal with the descriptor of C to V, anddescribesignal

At any time after sending or receivingack an end- with the descriptor of V to C. (PC has these descriptors
point can send a new descriptor for itself irdascribe available because it has recorded them as they passed
signal. The endpoint that receives the new descriptthrough in previous signals.) The answersgjectsignal
must begin to act according to the new descriptor. Thfsom A is absorbed by PC, and the answerisgject
might mean sending to a new address or choosing a nsignals from C and V are sent to each other. These
codec. In any case, the receiver of the descriptor musgnals will cause the actual media paths to change as
respond with a new selector inselectsignal, if only indicated in the figure.
to show that it has received the descriptor. In Figure 10, To make media control as easy as possitkscribe
descriptor3and selector3illustrate this interaction. signals (and their answeringglect$ going in opposite

It is possible that a race condition, with twapen directions of the same tunnel do not constrain each other.
signals traveling in opposite directions, could occufhis means that changes initiated in both directions can
within a tunnel. The race is easily detectable by botbroceed concurrently. There is no need to introduce the
slots, because each sends an open and receives an apemplexity and overhead of serializing them.
in return. In this case the winner of the race is always Another simplifying design decison is that the protocol
the end of the tunnel that initiated setup of the signalingas no enforced pairing afescribe/selecsignals rele-
channel, which is fixed and unambiguous. The losingant to media transmission in one direction.dascribe
opensignal is simply ignored. This aspect of protocotan be sent at any time, even if reelecthas been

behavior is not illustrated in Figure 9. received in response to the lalscribe A selectcan be
sent at any time, even if ndescribehas been received
C. Properties of the protocol since the lastselectwas sent. This makes box state

At each end of a signaling path, the user interfac'lqeirm:)l_er and eliminates unnecessary _c_onstraints. .
(Figure 5) translates straightforwardly to its protocol This PTOtOCOl, Was_deS|gn§d specifically to facilitate
implementation (Figure 9). There is an extra protoc&2MPosition. Itis radically different from SIP [7], [14],
stateclosingnot observable in the user interfadeccept wh|ch is the dominant protocol in use for media control.
events are replaced byack signals.Modify events are Section IX compares the two and explores the conse-
replaced bydescribeandselectsignals. The values of the quences of their differences.
mutevariables are communicated through descriptors, as
presented in the previous section.

The history variabld_enabled (Renableds initially Implementation of compositional media control re-
false. It becomes true when the left (right) endpoint djuires Java code resident in each application seBet.
the signaling path sends a selector with a real (udfle- objects contain the high-level code that calls @Gpal
dia) codec. It becomes false again when the left (righgnd Slot objects when necessary. Figure 11 shows the
endpoint leaves thBowing state or sends a selector withhierarchical structure of method invocations am@&ux,
noMediaas the codec. As required by Section V, whefoal, and Slot objects.

Lenabled (Renabledis true both endpoints are ready A Slotobject sees all signals received from a slot and
for packets in a left-to-right (right-to-left) direction: theysends all signals to the slot. Because of this complete
have agreed on a real codec and have each other'sView, it is able to maintain the complete implementation-
address and port number. level state of the slot, consisting of protocol state,

A describesignal makes it possible for a media endmedium,and descriptor. The descriptor of a slot in an
point to change its characteristics as a receiver of medapplication server is the most recent descriptor received

in anopen, oackpr describesignal.

5To make absolutely sure that no media is lost, even if media packetsThe first action of a goal object is to query its slots,

travel through the network faster than signals, an endpoint must begin . .
“listening” for media in accordance with a descriptor as soon as it hi‘ssmg slotStateand slotDesg to get their protocol states

sent the descriptor, and must be able to accept packets in any allovésid descriptors. Then, having completed this initializa-
codec at any time. This is possible because codecs are self—describ'ﬁ@n, the goa| object proceeds to control its slot or slots
It is easier, however, for an endpoint to wait feelectsignals and oo . .
risk the loss of a few packets that arrive before their correspondiﬁ{)ntII its slots are moved elsewhere and this goal ObJeCt
selectors. becomes garbage.

VIIl. | MPLEMENTATION SOFTWARE

15

the three superstates the flowlink is in, at any time, is

Box CloseSloi(Slot) chosen by the flowlink’s environment. This is because
OpenSlox(Slot) the superstate depends on tpenandclosesignals that
HoldSlor(Slor) the flowlink receives. The dashed how that th
FlowLink(Slot,Slot) e flowlink receives. The dashed arrows show that the
goalReceive(Slot,Signal) flowlink works from whichever of the three superstates
SlloffvSigCha") it is currently in to one of the two heavily outlined
stotStat .
slorstate() substates. These are the two goal sthteth flowingand
both closed

There is a close relationship between Figure 12 and

Goal the formal specification of path semantics. To see this
relationship, it is necessary to realize that:
/szms,a,g() t acloseSlobbject emitlosesignals, and nevespen
slotDesc() or oack signals;
Slot jﬁjiﬁ:ﬁ;&fﬁ’jﬁ““ t an openSlotobject emitsopenand accept/oacksig-
nals, and neveclosesignals®

t aholdSlotobject emitsaccept/oaclsignals, and never
Fig. 11. The hierarchy of method invocations among Java objects. OP€Nor closesignals.
For each type of path, the objects at its endpoints
determine which signals will be coming toward the
There is also #Mapsobject that maintains the dynamicflowlinks. For each type of path, these signals lead to
association between slots and goal objects. When a baxe or two goal states in Figure 12, and these are the
receives a signal, the box uses these associations to f#atine goals as found in the temporal formula for that
the goal object to which it should show the signal viaype of path.
goalReceive The secondary organization of the flowlink is based on
The openSlot, closeSlo&and holdSlot programs are descriptors. A flowlink caches the most recently received
all reasonably straightforward, because each controlsiescriptor of each of its slots. The code design is built
single slot. The code of each is structured as a finitaround two concepts:
state ma_lchine that foII_ows the structure _of Figure 9. . A slot is describedif the object has received a
The design of thelowLink code, as described below, current descriptor for it. Slots in thepenedand

is considerably more complex. _ . flowing states aredescribeg while slots in other
The primary organization of thitowLinkcode is based states are not.

on slot states. There is. a flowlink state for leach pair + Each slot has a Boolean variablp-to-date (utd)
of slot states; any combination of slot states is possible nat is true if and only if the other slot is described

because a flowlink can be instantiated to control two g4 this slot has been sent its most recent descriptor.

slots that were previously independent. Based on its p?ri]ranylive state, the flowlink is working to make thed

of slot states, the flowlink performstate matchingas . .

- variables true. This depends on the slot states, because an
shown in Figure 12. The state labels use the shortham% . . ; :
X ' ; ; utd variable can only be true if the other slot is described,
live anddead as defined in the caption. o . .)

and if its slot is in a state allowing sending of a new
descriptor if necessary.

To see how these structures make a bewildering array
of cases comprehensible, consider a flowlink state in
which slot 1 isflowing and slot 2 isopening This
state could not have arisen if the two slots were always
flowlinked to each other; it could only have arisen if one
or both slots were previously linked elsewhere.

From the perspective of this flowlink, either (1) slot
2 wasopeningwhen it entered the flowlink, or (2) slot
2 was originally dead and the flowlink made it live by
Fig. 12. State matching in a flowlink. THeve states arepening, sending anopen Both utd variables in a flowlink are
openedandflowing. The deadstates areslosedandclosing initialized as false. In Case 1, when aackis received
Lrom slot 2, slot 2 will be in thelowing state but with

both dead

~
~

" both live

~
A

both either?open

both
closed

flowing

live ?close

either?close

The dashed arrows indicate the work of state matc

”?g* which consists of sendlng 5|gnals and Waltlng for SUsually it emits onlyopensignals, but in the case of a race between
signals, as needed, to push toward a goal. Which ®fb opens in a tunnel, it may back off and be the acceptor instead.

16

utd2 = false This makes sense because the descriptorWe performed two checks on each model. First, a
carried by theopensignal that opened slot 2 had nothingafety check was run to make sure that the path model
to do with this flowlink. To seutd2 = true the flowlink had no deadlocks or other abnormal terminations. The
must senddescribewith the descriptor of slot 1. check ensured that in any final state, each slaidsed

In Case 2, when awmackis received from slot 2, it orflowing and all signaling channels are empty. Second,
will reach theflowingstate. Is slot 2 up-to-date? Variablewe verified that each model satisfies its specification as
utd2became true when the flowlink sent it @apensignal given in Section V.
with the then-current descriptor of slot 1. If it is still true, The definition of thebothFlowing path state in Sec-
there is no more work to do. tion V is:

However, between sendingpen to slot 2 and re-
ceiving oack from it, slot 1 may have received a new
descriptor for some reason. If it has, thet2 has been (Lenabled= :Lmuteln™ : RmuteOut”
set to false again. It can be made true again by sending (Renabled= :Rmutelm™ : LmuteOu
slot 2 adescribewith the new descriptor of slot 1. This — . L
shows how the relevant history of three different cased’® de-f|n|t|on.that we used in model checking is some-
is maintained concisely by thatd2 variable. what different.

Interestingly, handling oelectsignals is much sim- Lflowing” Rflowing™

pler. In all cases in which a flowlink succeeds in reaChing_descRcvd: RdescSet™ (RdescReve: LdescSent™

its goal state ofboth flowing it sends a descriptor of
the other slot to each slot. A selector always responds (LselRcvd= LdescSent™ (RselRcvd= RdescSeit*

to a descriptor, and in thkoth flowingstate both slots This definition uses history variables that store the de-
have received fresh descriptors. This means that omdyriptors and selectors most recently sent and received
fresh selectors matter, so the flowlink need not keep agy path endpoints. It abuses notation slightly in assuming
history of them. that a selector responding to a descriptor is “equal” to
When a flowlink receives a selector and is in & The definition says that in th&othFlowing state,
state to forward it to the other slot, it checks beforgach end has most recently received the descriptor most
forwarding that the selector is a response to the othgfcently sent by the other end, and each end has most
slot's descriptor. If it is not a proper response, then th@cently received a selector responding to its own most

Lflowing” Rflowing”™ (Lmedium= Rmedium”

selector is obsolete and is discarded. recent descriptor. From this definition and the rules about
protocol behavior in Section VI, it is easy to derive the
VIIl. V ERIFICATION AND PERFORMANCE original definition ofbothFlowing

It may not be feasible to model-check signaling paths
with more than one flowlink. Even with partial order
Partial verification has been performed by modelingzduction, compression, and a few simplifying assump-
the Java code in Promela and checking the Promelans, a typical check of a signaling path with a flowlink
models with the Spin model checker [8]. takes 20 minutes and 3 Gb of memory on a Sun Solaris
The scope of each model is a signaling path. W&9000 SMP machine with dual-core 2.4 GHz SPARC
modeled and checked 12 signaling paths: six patpsocessord.More importantly, when we compare similar
with no flowlinks and every possible combination othecks of two paths, varying only in that one has a
closeslots, openslots, and holdslots at their ends, and Bowlink and the other does not, adding a flowlink causes
paths similar to the first six paths but with one flowlinkhe memory to grow by a factor of 300 on the average,
each. and the time to grow by a factor of 1000 on the average.
In every Promela model, every slot is controlled byrhis suggests that checking a path with two flowlinks
a goal object. Each goal object has two phases. Innaight take something like 900 Gb of memory and 300
goal object’s initial phase, the behavior of the slot onours. Even if these numbers over-estimate the impact
slots it controls is allowed to be completely nondetesf another flowlink by an order of magnitude, they are
ministic, and to have nothing to do with the goal. Astill forbidding.
some nondeterministically chosen point, the goal object
switches permanently to a second phase in which gt toward complete verification
behaves according to the specified goal. Because of th
existence of the nondeterministic initial phases, model
checking covers traces in which the goal objects begﬂ?
their real work in all possible initial states of the slots "The variance among checks is considerable. The biggest check took
and of the signaling tunnels that connect the slots. 161 minutes and 19 Gb of memory.

A. Partial verification

eEven if it were possible to model-check signaling
ths with several flowlinks, this would still not yield

17

a proof of correctness for signaling paths of any lengtexpected of the system.
Such a proof can only be constructed inductively.

Although we leave this inductive proof for future
work, it seems that the most promising approach would, Performance
be to construct the proof in terms of lemmas that could])
be verified by model-checking. For example, imagine a We have tested our Java code with a suite of test
lemma whose scope is an arbitrary contiguous segm&ftvers, as a check on aspects of the code not modeled in
of a signaling path, no larger than two tunnels and thré:go_mela. Unfo_rtunately, it is n_ot pos&ble_z to test_ the code
boxes (in other words, a segment with no more thef live IP m_ed|a. The reason is that testing on live media
one internal flowlink). It is plausible that such a lemmdould require a great deal of hardware and software
could be verified by model-checking, and could be usegfrastructure, all of it using this protocql. Although we
inductively to prove a theorem over whole signaliné‘ave developed such an m_frasFructur_e in our laboratory
paths of any length. and_are accustomed to using it for live m_edlg_[3], [4],

In the meantime, we give an informal argument thatrﬁ'_e m_frast_ruct_ure_ls all bas_ed on SIP. The significance of
signaling path with openlinks on both endpoints alwaydis Situation is discussed in Section IX.
converges to the correct state. This argument does nofortunately, the behavior of our protocol is simple
focus on getting slots to thowing protocol state, but €nough so that its performance can be studied analyt-
rather on the exchange of descriptors and selectors. Tally. The most important performance measure for a
argument is illustrated by the message-sequence charignaling protocol is its latency. In our protocol, an
Figure 13. It shows a scenario in which, starting frorgndpoint can transmit media as soon as it has received
Snapshot 3 of Figure 3, PC completes authorization aAddescriptor and sent a corresponding selector.
the PBX switches back to C at about the same time. ThisWe now consider the latency of the protocol in the
means that the transition from Snapshots 3 to 4 (in whig®mpositional scenario of Figure 13. Lebe the average
PC changes linkages) and the transition from Snapshotizpe it takes for a server to read a new stimulus from
back to Snapshot 1 (in which the PBX changes linkage&h input queue and compute the next signal to send.
are proceeding concurrently. Let n be the average time it takes for the network or

Control of media flow in each direction is independerferver infrastructure to accept a signal and deliver it to its
and symmetric. Thus, without loss of generality, wéestination box. In Figure 13 both endpoints can transmit
consider only media flow from A to C. after an average delay @h + 3c.

The new flowlink in the PBX begins by sending to The actual values of andc can vary greatly. How-
the left its most recent descriptor from the right, whickever, to make the analysis more concrete, a typical
is noMedia When A receives thelescribesignal, it value ofc might be 20 ms. In a few experiments on
responds withselect(noMedia) a typical carrier network with multiple geographic sites,

Concurrently, the new flowlink in PC begins by sendn averaged 34 ms. With these numbers the latency of
ing to the left its most recent descriptor from the right-igure 13 is 128 ms.
which is that of C. When the flowlink in the PBX This latency is not directly affected by other activity
receives it, to remain up-to-date, it forwardescribe(C) in the system, such as changes to other media channels
to the left. This new descriptor supersedexMediaat controlled by the same signaling path (needless to say,
A, so A replies withselect(C) it can be affected indirectly by processor overload). Be-

Along the entire signaling path from left to right,cause its behavior is fundamentally simple, the analysis
select(C)matches the most recent descriptor from thean be generalized as follows.
right, and is therefore forwarded all the way to C. Now The latency of providing media flow from a signaling
media flow from A to C is fully established. path should be measured from the moment that the last

To generalize from this example, after a signaling pattowlink in the path is initialized. Before this moment
stabilizes, eventually the descriptor of an endpoint withe path did not exist, and all its other flowlinks were
propagate along the entire signaling path as the magdements of other signaling paths. From the pattern of
recent descriptor from that end. When it reaches thegure 13, it is easy to see that the average signaling
other end, the other end will respond with a new selectatelay after that moment will be
Because the descriptor has now stabilized along the path,
the selector will be accepted and forwarded by each box pn+ (p+ 1)c
in the path.

To reiterate a point made in Section V, if signalwherep is the number of hops between the last flowlink
ing paths do not remain stable long enough for thend its farther endpoint. In Figure p3s the path length
distributed algorithm to converge, then nothing can bainus 1, which is the maximum for any path.

18

A PBX PC C

describe(A) describe(C
describe(noMedia) describe(noMedia)

describe(C describe(A)

elect(noMedia) select(noMedia
m}%
select(A) select(C)

e

Fig. 13. Behavior of the solution when the PBX and PC change state concurrently.

IX. RELATED WORK media channels is one of the ways that features interact.
Nevertheless, there has been little previous work on
media-related feature interactions, because most research
Very little work has been done on compositional medi@n feature interactions does not consider features of
control, because the problem is not yet widely recogufficient complexity.
nized. In the public circuit-switched telephone network In the first IP-based implementation of DFC [4], the
compositional media control is easy, because there dgoblem of compositional media control is addressed in
no signaling/media separation. There is only one paghlimited way. In a particular application server or cluster
between communicating endpoints, carrying both signaké cooperating application servers, all of the boxes report
and media; that path can be switched by any network &l changes to the graph of signaling channels and boxes,
ement it goes through, using stricly local manipulationgind all changes to the links within the boxes, to a central
As explained in Section |, compositional media conmedia-control module [6]. The media-control module
trol is often needed when different administrative domaintains an explicit graph of the media state; this graph
mains, each with their own application servers, interofias the same information as graphs like Figure 3. Based
erate. In IP-based telecommunications (“voice-over-IP@n the current graph, the module computes what the
or “VoIP”) there are many administrative domains, buinedia state should be and acts as a central controller
there are almost no instances in which these domaii#sachieve it.
interoperate directly. Rather, all VolP domains interop- This approach has two obvious deficiencies: (1) the
erate with the circuit-switched network, so that the VolRentral computation is a performance bottleneck, and
domains only interoperate with each other through tH@&) the approach does nothing to coordinate the actions
circuit-switched network! A telephone call from oneof servers that are administratively independent. Less
VolP domain to another may have separate signaling anlvious but also important is a third deficiency: (3) codec
media paths in each VoIP domain, but those paths withoice is managed in aad hoc manner that does not
join where the call passes through the circuit-switcheglarantee an optimal result.
network. Clearly compositional media control will be Despite these deficiencies, our first approach was
needed for VOIP to reach its full potential. successful enough to support compositional development
The problem of feature interaction in telecommuniand deployment of a feature-rich, nation-wide, consumer
cation systems is well known [5]. Controlling media isvoice-over-IP service [3].
one of the things that features do, and affecting the sameThe solution reported in this paper, first presented

A. Research on media control

19

in [16], is different in almost every detail. The mediaa channel has been opened, an agent can send new
control protocol has been improved to support optimalescribeor selectsignals at any time. The signals that
codec choice and easier composition. The API has bemiodify media flow in one direction are completely
refined and formally specified. Most important of allindependent of the signals that pertain to media flow
we have discovered a way to implement compositional the other direction. Our protocol can be described as
media control in a distributed, rather than centralizeijempotentbecausalescribeand selectsignals provide
fashion. And we have taken significant steps towampdated information without changing the fundamental
verifying our implementation. state, which is why they can be so unconstrained.
Today most IP-based media applications are beingin terms of both programming complexity and per-
built using SIP [7], [14]. SIP was designed for comformance, there is a great difference between these
munication between endpoints, with little or no logicatwo protocol designs. In our protocol, if an endpoint
processing in the network between them. This anthreeds to modify a media channel, it simply sends a
compositional design philosophy was typical in the earlyew describe immediately. When the other endpoint
days of the Internet. The problem for industry today igeceives the descriptor, it can send a corresponskfect
that prospects and plans for IP media have moved beyadntmediately.
what was envisioned in those days. As a result, vendorsin SIP, on the other hand, initiating a media change
are finding it increasingly difficult to deploy services an¢an be arduous. First the endpoint must wait for any
ensure interoperation of system components. ongoing transaction that it knows about to complete.
In an attempt to bridge the gap, a document ONext the initiator sends arnvite signal. If it next
best current practices for SIP [13] explains how a Slfeceives a correspondirsyiccessit can sendack and be
application server, acting as an intermediary, can contiighished. If it receives ainvite, however, it has detected a
the media streams of endpoints. However, the documegte. The initiator must receive and acknowleéigjkire,
does not have any mention of the problem of composjvait for some period, check that there is no ongoing
tion. All of the examples assume that the server beingansaction, and start over.
discussed is the only server in the signaling path. All of The second difference concerns codec choice. For
the signaling techniques are presented only as ordeglydec choice, SIP uses reegotiation model. To open
scenarios in which everything proceeds in the best waymedia channel or modify an existing one, an endpoint

with no events occurring at inconvenient times. sends in itsinvite signal anoffer containing a set of
In the next section, we compare SIP to our protoc@ossible codecs that it can handle. The responder sends
with respect to some of the relevant criteria. in its successsignal ananswerthat is a subset of the
offer codecs, all of which the responder can handle.
B. Protocol comparison Henceforth any of the codecs in the answer subset can

First we compare our protocol and SIP using ahe used.
end-to-end perspective. From this perspective, mediaOur protocol decouples codec choice in the two di-
channels are opened, closed, and modified only by thégctions, as there is no technical necessity to use the
endpoints. There are three major differences between gfime codec in both directions. In each direction, one
protocols. endpoint sends a set of possible choices in a descriptor,
The first difference concerns basic synchronizatioand the other end chooses one in a selector. This has the
With respect to basic synchronization, the design @fdvantage of guaranteeing that, once an endpoint has
SIP was based on HTTP, and is therefomnsactional received a selector, it knows exactly which codec it is
When SIP signals travel in unreliable UDP datagramgxpected to interpret.
which is allowed but not recommended, SIP agents useln our protocol, a descriptor is@nilateral description
the transactional structure to recover from lost signalsof an endpoint. In SIP, an answer isedative description
In SIP, a media channel is opened or modified byf an endpoint, i.e., a description of one endpoint with
a three-signal transaction composed of iavite from respect to (in negotiation with) another. The decision
an endpoint, ssuccessrom the other end, and amck to make a protocol transactional or idempotent, and the
from the initiator. Such an invite transaction cannogdecision to choose codecs by negotiation or unilaterally,
overlap with any other invite transaction on the samare not independent. Negotiation requires a transaction,
signaling path. If a race between two invite transactiorvhile unilateral codec choice does not.
is detected, both fail immediately. The initiator of each Negotiation takes a toll on performance, because the
failed invite is supposed to wait for a randomly chosemlescription of the responder to the initiator (in an an-
period and then retry. swer) must follow the description of the initiator to the
Our protocol is not transactional. It depends on amesponder (in an offer). With unilateral codec choice,
underlying mechanism such as TCP for reliability. Oncdescriptors in both directions can travel concurrently, and

20

selectors in both directions can travel concurrently. Thisecause they are relative, and offers are not supposed
is illustrated by Figure 13. When we consider the case be re-used. Hence there is additional delay while the
of application servers, we will see that negotiation haserver solicits fresh information.
additional costs in increased latency and programmingFigure 14 shows a SIP solution to the same control
complexity. problem as in Figure 13. Flowlinks in both servers solicit
The third difference between our protocol and Slitesh offers. When each receives its solicited offer in
concerns media bundling. We consider every tunnal successsignal, it forwards it in aninvite, because
within a signaling path, controlling one media channethe signaling channel on the server's other side is in a
to be completely independent of every other tunnel. Eaclifferent state.
SIP signal for controlling media, in contrast, refers to all In this scenario the twanvites are in a race, which
media channels of the path simultaneously. It containseach flowlink knows as soon as it receivesimrite after
list with an entry for each potential media channel, ssending aninvite. Because both transactions fail, both
that a list entry has the same purpose as a tunnel. servers send dummy answers on their other sides to finish
SIP’s media bundling makes it more difficult to pro-off the related transactions. Then there is a random delay
gram an application server that splits or joins medit allow both servers to clean up their failed transactions,
channels controlled by a signaling path, such as a colladnd one server (here the PBX) to retry its transaction.
orative control server in Figure 8. Using SIP, the servéfter this delay PC retries its entire operation, this time
must reconstruct every media signal that passes throumiccessfully. Thus what the PBX initiates during the
it, because the bundles are different on each side. delay is the mirror image of what PC does after the
Another problem with media bundling is that itdelay, and is actually redundant.
increases the probability of race conditions between Using the same units as Section VIII-C, the latency
transactions, with their significant performance penaltgf this solution is
Because of media bundling, a transaction to control a
video channel contends with a transaction to control an

audio channel on the same signaling path. If the channglfare 4 is a random variable with expected value 3
were controlled by signals in separate tunnels, as in 0ik:onds. With the same time estimates as before, this
protocol, this contention could not occur. ~ comes to 3560 ms. This compares unfavorably to the
Sometimes use of our protocol will entail sending og ms |atency of Figure 13 for three reasons: (1) there
several signals simultaneously on the same signalifigexira delay to solicit a fresh offer rather than using a
path, for example to open audio and video channelsched descriptoef+2c); (2) there is extra delay to fail
smultangously. As an optimization, these signals can bgq retry because of contenti8n(-4c+d); (3) there is
bundled into one packet. _ extra delay to describe each end to the other sequentially
This completes the comparison from an end-to-endiner than in parallel3f + 2c). The situation causing
perspectlve. Now we con3|der the funct_lons of appllcqﬂ»e|ay (2) is relatively rare, but delays (1) and (3) occur
tion servers. An application server running an opensiQfnenever media is controlled by an application server.
closeslot, or holdslot is acting as an endpoint, SO {ys, in the common situation, the comparison is 378
is really the flowlink case that concerns us. Typicghs versus 128 ms.
behavior of flowlinks with our protocol is illustrated by Despite the difficulties presented by SIP, we are cur-

Figure 13. rently working on implementing the formal specification

Using SIP, if a box in the middle of a signaling path, s|p, Even if it is not used in current applications,
wishes to funptlon as a new fllowllnk and create medige implementation in this paper is a precursor to im-
flow between its slots, it must first send to one end of thgementing the specification with less-suitable protocols,

path a signal soliciting a fresh offer. This takes the forrg,q hopefully an inspiration for future designs.
of an invite with no offer in it. The endpoint responds

with successontaining an offer (instead of an answer,
which is what asuccessignal usually contains). When
the other endpoint receives this signal, it responds with Most Internet applications are not designed composi-
an ack signal containing an answer (instead of nothingionally. Yet if we listen to the press releases, we have
which is what anack usually contains) [13]. expectations that Internet services will work together

This variation causes yet another increase in prograsynergistically, or at least interoperate without breaking
ming complexity. It has greater latency than our protoc@ach other. To meet these expectations of the public, we
for yet another reason, which is that our unilaterdiave to stop thinking of each application server as the
descriptors can be cached and re-used by the boxemter of its own universe, and start thinking of each
that receive them. In SIP, answers can never be re-ussplication server as a member of ath hocteam.

10n+11c+d

X. COMPOSITIONAL DESIGN PRINCIPLES

21

A PBX PC C
invite(solicit) invite(solicit)
invite(offerA) invite(offerC)
fail fail
ack(dummyAnswer) ack(dummyAnswer)

delay
invite(solicit)
success(offerC)
invite(offerC)
invite(offerC)
success(answerA)

ack(answerA)

%

%

Fig. 14. Behavior of a SIP solution when the PBX and PC change state concurrently.

Our solution to compositional media control hag\. Piecewise protocol
several characteristics that might be useful in making
other protocols and application programs friendlier tPa
composition.

The protocol is designed to be used inpeecewise
shion, so that there is no externally observable differ-
ence between a tunnel and two tunnels connected by a
module acting transparently (Section IlI-A). It should be

22

obvious that this facilitates the use of application serverany of its slots. Because of this limited scope, paths are
Because SIP is not designed for piecewise use, it is atraightforward formal objects, simple enough to reason
open problem how to build a SIP application server thatbout.

is truly transparent with respect to the protocol. At the same time, a path-based specification com-
pletely captures the requirements for compositional me-
dia control. It includes, whether explicitly or implicitly,

)) R user intentions, network topology, and feature priority.
Transactions are widely used in distributed program- |, section I11-A we characterized compositional media
ming, and they are very successful for client/serventrol as needing to give some behavioral guarantees
interactions. The comparison in the previous sectiqy each box, even though the behavior of the overall
shows, however, that real-time communication is NQystem can be affected by every box. What guarantees
an asymmetrical client/server application, but something, e give to each box, particularly boxes in application
fundamentally different. In real-time communications thgaryers? We can answer this question in terms of paths.
ends of a signaling path are symmetric, and either endjf 5 phox in an application server owns a slot, then the
(or a server in the middle) can produce a stimulus thghy has the power to treat that slot as the endpoint of

reverberates throughout the path. . its signaling path (by not assigning it to a flowlink). If
We have designed our protocol to be idempotefie phox chooses to make it a path endpoint, then the
and unilateral rather than transactional and based giher end of the signaling path may be a box in another
negotiation. The comparison in Section IX-B suggesigplication server, or it may be a media endpoint. If the
that idempotent signaling and unilateral description may\ner end of the signaling path is a media endpoint, then
be superior to transactions and negotiation for contrgle pox is guaranteed that the media endpoint has no
of _real—time communications. They are faster and reredia flow associated with that signaling path.
quire less prp_tocol state, both of which are important ot surprisingly, a box gets no “positive” guarantees,
in a compositional context. There may also be othgg guarantees that it has the power to allow media flow.

distributed applications where these opposing desigfedia flow is always allowed by a consensus of boxes.
principles should be compared before making a final

choice between them.

B. Idempotent and unilateral protocol

E. Implementation design

The last principle is the most difficult to general-
ize. Our flowlink implementation went through many

State-based, declarative, goal-oriented programmifgrations, because the earlier versions were extremely
primitives are much more abstract for this purpose thaifficult to understand and debug. The key to successful
event-oriented primitives would be. The application’sode design was the combination of cached descriptors,
current goal for a media channel can be independeht concept ofdescribed(which says that a slot has a
of the actual state of the media channel, for exampifpod cached descriptor), and the conceptpfto-date
because there is a timeout in the application, or becaygghich says that the good cached descriptor from the
the environment changes the state of the channel dther side of the flowlink has been sent to this slot).
some unexpected way. Thus there is a wide variety Fhese concepts are likely to be useful for working with
event sequences that might be needed to match the gjgifer idempotent, unilateral protocols.
states in a flowlink, and these are best determined by
the implementation of the programming primitives. Th|e_.

: : . Application to mobilit
same observations might be true of other programming ppiicad "y o
tasks. As an example of another application where these

principles might be applied, consider the problem of

o providing persistent IP connections to mobile endpoints.

D. Path specification The difficult trade-off affecting this much-studied prob-
Attaching temporal-logic specifications to signalindem concerns the number of special-purpose mobile
paths, where the interior of each path is an arbitraryeuters that know the current location of a mobile host.
length sequence of identical elements (flowlinks), wasl there are many such routers, the path of a packet
breakthrough in our understanding of this problem. to a mobile host can be quite direct. Unfortunately,
A path is a small part of the system, measured in bothany routers in many different subnets are required,
space and time. In space, it is one of a large numband they must all have access to location information.
of signaling paths that can exist, even among a sméflthere is only one locating router for each mobile host,
set of network nodes. In time, it is a narrow windowhowever, mobile routers need not be everywhere, and
during which no box on the path changes the goal f@ach location update is easy. Unfortunately, if the unique

C. Goal-oriented programming

locating router for a host is far from the sender and the

23

ACKNOWLEDGMENTS

current location of the host, the path of each packet canpgichael Jackson made important contributions to the

be triangular and very long [12].

earlier phases of our work on media control. We have

In addition to this unresolved trade-off, all propose@enefited greatly from ongoing discussions with our col-
solutions to this problem seem to favor—if not require—pagues Greg Bond, Hal Purdy, and Tom Smith. Laurie

isolation. It can be difficult to see how they wouldpjjion and the referees made many helpful comments on
accommodate multiple layers of mobility, or composge presentation.

with a variety of other applications.

In the cases where signaling and data streams are
separable, and where other applications operate directh/]
only on the signals, it might be possible to find a
better solution that is similar to compositional media[2]
control. Unique locating routers could be interspersed
on signaling paths with servers for other applicationsgg
Triangular routing of data packets would be avoided by
signaling/data separation, and data packets could travel
between endpoints by the most direct routes.

XI. CONCLUSION
[4]

This paper has defined the problem of compositional
control of IP media, and explained its importance in
providing desired network services. We have presenteg,
a comprehensive solution in the form of an architecture-
independent descriptive model, a set of high-level pro-
gramming primitives, a formal specification of their g
compositional semantics, a signaling protocol, an imple-
mentation, and partial verification of correctness. The
performance of the implementation compares favorably
to the performance of the best comparable implemenr7]
tation in SIP. The overall solution illustrates several
principles that may be useful for making other networkedg;
applications more compositional.

Although our implementation simulates IP media con.°]
trol, it cannot be tested with live IP media. The reason
is that use of IP media in practical services requires
a great deal of hardware and software infrastructur?
Although we have developed such an infrastructure in
our laboratory and are accustomed to using it [3], [4]11]
it is all based on SIP rather than the protocol defined in
Section VI. [12]

Despite this limitation, the architecture-independent
descriptive model, set of high-level programming prim-
itives, and formal specification of their compositiona; 3,
semantics are all protocol-independent. We are currently
working on implementing the specification in SIP.

Work on the protocol, implementation, and verifica 4)
tion have not been wasted, despite the fact that they
cannot be used in current applications. Without them,
we would have no idea where to begin with SIP. Thgs,
protocol and implementation provide compositionality in
a straightforward, relatively comprehensible form that il-
lustrates some potentially useful design principles. Theyg
are patterns for thinking about how the Internet applica-
tion environment can be made more compositional.

REFERENCES

3GPP. Service requirements for the IP multimedia core network
subsystem. 3GPP Technical Specification 23.228 Stage 2.
National Emergency Number Association. NENA IP-capable
Public Safety Access Point features and capabilities standard.
Document 58-001, 2005.

Gregory W. Bond, Eric Cheung, Healfdene H. Goguen, Kar-
rie J. Hanson, Don Henderson, Gerald M. Karam, K. Hal
Purdy, Thomas M. Smith, and Pamela Zave. Experience
with component-based development of a telecommunication ser-
vice. In Proceedings of the Eighth International Symposium
on Component-Based Software Engineerimpjges 298-305.
Springer-Verlag LNCS 3489, May 2005.

Gregory W. Bond, Eric Cheung, K. Hal Purdy, Pamela Zave,
and J. Christopher Ramming. An open architecture for next-
generation telecommunication serviceACM Transactions on
Internet Technology4(1):83—123, February 2004.

E. Jane Cameron, Nancy D. Griffeth, Yow-Jian Lin, Margaret E.
Nilson, William K. Schnure, and Hugo Velthuijsen. A feature-
interaction benchmark for IN and beyondEEE Communica-
tions 31(3):64-69, March 1993.

] Eric Cheung, Michael Jackson, and Pamela Zave. Distributed

media control for multimedia communications services. In
Proceedings of the 2002 IEEE International Conference on
Communications: Symposium on Multimedia and VolP—Services
and TechnologieSEEE Communications Society, 2002.

M. Handley, H. Schulzrinne, E. Schooler, and J. Rosenberg.
SIP: Session Initiation Protocol. IETF Network Working Group
Request for Comments 2543, 1999.

Gerard J. Holzmann. The Spin Model Checker: Primer and
Reference ManualAddison-Wesley, 2004.

Michael Jackson and Pamela Zave. Distributed Feature Com-
position: A virtual architecture for telecommunications services.
IEEE Transactions on Software Engineerin2¢(10):831-847,
October 1998.

JSR 309: Java media server control. Java Commu-
nity Process, http:// jcp.org/ aboutJava/
communityprocess/ edr/ jsr309

Verena Kahmann, Jens Brandt, and Lars Wolf. Collaborative
streaming in hetergeneous and dynamic scena@@snmunica-
tions of the ACM49(11):58-63, November 2006.

Jayanth Mysore and Vaduvur Bharghavan. A new multicasting-
based architecture for Internet host mobility. Pmoceedings of
the Third Annual ACM/IEEE International conference on Mobile
Computing and NetworkingACM, 1997.

J. Rosenberg, J. Peterson, H. Schulzrinne, and G. Camarillo.
Best current practices for third party call control in the Session
Initiation Protocol (SIP). IETF Network Working Group Request
for Comments 3725, 2004.

J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Pe-
terson, R. Sparks, M. Handley, and E. Schooler. SIP: Session
Initiation Protocol. IETF Network Working Group Request for
Comments 3261, 2002.

Pamela Zave. Audio feature interactions in voice-over-IP. In
Proceedings of the First International Conference on Principles,
Systems and Applicatons of IP Telecommunicatipages 67—78.
ACM SIGCOMM, 2007.

Pamela Zave and Eric Cheung. Compositional control of IP
media. InProceedings of the Second Conference on Future
Networking TechnologieACM SIGCOMM, 2006.

