Experience with Component-Based Development
of a Telecommunication Service

Gregory W. Bond, Eric Cheung, Healfdene H. Goguen, Karrie J. Hanson,
Don Henderson, Gerald M. Karam, K. Hal Purdy, Thomas M. Smith,
and Pamela Zave

AT&T Laboratories—Research, Florham Park, NJ 07932, USA

bond, cheung,hhg,karrie,don,karam,khp,tsmith,pamela@research.att.com

Abstract. AT&T CallVantage®™ service is a consumer broadband voice-
over-Internet-protocol (VoIP) service. Its feature server has a component-
based architecture. This paper is a brief report on our experience with
building and deploying advanced telecommunication features using component-
based technology.

1 Introduction

Distributed Feature Composition (DFC) is a component-based software architec-
ture for the development of telecommunication services [4]. In AT&T Research
we have built an Internet-based implementation of DFC [2]. We have also built
the iStudio platform for constructing Web services with an emphasis on reuse [7],
and integrated the two service platforms as an application server called V+Plus.

AT&T CallVantageS M service is a consumer broadband voice-over-Internet-
protocol (VoIP) service whose advanced features are built and deployed on
V+Plus. The service architecture uses the well-known VoIP protocol SIP [5].
V+Plus functions within the service architecture as a SIP application server.

The AT&T CallVantageS M service was launched in March 2004, and is now
available in most of the United States. It has received a great deal of favorable
press coverage, particularly for its advanced features and voice quality. It has
merited a VoIP Service Provider Award from Internet Telephony magazine, and
PC Magazine’s Editors’ Choice Award.

This paper is a brief overview of our experience with specifying, developing,
deploying, and maintaining the service’s advanced features, beginning in May
2003. It focuses on the use of components in this software.

2 Components in DFC

In telecommunication software, a feature is an increment of functionality added
to the basic communication capability. Features are both the work units for soft-
ware development and the concepts through which a telecommunication service
is explained to its users.



answer inter—
confirm| face

‘ ' inter—| locate answer inter—
face me confirm| face

answer inter—
confirm| Jace

|
" - 5

Fig. 1. The Locate Me feature is implemented with two box types.

The telecommunication world has long acknowledged the difficulty and im-
portance of being able to add, delete, and modify the features of a complex
telecommunication service. This calls for a style of modularity in which the
modules are features. It is also well-understood that features have many inter-
actions, and that managing these interactions is critical to reliability and user
satisfaction. This calls for structured composition of feature modules, so that
their interactions can be predicted and controlled.

The DFC architecture was designed to provide feature modularity and struc-
tured feature composition. It is an adaptation of the idea of pipes and filters [6]
to the application domain of telecommunications.

In DFC, a request for service is satisfied by a dynamically assembled graph
of bozes and internal calls. A box (filter) is a concurrent process implementing
interface or feature functions. An internal call (pipe) is a featureless, point-to-
point connection containing a two-way signaling channel and any number of
media channels.

In the context of this paper, a DFC internal call is like a plain, old-fashioned
telephone call. So the simplest useful graph has two interface boxes, each repre-
senting a telephone or other device, connected by one DFC internal call.

More typically, many features apply to each request for service. When fea-
tures apply, the dynamically assembled graph contains feature boxes implement-
ing these features. Figure 1 shows a fragment of such a graph. Note that a typical
connection path between two interface boxes is a chain containing many feature
boxes and internal calls.

When a feature box is inactive it behaves transparently. For a feature box
between two internal calls, transparent behavior consists simply of connecting
their media channels and relaying signals between them. When a feature box is
active, on the other hand, it has the autonomy and power to affect communica-
tion in any way required. It can place, receive, and tear down internal calls. It
can manipulate media channels. It can also absorb, generate, or alter signals as
well as propagating them transparently.



The formal definition of DFC [11] falls into three parts. The protocol governs
how internal calls, signaling channels, and media channels are established and
used. The data model partitions persistent data, which can be read and written
by boxes. The routing algorithm controls how boxes of various types are assem-
bled dynamically into connection graphs. The routing algorithm is invoked each
time a box places an internal call, and it selects the type of box that will be
instantiated or located to receive the call.

The routing algorithm uses data in two categories. Subscriptions indicate
which addresses (telephone numbers) subscribe to which features. Precedence
governs the order of features boxes along paths within a graph, and is the primary
mechanism for managing feature interactions.

The DFC protocol and routing algorithm are designed so that each feature is
optional and each feature box is context-independent—it does not know or need
to know which other feature boxes are present. This is the fundamental source
of modularity in a pipes-and-filters architecture.

To clarify terminology, a box is a dynamically created and assembled compo-
nent in the architecture. The box’s type corresponds to a program of which the
box is an instantiation.

3 How DFC boxes are used in the service

3.1 Boxes as identified features

Considering all its versions, AT&T CallVantageSM service has 25 features that
have been identified and named, either externally (to users) or internally (as
units of software development).

Of the 25 features, five (Caller Identification, Caller Identification Blocking,
Call Forwarding, Call Waiting, and Three-Way Calling) are basic telecommuni-
cation features implemented in a VoIP switch. Two (International Billing, Inter-
national Call Screening) are implemented in routing components. Three (Phone
Book, Simple Reach Numbers, Voicemail eFeatures) are implemented wholly
in the Web and data facilities of V+Plus. The remaining 15 are implemented,
wholly or in part, by DFC boxes as shown in the table.

Most commonly, there is a one-to-one correspondence between telecommuni-
cation features and DFC box types. Occasionally a box type implements more
than one feature. For example, a voice portal box implements the Personal Call
Manager feature. The same box type also implements the Speed Dial function,
which is identified to users as a feature.

Also, some features must be implemented using boxes of more than one type.
A good example is Locate Me, as shown in Figure 1. An instance of the locate
me box type can place internal calls—in parallel—to several possible telephones
where its subscriber might be located. When one of these attempts succeeds,
locate me aborts the others and connects the answered telephone with the caller.



DFC Box Type Features Implemented Other Purpose

answer confirm Locate Me

blind transfer Add Callers

call blocking Call Blocking

call log Call Log

click-to-dial Click-to-Dial, Record and Send

conference manager Personal Conferencing

de-identification adaptor
do not disturb Do Not Disturb

identification adaptor
iStudio interface adaptor
join Personal Conferencing

locate me Locate Me

mid-call move Switch Phones®™

mid-call offer Switch Phones®™

phonebook name Phonebook Name

rendezvous Add Callers

remote identification Personal Call Manager

safe forwarding number Safe Forwarding Number

send to voicemail Send to Voicemail

SIP interface adaptor
ten-way calling Add Callers

tone generator adaptor
voice mail Voice Mail

voice portal Speed Dial, Personal Call Manager

voice user interface adaptor
Voice XML interface adaptor

An answer confirm box performs another function of the Locate Me feature.
If the callee telephone is answered, it prompts for a confirmation that the phone
has been answered by the person requested by the caller; if it does not receive
a confirming response, it does not propagate a success signal upstream to the
locate me box. There is an instance of answer confirm for each parallel attempt,
which is why it must be separated from the locate me box.

The answer confirm function is particularly valuable when one of the tele-
phones is part of a cellular network with its own Voice Mail feature. Without
answer confirm, every time the cellphone is unavailable, the call to it will be
“answered” by cellphone Voice Mail. This “answer” will probably precede all
other answers, aborting the other attempts and subverting the purpose of locate
me.

3.2 Boxes as reusable building blocks

From another perspective, DFC boxes are reusable building blocks for building
telecommunication services. There is reuse at several levels.



At the highest level, we reused whole features from prototype systems we have
built in the past. Some required minor modifications to fit into the environment
of the new service.

At a lower level, the design of a feature is sometimes influenced by the ex-
istence of box types that can be used as generic components to implement it.
This is the primary reason why Add Callers—a complex feature that allows the
spontaneous formation of conferences of up to ten people—is implemented using
three DFC box types.

At a lower level yet, programs are reused to create new box types. We have a
“redirect on failure” box program that is used, with modifications for failure type
and redirection address, to create the wvoice mail and safe forwarding number
box types. We have an “address translation” box program that is used, with
parameters for regular expression to be matched and string to be substituted,
to create any box type that modifies the addresses (telephone numbers) in the
signals that initiate internal calls.

At the lowest level, our programming language for boxes [3] allows us to
identify and package program fragments for reuse in other box programs. We
have amassed a significant collection of such fragments.

3.3 Boxes as adaptors

The V+Plus application server operates in an environment with many other
hardware components such as VoIP switches, gateways, routers, telephone adap-
tors, and media servers. Despite the fact that SIP is a standardized protocol, all
VoIP technology is immature, and integration problems are commonplace.

Given the fact that a DFC box is a filter in a pipes-and-filters architecture, it
is not surprising that we find them useful as adaptors. The most important adap-
tors are interface box types. Interface boxes form the periphery of DFC graphs.
A SIP interface box translates between SIP and the DFC protocol, which is bet-
ter suited for component composition than SIP. An iStudio interface box allows
Web services to launch telecommunication activities (see Sections 3.4 and 4). A
Voice XML interface allows feature boxes to place calls to media servers capable
of running VoiceXML scripts that specify interactive voice-response dialogues.

We put code in interface boxes and other adaptors to solve integration prob-
lems as they arise. Modularity is particularly beneficial in this context, because
the adaptors represent short-term or localized decisions that we would not wish
to embed deeply in feature code.

For example, the identification and de-identification box types bridge a con-
ceptual gap between DFC and the architecture of the service as a whole. In
DFC routing decisions are based strictly on addresses. In the architecture of
the service as a whole, routing decisions can also depend on which hardware
component originates the routing request. Fortunately, well-placed adaptors can
convert from one kind of state to the other.

A tone generator box is another kind of adaptor. For the most part, gen-
eration of “progress” tones such as busytone and ringback is the responsibility
of hardware components independent of V+Plus. However, deficiencies in SIP



prevent these components from getting the necessary signals under all circum-
stances. When SIP cannot carry the necessary signals, a tone generator box
(with the help of a media server) generates the tone and inserts it into the voice
channel.

3.4 Boxes as interfaces to Web services

Persistent data is the interface between telecommunication and Web services, as
it can be read and written by both. For example, call log boxes record history
that can be accessed by subscribers via the Web. A phonebook name box looks up
the name corresponding to a calling telephone number in the callee’s phonebook,
and substitutes the name for the number in Caller Identification.

Sometimes the interaction between the two aspects of the service is more ac-
tive. The Click-to-Dial feature is activated by a Web service when a subscriber
clicks on a telephone number. The Record and Send feature calls a list of tele-
phone numbers, delivering a prerecorded message to each; it is activated from
the Web and implemented by repeated activations of Click-to-Dial.

4 Component-based development of data views in the
service

Both Web browsers and telephones are end-user interfaces for AT&T CallVantage ™
service. Through them, users can enable or disable features, change feature set-
tings, or access personal content such as voicemail messages. The iStudio [7]
architecture offers a component-based implementation of these interfaces that is
complementary to boxes in the DFC architecture.

Similar to Apache Struts [1] in philosophy, iStudio provides us with a mech-
anism for supporting software objects that compartmentalize the data for fea-
tures such as Call Log, Voice Mail, and Locate Me. Each component manages
the database tables and operations for its own feature.

iStudio accesses the database on behalf of all other software in V+Plus. It
produces HTML for visual Web pages, VoiceXML scripts for interactive voice-
response dialogues, and data values for use by DFC boxes. The generators of
these data views all share the feature-specific software objects mentioned above.

The Click-to-Dial and Record and Send features are activated by Web ser-
vices. A user request for one of these features is delivered from the Web ap-
plication to an iStudio interface box that places a DFC internal call to begin
assembly of a graph of feature boxes.

5 History and evaluation of software development with
V+Plus

We delivered the first 11 features to a test organization two months from the
inception of the project. It was possible to fit requirements specification, design,
and implementation into this extremely short period only because of much reuse.



Reuse of code, as described in Section 3.2, is obviously important. Equally
important is the reuse of domain knowledge based on the DFC architecture.

The DFC architecture constrains how features can interact, and is therefore a
foundation for theories of feature interaction. Such theories predict how features
can interact, justify how they should interact, and provide design constraints
proven to satisfy correctness in these terms.

These theories are still immature (see [9, 8,10] for examples). A rudimentary
understanding is better than none at all, however, and was extremely helpful to
us in predicting feature interactions and in deciding how to manage them. For
example, all of Locate Me, Do Not Disturb, Voice Mail, Call Blocking, Send to
Voicemail, and Safe Forwarding Number make decisions concerning the disposi-
tion of incoming calls. They must interact so that exactly the right features, in
the right order, are activated in each situation.

A few feature interactions compromise modularity to the extent that one
feature must be programmed with another feature in mind. For example, a voice
mail box generates a special signal so that a call log box knows whether or not
a caller recorded a message. This is necessary because the basic DFC proto-
col does not distinguish these cases. It is always possible, however, to program
cooperating feature boxes so that neither breaks if the other is absent.

The implementation of AT&T CallVantage®™ features is not a trivial use of
components. In the first release of the service a connection path between two sub-
scribers could contain 20 DFC boxes, even without any forwarding (forwarding
to other subscribers would increase the number of boxes by seven per forward).

The first release of the service was deployed in a consumer trial which began
October 2003. In preparation for the first generally available release in March
2004, we removed a few features from the trial version and made a major change
in the media handling. Feature removal was easy due to feature modularity in
both DFC and iStudio. The need to change media handling is typical of a rapidly
evolving technology, in which the available resources and capabilities can change
frequently. The software modification was accomplished quickly, in part because
the DFC architecture maintains a separation of concerns between the service
layer (features) and the network layer (resources).

Subsequent software development has entailed new feature development, main-
tenance, and performance optimization. As expected, adding new features to the
service is easy. There have been relatively few bugs in feature code.

Most maintenance issues are system-integration problems, arising from the
immaturity of VoIP technology. Unfortunately they have arisen frequently and
will continue to arise for some time to come; at this point almost every new
function added to the service exposes new incompatibilities among the hardware
components of the service architecture.

It is inevitable that the modularity of DFC will exact a performance penalty.
Our measurements indicate that the penalty is small compared to VoIP perfor-
mance issues that are independent of feature modularity.

We are working toward accurate performance assessments. Meaningful com-
parisons between implementation alternatives are difficult to obtain, however,



because they require multiple implementations of equivalent feature sets, not to
mention adequate time in a laboratory full of expensive test equipment.

6 Conclusion

V+Plus was originally built as a research prototype. Nevertheless, it continues
to provide the advanced features of a nationwide consumer telecommunication
service built on rapidly evolving technology.

Our experience demonstrates the feasibility and value of a component-based
architecture in the area of telecommunications. The experience is particularly
interesting because the component model is based on pipes and filters rather than
the more common object-oriented programming. Object-oriented programming
is also present—most of our infrastructure code is written in Java—but at a
lower level of abstraction than the components discussed here.

In the community of researchers concerned with feature interactions and
telecommunication software, the DFC component model has been considered
interesting but radical and impractical. Our experience demonstrates that it
is adoptable and completely practical. None of us would dare to work with a
technology as complex and volatile as VoIP without this kind of support for
evolution and adaptation.

References

1. Apache Struts. http://struts.apache.org.

2. G. W. Bond, E. Cheung, K. H. Purdy, P. Zave, and J. C. Ramming. An open
architecture for next-generation telecommunication services. ACM Transactions
on Internet Technology, 4(1):83-123, February 2004.

3. G. W. Bond and H. H. Goguen. ECharts: Balancing design and implementation.
In Proceedings of the Sizth IASTED International Conference on Software Engi-
neering and Applications, pages 149-155. ACTA Press, 2002.

4. M. Jackson and P. Zave. Distributed Feature Composition: A virtual architec-
ture for telecommunications services. IEEE Transactions on Software Engineering,
24(10):831-847, October 1998.

5. J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks,
M. Handley, and E. Schooler. SIP: Session Initiation Protocol. IETF Network
Working Group Request for Comments 3261, 2002.

6. M. Shaw and D. Garlan. Software Architecture. Prentice-Hall, 1996.

7. A. H. Skarra, K. J. Hanson, G. M. Karam, and J. S. Elliott. The iStudio envi-
ronment: An experience report. In Proceedings of the International Workshop on
XML Technologies and Software Engineering, May 2001.

8. P. Zave. An experiment in feature engineering. In A. Mclver and C. Morgan,
editors, Programming Methodology, pages 353-377. Springer-Verlag, 2003.

9. P. Zave. Address translation in telecommunication features. ACM Transactions
on Software Engineering and Methodology, 13(1):1-36, January 2004.

10. P. Zave, H. H. Goguen, and T. M. Smith. Component coordination: A telecom-
munication case study. Computer Networks, 45(5):645—664, August 2004.

11. P. Zave and M. Jackson. The DFC Manual. AT&T, 2001. Updated as needed.
Available from http://wuw.research.att.com/projects/dfc.



