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Partial specifications written in many different specification languages can be composed if they

are all given semantm in the same domain, or alternatively, all translated into a common style

of predicate logic The common semantic domain must be very general, the particular semantics

assigned to each specification language must be conducive to composition, and there must be

some means of communication that enables specifications to build on one another. The criteria

for success are that a wide variety of specification languages should be accommodated, there

should be no restrictions on where boundaries between languages can be placed, and intuitive

expectations of the specifier should be met.
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1. INTRODUCTION

Many notational styles and many formal languages have been proposed for

specification. There are well-known specification paradigms—families of re-

lated languages—such as process algebras, temporal and nontemporal logics,

algebraic languages, state-based and set-theoretical languages, automata,

grammars, and type systems. There are languages in everyday use by soft-

ware developers, but usually considered too informal or too specialized for

purposes of formal specification, such as f[ow diagrams, decision tables or

trees, queuing networks, and Gantt charts. There are also programming

paradigms that, when applied in their purest form to carefully chosen prob-

lems, make good specification languages. Examples of these are functional
programming, logic programming, object-oriented programming, and

query/data-definition languages for database-management systems.
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There is a reason for much of this diversity. Each language offers a

different set of expressive capabilities, appropriate for specifying clearly and

concisely a different set of properties. Each language also offers a different

set of analytic capabilities, appropriate for rigorous reasoning about a differ-

ent set of properties.

This paper addresses the open question of how to compose partial specifica-

tions written in many different languages. An answer to this question would

make it possible for specifiers to construct multiparadigm specifications in

which each partial specification is written in the specialized language best

suited to expressing and analyzing the properties it is intended to describe.

The ability to compose partial specifications could also contribute to specifica-

tion reuse, simpler specification languages, better understanding of soft-

ware-development methods, and increased automation [34].

Our basic approach to composition is the straightforward one outlined by

Wing [31]: All specification languages are assigned semantics in the same

semantic domain, and the semantics of the composition of a set of partial

specifications is the set of specificands (members of the semantic domain)

that satisfies all of them. 1 A set of partial specifications is consistent if and

only if some specificand satisfies all of them.

Although the basic idea is simple, we have found that many details must be

worked out correctly for the idea to succeed. The common semantic domain

must be very general (Section 2). The particular semantics assigned to each

specification language must be conducive to composition with other lan-

guages (Section 3). And there must be some means of communication that,

without compromising the semantic framework, enables partial specifications

to build on one another (Section 4).

What constitutes success? Three criteria have been foremost in our minds:

(1) Composition should accommodate a wide variety of specification

paradigms and notational styles.

(2) It should be possible to compose partial specifications regardless of over-
laps or gaps in coverage, regardless of which paradigms they represent,

and regardless of where boundaries between languages are drawn. This

contrasts with many ad hoc techniques for composition, which rely on

strict assumptions about the languages used and the properties specified

in each. The most common example of the latter is the control/data

partition; it has been proposed in numerous variations, including recently

the LOTOS/Act One partnership [13].

(3) Intuitive expectations of a composition operator should be met. It should
not define as inconsistent sets of partial specifications that are intuitively

consistent and meaningful; it should not map intuitively interdependent

properties onto spuriously independent (and therefore noninterfering)

ones. It should not introduce implementation bias where none existed

before.

1 When translated into an assertlonal framework (see Section 2), this definition of composition

corresponds to con]unctlon—hence the title
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We believe that we have succeeded in reaching these goals, and offer the

examples in Section 5 as evidence.

Checking the mutual consistency of partial specifications must be a major

concern of any specifier using a multiparadigm approach. Although a serious

treatment of consistency checking is outside the scope of this paper, Section 6

presents our approach to it and explains why we believe it is a tractable

problem.

Section 7 surveys related work. Section 8 enumerates the limitations of

these results and outlines a program of furtlher research.

Although most of the limitations are simply topics for future research,

Section 8 includes one important characteristic of these results that will not

change. “Conjunction as composition” works because of the particular way we

assign meaning in the common semantic domain to each language. Although

we certainly claim to preserve the usefulness of each notation or style, we

cannot pretend to duplicate exactly every popular conception of what a

notation means, to translate every conceivable language feature, or (for those

languages whose semantics has already been formally defined) to produce a

completely equivalent formal semantics. We believe that these subtle seman-

tic changes and limitations will eventually lbe justified by the advantages of

compositional, multiparadigm specification. Much more experience than we

have now is needed before the argument willl become convincing, however.

2. THE SEMANTIC DOMAIN

2.1 Generality of the Domain

Each member of the semantic domain consists of two components. There is a

universe, possibly infinite and possibly empty, of distinct and identifiable

individuals. (Individuals are equal only to themselves. ) There is also a finite

set of predicates on individuals, representing properties of individuals and

relationships among individuals. Every predicate is defined on all possible

instantiation of its arguments by individua~ls in the universe.

The subject matter of a formal specification is a portion of the real world

that is controlled or supported by a computer system (and is sometimes a

computer system itself [15]). We have shown elsewhere [16] that this simple

semantic domain is sufficient for formalizing a wide variety of phenomena

found in the subject matter of formal specifications. It is also sufficient for

assigning meanings to a wide variety of specification languages. Three exam-

ples of common specification-language features should provide the necessary

intuition:

(1) The semantics of a primitive type in a specification language is simply a

unary predicate true only of individuals belonging to that type.

(2) The semantics of a structure is one or more predicates. For example, the

semantics of any container structure (set, queue, stack, etc.) may include

a predicate i-nernber( m, c) meaning that contained individual m is a
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member of container individual c. Other predicates will distinguish the

different types of container.

(3) Any kind of action is an individual. Actions can be atomic events, or they

can be nonatomic transactions and related to each other by inclusion.

Actions are also related to each other by a temporal ordering earzier( a ~,

a ~ ), which can be partial or total.

For simplicity of exposition, this paper has only examples in which actions

are atomic events and the temporal ordering is total.

2.2 The Semantics of Composition

The meaning of a partial specification, regardless of the language it is written

in, is a set of members (specificands) of the semantic domain. These members

of the semantic domain are said to satisfy the specification.

Consider, for example, a specification (such as an automaton) concerned

with sequences of atomic events, and consider members of the semantic

domain having event individuals in their universes and a total event order

earlier(el, ez ) in their predicate sets. Each member of the semantic domain is

an encoding of exactly one event sequence (or “trace” or “behavior”). If this

event sequence is in the set described by the automaton, then this member of

the semantic domain is one of the automaton’s specificands. Adding other

predicates and other types of individual to this member of the semantic

domain would produce a different specificand also satisfying the same specifi-

cation.

The meaning of the composition of a set of partial specifications is the set of

members of the semantic domain that satisfy all of the partial specifications.

The set of partial specifications is consistent if and only if this intersection of

specificand sets is nonempty.

2.3 The Role of Predicate Logic

The semantic domain is the set of standard models of one-sorted first-order

predicate logic with equality. This is a useful correspondence, because it is

difficult to talk directly about members of the semantic domain—they are

infinite and have little structure.

For explanatory purposes, instead of using specificand sets, we shall use

equivalent assertions in predicate logic. For the remainder of the paper,

(1) the semantics of a specification language is a function for translating

specifications in the language to assertions in predicate logic,

(2) the semantics of a particular specification is an assertion in predicate
logic,

(3) the semantics of the composition of a set of partial specifications is the
conjunction of their assertions, and

(4) a set of partial specifications is consistent if and only if the conjunction of

their assertions is satisfiable.
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The semantics of a specification is almost always a conjunction of subex-

pressions. For simplicity, we shall also refer to these subexpressions as

assertions.

3. THE SEMANTICS OF SPECIFICATION LANGUAGES

3.1 Simple Nontemporal Properties

We shall explain the translation of simple nontemporal properties into predi-

cate logic using the Z specification of Figure 1. This description of a state

space is adapted from Spivey’s tutorial example [27], and illustrates the

features of Z most commonly used for this purpose.

For each basic type, there is a unary preciicate identifying individuals of

that type. The basic types in our semantics include the basic types, EM-

PLOYEE and SALARY, listed explicitly in l?igure 1. We also consider pro-

jects to be individuals belonging to a basic type, because any schema (such as

Project) that declares state-space variables is defining a schema type consist-

ing of all bindings of values to variables in the schema; the project individu-

als are the members of this type. Finally, our semantics requires that

structures be individuals in their own right. Therefore, values of the variables

staff and payroll belong to the basic types SET-EMPLOYEE and SET-EM-

PLOYEE-SALARY-PAIR, respectively.

The meaning of Figure 1 includes an assertion that all basic types are

disjoint sets.

Each state-space variable such as leader translates into a predicate such

as lecder(m, p), meaning that employee m is the leader of project p. There is

always an assertion about such predicates, following the fixed pattern illus-

trated here2:

Vp(Project( p) * ~!m(leader(m, p) ~ EMPLOYEE(m))).

This asserts that every project has exactly one leader, which is also an

employee.

The corresponding assertion for the staff variable is:

Vp(Project (p ) * 3 !s(staff(s, p) // SET-EMPLOYEE( s))).

In our semantics for Z, the individuals that are members of any set are
related to the set individual through the standard predicate member( m, s),

meaning that individual m is a member of set individual s, Of course, there

must be an additional type constraint wherever member( m, s) is used, for

example:

VsVm(SET-EMPLOYEE(s ) ~ member( m, s) ~ EMPLOYEE(m)).

2 Following Kleene [ 19], * and = have the highest precedence, A and v have medium

precedence, and V, 3, and m have the lowest precedence. =!xp( x ) means that there exists a

unique x such that P(x).
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[EMPLOYEE, SALARY]

Project
r-

leader: EMPLOYEE

Fig. 1. The state space of a Z specification describ- stafl P EMPLOYEE
ing a corporation

The value of a

belonging to the

payroll: EMPLOYEE ++ SALARY

leader G staff

staff = dorn payroll

payroll variable is a relation, so it is a set with members

type EMPLOYEE-SALARY-PAIR. In our semantics for Z,

the individuals that are components of any pair are related to the pair

individual through the standard predicate pair-components( cl, Cz, r), mean-

ing that individuals c1 and C2, in that order, constitute the pair r. Of course,

there must be additional type constraints wherever pair-components( cl, Cz, r )

is used, for example:

VrVclVcz(EMPLOYEE-SAL~ Y-PMR( r ] ~ pair-components (cl, Cz, r] *

EMPLOYEE(CI ) /? &WIRY(cz )).

According to Figure 1, the payroll relation is a partial function. This trans-

lates to an additional constraint:

VpVy(Project( p) A payroll( y, p ) * partial- function( y)),

where

Y y( partial- function( y ) *

VrlVrzVcllVclzVczlVczz( member(rl, y) A member(rz, Y) A

pair-components( cll, C12, rl ‘) ~ pair-components (c21, c22, r2 ) *

(7-1 = rz) v (cll + Czl))).

Obviously total functions, injections, subjections, and bisections would be

characterized by stronger assertions.
The Project schema contains two assertions in addition to those implicit in

the signatures. The first assertion, stating that the leader of a project is a

member of its staff, is simply translated as:

VpVmVs(leader(m, p) A staff (s, p) * member(m, s)).
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The second asserts that the staff set is the domain of the payroll function.

This translates into:

VpVsVy(staff(s, p) A payroll(y, p) *

Vm(member(m, s) * 3cIr(pair-components(m, c, r) A member(r, Y)))).

3.2 Sequences

Sequences are ubiquitous in specifications, and this paper contains several

examples of them,

It is customary in formal specification languages to regard sequences as

partial functions from the natural numbers to the set of sequence elements

[18, 271. Instead, we regard all sequences as totally ordered sets. For one
reason, it is more natural for a specification to say “event e is earlier than

event f“ than for a specification to say “e is the 4,986th event and f is the

4,991st event.” Totally ordered sets are also fundamentally simpler, more

flexible, and more easily manipulated, as the following examples will show.

We generally use two predicates to establish a sequence, one for member-

ship in the set and one to impose an order, but their exact forms depend on

several factors—whether phenomena are formalized as individuals or predi-

cates, where duplications or subsets arise, etc. (This section will illustrate two

possibilities, and Section 5.4 will show a third,) Because this section discusses

several different membership and ordering predicates specifying different

sequences or classes of sequence, the predicates are distinguished from each

other by subscripts.

If there is only one sequence in the general category being considered, then

the sequence need not have an explicit name. [t can simply be described by its

membership and ordering predicates. For example, memberl(m) means that

m is a member of the sequence, and precedesl( ml, m ~ ) means that m 1

precedes m ~ in the sequence. The order must be irreflexive, transitive, and

asymmetric (provable from the first two properties). The order must also be

total:

‘v’ml’dmz( memberl(nzl) A nzemberl(mz) *

precedesl(ml, mz ) V precedesl(nzz, ml) V ml = m2).

In almost all cases sequences are nondense, meaning that each nonfinal

member has a unique successor (i.e., they are like the integers rather than

the real numbers). This assertion states thalt each nonfinal member has a

unique successor:

Vml((memberl( ml) A 3mz(memberl(m2 ) A Precedesl(rnl, mz))) +

~!mz(memberl(mz) A precedesl( ml, mz) A

~=m~(memberl(nz~) A precedesl( ml, nz~) ~ precedesl(m~, mz)))).

A sequence may have an initial element (with no predecessor), a final

element (with no successor), both, or neither If the set is finite, it obviously

must have both.
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All nondense sequences with initial members should be well-founded sets,

that is, sets such that each subset has a minimal member. This property

cannot be stated in first-order logic, and there are nonstandard models of the

first-order assertions that do not satisfy it. Nonstandard models are not going

to arise in a software development, however, so it is sufficient to state that we

intend only standard models of sequences.

A marked seqzLence is a particularly useful variety of sequence. A marked

sequence has an initial member. It is also bipartite: Its members fall into two

disjoint categories, items and markers. The sequence is further constrained

so that items and markers alternate strictly, beginning with a marker and

ending (if there is an ending) with a marker. In a marked sequence, items are

like leaves of a book and markers are like positions between the leaves in

which a bookmark can be inserted. premarker( i, m ) means that m is the

marker immediately preceding item i. postmarher(i, m ) means that m is the

marker immediately succeeding item i. Marked sequences are potentially

useful whenever a sequence must be explicitly traversed.

In Section 2.1, it was stated that this paper uses for its examples a

temporal model in which all actions are atomic, totally ordered events, and

all events are individuals. In this temporal model, only an event can cause a

state change; in the intervals between events the state is stable and can be

observed. Thus, intervals can also be regarded as individuals, since they are

distinct and identifiable in the same way that events are.

The two kinds of temporal phenomena, events and intervals, form a

marked sequence with events as items and intervals as markers. Because

each specificand is an encoding of exactly one temporal marked sequence, the

temporal sequence needs no explicit name, and can be specified using predi-

cates like those discussed above. Figure 2 shows the correspondences between

the general predicates of a marked sequence and the particular predicates of

the temporal sequence. The general predicates are inside the box, the particu-

lar predicates are outside the box, and two predicates on the same horizontal

line correspond. The arguments of predicates are identified by position, so the

mnemonic “role” names of arguments can be changed along with the predi-

cate names.3

Note that in renaming premarker( 1, m) and postmar?zer( i, m), we have

shifted the emphasis. Instead of thinking of intervals as precursors and

aftermaths of events, we have found it more natural to think of events as

beginnings and endings of intervals of stability.
If we wish to specify properties belonging to all alphabetic sequences

(strings), on the other hand, then the sequences themselves must be individu-

als. As before, their members are also individuals. The membership predicate

nlenzberz( i, s ) means that item i is a member of string s. The ordering

predicate precedesz(i ~, i ~, s) imposes a total order on the items in each string

s. The alphabetic content of the sequence is captured by the predicate

3 The arguments of precedes are named x because they may be items or markers. Similarly, the

arguments of earlzer are named t,for temporal phenomenon, because they may be events or

intervals The notation used in Figure 2 will be explained further In Sections 34 and 4.1.
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Axioms of a Marked Sequence

event(e) item(i)

initial-marker(m) initial-interval(v)

interval(v) marker(m)

premarker(i,m) ends(e, v)

earlier(t 1 ,t2) precedes(x 1,x z)

postmarker(i,rn) begins(e,v)

Fig. 2. The temporal predicates are a renaming of the predicates of a marked sequence.

contentsz( i, c), meaning that string item i cc)rresponds to alphabetic charac-

ter c. Thus, eontentsz( i, “p”) is true if argument z is instantiated by either the

second or third item of “apple;” this indirection solves the problem that

strings may have duplicate characters, but there is no notion of duplication in

the members of a set.

This view of sequences with duplicate elements may seem unusual, but it is

actually only a simplification of the scheme in which sequences are partial

functions from the natural numbers to the set of sequence elements, The

latter scheme relies on an ordering predicate precedes~( i ~, i ~) (it is in fact

ordinary numerical order) true only of natural numbers—natural numbers

are being used in the same role as our sequence items. The membership

predicate nzember~( i, s) has many constraints on it: The same natural num-

bers must be reused as items of different sequences, and the members of each

sequence must be a contiguous set (adjacent in numerical order) starting

from “l.” The predicate conten ts~(s, i, c) is the partial function from the

natural numbers to the sequence elements; it must have one more argument

(the sequence individual) than con tentsz because the natural numbers are
reused as different items with different character attributes. Additions or

deletions in the middle of a sequence require a complete reassignment of

contents to indices, which is not necessary in our encoding.

3.3 Temporal Properties

In this section, we show how temporal properties can be represented in

predicate logic. Specificands encode sequences of events and intervals, as

described in the previous section. Although this is not the only possible

temporal model, its use as an example should make the general style of

translation clear enough.

Figure 3 shows a simple deterministic finite-state automaton (DFSA). Its

usua14 semantics can now be given in terms of temporal sequences. Each

i The DFSA actually has several different meanings as a specification. Other meanings will be

discussed in Sections 3.4 and 4.1.
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Fig. 3. A DFSA describing a fluores-
press

cent light.

state label such as is-off corresponds to a predicate such as is-off(v), which is

true if and only if v is an interval in which the light is observed to be off.

Each transition label such as press corresponds to a predicate such as

press(e), which is true if and only if e is an event in which the controlling

button is pressed.

There are several ways of writing the assertions that capture the meaning

of Figure 3; we shall use assertions in five categories. The first category

consists exclusively of assertions about states. There is an assertion about the

initial state:

V U( initial-in terval( v ) = is-off( v )).

There must also be an assertion that in each interval exactly one state

predicate holds.

The second category is an assertion that no event can satisfy both press(e)

and finish -zzrarm ing-up( e ), This assertion is necessary to make the automa-

ton deterministic.

The third category constrains when events can occur. The fact that there is

no out-transition from is-off labeled finish-warming-up, for instance, means

that a finish -wcu-ming-up event cannot occur in state is-off:

Ve’d v ((ends (e, v ) A is-off( Z] )) = - finish-warming-up(e)).

The fourth category contains assertions about state transitions. For exam-

ple, this assertion says that when the light is-on and a press event occurs,

the light enters the is-off state:

~eVvlVvz(is-orz( vl) A ends(e, ul) A press(e) A begitzs(e, vj) ~ is-off(vz)).

The fifth category consists of an assertion that unless an event satisfies

press(e) or finish -zzrarming-up( e ), the state after the event must be the same

as the state before it.

Returning to the Z specification, we now see that if the values of state

variables can change over time, each state predicate requires an interval

argument. For example, now leader( m, p, u) means that employee m is the
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leader of project p during the interval U. The previously stated constraints on

state predicates must hold in every interval.

Figure 4 is a Z schema for an operation AddStaff to add an employee to a

project. Strictly speaking Z has no temporal semantics, but we shall formalize
the common convention that a Z operation corresponds to an event type, and

that the unprimed and primed variables in the operation schema describe the

state before and after events of that type, respectively.

As in Section 3.1, we find that schemas triinslate into types of individual;

there is a predicate AddStaff(e ), meaning that event e is an AddStaff

operation.

There is also a predicate for each argument of an operation. AddStaff

operations have two explicit arguments, employee? and salary?. The predi-

cate employee?( m, e) means that m is the employee argument of event e. It

satisfies a constraint much like that associated with every state-variable

predicate:

‘de( AddStaff( e) = 3 !m(employee?( m, e) A EMPLOYEE(m))).

The AddStaff schema contains the notation A Project, which indicates that

this operation changes a project. Although this fragmentary example does not

indicate which project an AddStaff operation is applied to (the specification

can be completed using the technique of promotion [32]), in the general case

an AddStaff operation must have a predicate A Project ( p, e), meaning that p

is the project to which AddStaff operation e applies. Its type and uniqueness

constraints are similar to those of employee?l( m, e).

An AddStaff operation cannot occur whenever its employee argument is

already a member of the project staff. This constraint is translated:

Vu VeVpVmVs(ends(e, v) A AddStaff(e) A AProject(p, e) A

employee? (m, e) A staff(s, p,u) * =member(m, s, v)).

Finally, the semantics includes assertions about the states after AddStaff

events. The leader and payroll components must be given new values, while

the staff component retains the fixed relationship with payroll specified in

Figure 1. This assertion concerns the new addition to the payroll:

VeVv Vp’dmVsVy(begins(e, u) A AddStaff(e) A

AProject( p, e) A employee? (m, e) A salary? (s, e) A payroll( y, p, u ) *

~r(member(r, y, u) A pair-components(m, s, r, u))).

There are other assertions that the payroll remains the same except for the

new addition, and that the leader remains the same.

Borgida et al. [2] have pointed out that in some “object-oriented specifica-

tion styles, there may be a problem with expressing what an operation leaves

unchanged (as well as what it changes). Their recommended technique for

solving this problem works perfectly within the framework of the semantics

for Z given here.
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Fig. 4 AZ operation describing acor-

poratlon.

AddStaff

[

AProject

employee?: EMPLOYEE

salary?: SALARY

employee? ~ staff

leader’ = leader

payroll) = payroll v { (employee?,salary?) }

Operators of temporal logic have straightforward representations in the

common semantics, which is not surprising considering that early formula-

tions of temporal logic encode intervals in a similar way [25]. For example,

❑ P, read always P, is the assertion:

Vl)(interual(u) = P(u)).

The assertion P + Q (P leads to Q) is translated as:

VUI(P(UI) = 3u2(earlier(vl, T,12) ~ Q(u2))).

Real time can be introduced with a predicate timestamp( e, t), meaning that

event e occurs at real time t.

3,4 Signatures

Each partial specification in a specification has a signature. This is the set of

predicates used as primitives in the predicate-logic semantics of the partial

specification. In other words, the semantics is a set of assertions over the

predicates of the signature.
In the translation of a specification into logic, the names of signature

predicates can come from three sources: they may be built into the semantics

of the specification language, they may be determined by names or labels

written in the specification, or they may be constructed from a combination of

the previous two.
Needless to say, signatures are extremely important in understanding the

role of each partial specification, its potential inconsistencies, etc. This will be

discussed further in Section 6. In the meantime, there are two other reasons

for paying careful attention to signatures. One reason is that renaming the

signature predicates is a valuable tool for specification reuse.
For example, for full generality the semantics of a DFSA should be defined

in terms of predicates characterizing a marked sequence: item(i), marker(m),

and precedes( xl, X2). An alphabet label always becomes a predicate true only

of items, while a state label always becomes a predicate true only of markers.

Whenever the DFSA is used, the marked-sequence predicates in its signature
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can be renamed to be the predicates of the temporal sequence or any other

marked sequence.

Another reason for attention to signatures is that they provide new seman-

tic options for old specification languages. We maybe accustomed to thinking

that a specification such as Figure 3 has only one meaning, but in fact it can

have many. Here are three of them:

(1) The signature might consist only of the marked-sequence predicates and
the state predicates. In this case, the partial specification makes several

assertions about the markers, including that each marker satisfies ex-

actly one of the state predicates, that the first marker satisfies is-off( nz),

and that an is-off marker can never be succeeded immediately by an

is-on marker without an intervening warming-up marker. In this case,

Figure 3 is not equivalent to an unreduced DFSA accepting the same

regular language, which would have different states and therefore mean

something completely different.

(2) The signature might consist only of the marked-sequence predicates and
the alphabet predicates. In this case, the DFSA is constraining only the

items of the marked sequence it is describing. It would be equivalent to

an unreduced DFSA or regular grammar accepting the same language.

(3) The signature might consist of the marked-sequence predicates, the state

predicates, and the alphabet predicates. The DFSA would then have the

meaning given in Section 3.3 (except, of course, that it can describe any

marked sequence, not just the temporal sequence as assumed in Section

3.3). Like the first alternative, with this semantics Figure 3 is not

equivalent to an unreduced DFSA accepting the same regular language.

There are also some limits on the possible choices of signature. In the case

of a DFSA, limits originate in the fact that any reasonable translation of the

semantics of DFSAS into predicate logic uses state predicates. If state predi-

cates are not in the signature of the partial specification, as in the second

alternative above, then they must be fully definable in terms of the predi-

cates that are in the signature. We know from automata theory that the state

predicates are definable if all of the alphabet predicates are in the signature,

but a subset of the alphabet predicates would not constitute a sufficient

signature for the specification.

In general, the definitions of state predicates are mutually recursive and
cannot be regarded as shorthands. For example, a paraphrase of the defini-

tion of warming-up(m) is that it is true if and only if the preceding marker

satisfies is-off and the preceding item satisfies press, or the preceding

marker satisfies warming-up and the preceding item does not satisfy press or

finish-warming-up. Recursive definitions are not a problem provided that

they apply only to well-founded ordered sets, which all marked sequences

are.5

5 For proving properties of recursively defined predicates, we can add an axiom schema for

induction to the other axioms of well-founded ordered sets.
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Axioms of a h4arked Sequence

event(e) item(i)

interval(v) marker(m)

arlier(t I, tz) precedes(x, ,x z) Fluorescent Light

initial-marker(m) initial-interval(v) initial-marker(m)

premarke~i,m) ends(e, v) premarker(i,m)

postmarker(i,m) begins(e, v) postmarker(i,m)

item(i)

marker(m)

precedes(x ~,X2)

press(i)

finish-wawning-up(i)

is-off(m)

warming-up(m)

I is-on(m)

Fig. 5. A description graph showing the composition of Figure 3 and the axioms of a marked

sequence

A description graph, as exemplified by Figures 2 and 5, is a convenient

notation for displaying relationships among partial specifications. Boxes rep-

resent partial specifications. Lines from the left edge of the diagram into a

box represent predicates in the signature of a partial specification. If there

are two different predicate labels on a line, one inside the box and one

outside, then those labels represent the internal and external (renamed)

names, respectively. If a predicate appears in the signatures of two partial

specifications, then both specifications constrain the predicate, and there is a

potential for interdependence or inconsistency between them.

4. DEFINITION OF PREDICATES

4,1 Definition as Commumcation

So far, the only predicates in signatures are predicates of the semantic

domain, which can be viewed as representing relationships that are directly

identifiable in the portion of the real world being described. Although partial

specifications can “communicate” by constraining the same predicates, this is

not enough—there must be a more direct means of communication among

partial specifications, enabling them to build on one another.

Section 3.4 showed that the translation of partial specifications into predi-

cate logic sometimes requires definition of new predicates. Although these

defined predicates can be kept strictly internal to the semantics of a partial

specification (like local variables), they can also be exported for use in the

ACM TransactIons on Software En~neermg and Methodology, Vol 2, No 4. October 1993



Conjunction as Composition . 393

A

D
is-off

\

press
(request-on)

press
(abort-

warming-up) L
press

(go-off)

Fig. 6. An augmented DFSA descrlbmg a fluorescent light

signatures of other partial specifications. Defined predicates provide the

needed additional communication among partial specifications.

For example, the marked-sequence specification shown in Figures 2 and 5

defines, from the three predicates in its signature, three new predicates

initial-marker(m), premarher( i, m), and postmarker( i, m). In a description

graph, a line representing an exported predicate passes through the right

edge of the box in which it is defined, and maly enter the left edges of different

boxes in the role of a signature predicate (Figure 5). These figures also show

renaming of defined predicates.

Like description of properties, the task of defining a new predicate can be

made much easier by exploiting the features of the right paradigm. Just as

each language provides concise access to a body of built-in semantics, each

language can also provide access to a body of built-in facilities for defining

new predicates.

This point is illustrated by the signature options for a DF’SA. If state

predicates are not observable in the semantic domain but event predicates

are, then the definitions of state predicates are automatically part of the

translation of the DFSA, and the state predicates can be exported.

Exploitation of the particular features o-f languages can go further than

this. Consider, for example, the augmented DFSA in Figure 6. In addition to

an alphabet label, each transition has a unique label that names the meaning

or interpretation of the alphabet member in the context in which it is

occurring. A press event has three classifications: When the light is off, it is a

request to turn it on; when the light is warming up, it aborts the warming-up

phase; and when the light is on, it turns it off. Transition labels are a natural

extension of the DFSA notation; like alphabet labels, they translate into

predicates on items. They can be part of the signature of a DFSA, or they can

be defined and exported if the signature predicates are sufficient to do so.

How does definition provide communication? A partial specification with

any of request-on(e), abort-warming-up(e), or go-off(e) in its signature can

describe or constrain these more precise event categories rather than the
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coarser classification that the event is a press. The result is that it can

benefit from the state information encapsulated in the DFSA, without having

direct access to it. This is a very general technique—events can belong to any

number of classes, that is, be described in any number of ways.

Even though definition of new predicates provides a powerful mechanism

for communication among partial specifications, it is declarative and free of

operational bias. It is completely compatible with assertional specification

and nonoperational semantics.

This point should not be taken for granted. Internal events in Statecharts

[9] and result! variables in Z [27] both provide versions of event classification

—a consummately useful specification techniqt~e—but with inherently tem-

poral, operational semantics.

4.2 Extensions to the Semantics of Composkion

The description graph relating a set of partial specifications must be acyclic.

This ensures syntactically that all predicates are defined, either directly or

indirectly, in terms of predicates in the semantic domain.

A member of the semantic domain (specificand) can be extended by defined

predicates, provided that the predicates are defined (directly or indirectly) in

terms of predicates found in the specificand. The values of the defined

predicates must be consistent with their definitions and the values of the

original predicates.

A partial specification with defined predicates in its signature is satisfied

by a specificand if and only if the specificand can be extended by the defined

predicates, and the extended specificand satisfies the partial specification in

the usual way.G

5. EXAMPLES

5.1 The World Information System

The first example is everybody’s nightmare: a composition of all the world’s

computerized information systems (specified in a variety of state-based and

database-oriented languages). One of the systems is a corporate information

system of which the Z examples in Section 3 are fragments. Its signature

includes the predicates EMPLOYEE(m) and Project(p).

A partial specification written in a strongly typed language such as Z

defines a hierarchy of types ordered by inclusion. For all practical purposes,7

the basic types at the bottom of the hierarchy (of which EMPLOYEE is an

GThis explanation assumes global prechcate names, that is, the absence of nammg conflicts

Conflicts can always be resolved by renaming, as the example m Section 5.1 shows, although it

may not be necessary to do so,

7 Cardelh and Wegner [4] use a framework for discussing type systems m which values may have

more than one type. but in their discussion of 1anguages this polymorphic capability is enjoyed

only by functions (a special kind of value), In the first-order common semantics functions are

represented by predicates rather than by individuals, so polymorphism disappears in the

translation altogether, Snbrange types are an exception to our claim, but they seem to be a

special case without general significance
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example) must be disjoint sets. Within the scope of the strongly typed partial

specification, the assumption of disjoint basic types is extremely useful: It is

the foundation for type inference and type checking, both important forms of

language-specific algorithmic analysis.

Sometimes, however, we want to compose partial specifications whose basic

types are not disjoint. The world information system may include a specifica-

tion of a taxation database in which TAXPAYER is a basic type. Obviously,

the classes of employees and taxpayers overlap. If these specifications had to

be combined in a strongly typed framework, either these partial specifications

would be inconsistent, or the sets EMPLOYEE and TAXPAYER would be

considered disjoint (falsely independent), or both specifications would have to

be rewritten using different basic types.

In our translation semantics, on the other hand, the predicates EM-

PLOYEE( e) and T~PAYER( t ) have no relationship unless a constraint is

asserted explicitly. They can describe overlapping sets of individuals, as is

indeed correct. Any partial specification can create and exploit a classiflcati on

scheme, and partial specifications with different classification schemes can be

composed without restriction.

Like classification, the component-of relation forms hierarchies. Because

aggregates may be individuals in their own right (with component ( c, a)

predicates expressing the relationships between aggregates and their compo-

nents), they can participate in many independent component hierarchies.

Individuals of type Project are aggregates in the corporate information

system. They have components, and may also serve as components of other

individuals such as divisions or budgets.

The world information system may also contain systems that use the

information in the other systems. A package router, for example, is a system

for routing packages to destinations through a tree-shaped network of pipes

(with destinations at the leaves of the tree). In the Gist specification of a

package router [22], destinations are purely symbolic. For automated support

of a business in which incoming packages are sorted by project (and put in a

mailbag that is then delivered to the project’s central office), we can compose

the Z and Gist specifications. All that is required is to use renaming to

identify destination d) in the signature of the Gist specification with

Project(p) in the semantic domain. Now projects/destinations can have

attributes in the Gist specification, or be components of other aggregates

specified in Gist. A mapping from projects/destinations to street addresses

can be shared with an information system from which this information is

available (the predicate would appear in the signatures of both specifications).

The administrators of the world information system may wish to integrate

the information systems of corporations A and B. Although both may have

EMPLOYEE(e) in their signatures (see Figure 7), they may both define a

predicate M~AGER( m ), in different ways.
The partial specifications on the right of Figure 7 use the two different

meanings of MANAGER(m). The lines in the description graph make clear

which defhition is intended in each case. If globally unique names are

desired, then the optional renamings MANAGER-A(m) and MANAGER-B( m’)
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A, Inc.

EMPLOYEE(e)

MANAGER(m) [MANAGER-A(m)]

B, Inc.

EMPLOYEE(e)

MANAGER(m) [kL4iVAGER-B(m)]

—

I

IMAiVAGER(m)

I

Fig. 7. A description graph showing the composition of two corporate information systems with

different definitions of a manager.

can be introduced, but in either case none of the partial specifications need be

rewritten.

5.2 The Factory Floor

It is commonly recognized that a flow diagram is incomplete with respect to

synchronization, and cannot be used for formal specification unless further

information is provided [ 10, 24, 28]. A particular synchronization pattern can

be assumed for all nodes of the flow diagram, or the diagram can be composed

with other partial specifications. We shall show the semantics of a flow

diagram and two Petri nets that can be composed with it to provide different

forms of synchronization.

Figure 8 shows a flow diagram describing the layout of a factory floor.

There are named machines connected by named conveyor belts.
The signature of this description includes all of the temporal predicates.

The signature also includes, for each node of the diagram, a predicate on

events. For instance, the predicate machinel( e ) means that event e is an

observable action of the first machine. The remainder of the signature of the

description is a set of predicates for each queue of the diagram. (Their names

have two parts, one built-in and one taken from a label in the diagram.) The

predicates in this set describing the queue named beltl are:

(1) beltl-addition(e), meaning that event e is an addition operation of the

belt,

(2) beltl-deletion(e), meaning that event e is a deletion operation of the belt,

(3) beltl -mem ber(i, u), meaning that item i is on the belt during interval ZI,

(4) beltl-precedes(il, i2, u), meaning that item il precedes item i2 on the belt
during interval v,
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+=
bel

belt2
> machine2

~+

Fig. 8. A flow diagram describing the layout of a factory floor.

beltl -size(s, u ) meaning that there are s items on the belt during interval

v, and

beltl-event-item( i, e) meaning that item i is being transferred during

addition or deletion operation e.

The semantics of the flow diagram includes many assertions obvious

enough to be presented informally rather than formally:

(1) There are type constraints on the arguments of all predicates above.

(2) One event cannot be both an addition to and a deletion from the same
queue. However, this does not preclude the possibility that an event has

an effect on more than one queue.

(3) In every interval, the items on each queue are totally ordered by the

precedes predicates.

(4) Additions and deletions change queues in the obvious way; nothing else
can change the contents of a queue.

(5) A deletion event cannot occur when its queue is empty.

(6) Initially all queues are empty.

(7) The size of a queue is equal to the number of items in the queue.

The more interesting part of the semantics concerns the interaction be-

tween nodes and queues. For each node of the diagram, there is an assertion

that all observable actions of a node are addition or deletion operations of the

queues that touch it in the diagram. For the third machine, this assertion is:

Ve( machine3( e ) ~ belt3-deletion(e ) V belt4-deletion( e ) V belt6-addition( e)).

For each queue of the diagram with a source or destination node in the

diagram, there is an assertion that all ac~dition or deletion events of the
queue must be events of the source or destination node, respectively. Con-

cerning the destination of belt4 the asserticm is:

Ve( belt4-deletion(e ) = machine).
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Figure 9 is a Petri net providing another description of the third machine.

It shows that the machine has no internal buffering or concurrent operation;

in one atomic action, it consumes from both input belts and produces for its

output belt.

We have shown that the signature of a DFSA must include marked-se-

quence predicates and may include predicates of three other types associated

with parts of the DFSA syntax (states, alphabets, and transitions). Similarly,

the signature of a Petri net must include marked-sequence predicates and

may include predicates of four other types associated with parts of the

Petri-net syntax. For clarity, we shall assume that the marked-sequence

predicates are renamed to be the temporal predicates, and explain the

semantics in terms of temporal phenomena.

For each transition label, such as machine3 in Figure 9, there may be a

predicate m achine3( e ) meaning that e is an event of the third machine. For

each place label such as belt3-si,ze in Figure 9, there may be a predicate

belt3-size(s, c), meaning that during interval o the count of this countable

phenomenon is s. For each place with an out-arrow such as belt3-size, there

may be a predicate dec-belt3-size( e ) meaning that event e decrements the

token count of this place. For each place with an in-arrow such as belt6-size,

there may be a predicate inc-belt6-sizw( e ) meaning that event e increments

the token count of this place.

The signature for Figure 9 leaves nothing out: it consists of the temporal

predicates, machine3( e), belt3-size(s, [1), belt4-size(s, u), belt6-si~e(s, v), dec-

belt3-si~e(e ), dec-belt4-size(e), and inc-belt6-size(e).

Note that all but the decrement and increment predicates are already

shared with the signature of Figure 8. To complete the intended composition,

the decrement and increment predicates must be renamed to belt3-deletion( e ),

belt4-deletion( e ), and belt6-addltion( e ), respectively. With these renamings,

the decrement and increment predicates have the same names as the predi-

cates in the signature of Figure 8, with the same meanings.

The safety semantics of a Petri net relates transition, place, decrement,

and increment predicates in the expected way. Perhaps the most interesting

assertion, because of its correspondence with the assertion given above for

the semantics of the flow diagram, is the following:

Ve( machine3( e ) ~ belt3-deletion( e ) ~ belt4-deletion( e) ~ belt6-additioTz( e )).

In this example, we can see clearly that the composition works as we want it

to because the flow diagram and Petri net are making different, complemen-

tary assertions about the same event predicates.

We interpret Petri nets as asserting liveness properties as well as safety

properties. If a transition is enabled then it will eventually occurs The

translation of this constraint, for each transition, is similar to P -+ Q.

Figure 10 shows another Petri net that could be composed with the flow
diagram. It cliffers from Figure 9 in that input and output events of the third

“ Note that this s]mple definition works only because these Petri nets are determimstic there is

never more than one transition enabled,
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machine3
Fig, 9. A Petri net describing synchroniza-

tmn [n the third machme.

machine are separate, so that the node blehaves like a concurrent process

instead of an indivisible action. Nevertheless, the internal storage capacity of

the machine is limited to two items, one from each of the input belts.

The signature of Figure 10 is exactly the same as the signature of Figure 9,

and it composes with Figure 8 in the same way, although of course it makes

different assertions. For instance, Figure 10 asserts that belt3-deletion( e),

belt4-deletion( e ), and belt6-addition(e ) characterize distinct classes of event.

The semantics of Figure 10 is a little more complicated than that of Figure

9, because there are place, increment, and clecrement predicates not reflected

in the signature. Because our Petri-net semantics relies on having a complete

set of place, transition, increment, and decrement predicates, it is necessary

to define them from the predicates that are in the signature. This is not a

problem, except that they must have names before they can be defined. The

Petri-net semantics can supply them with built-in names: from left to right

and top to bottom, the unlabeled places are pl, p2, p3, and p4. The incre-

ment and decrement predicates are named to match.

Another unusual property of Figure 10 is that all three transitions have the

same label. This is because no finer distinctions about actions of the third

machine are directly observable in the domain. The top two transitions can be

enabled simultaneously, and since they bc,th have the same label, knowing

that an event satisfies math ine3( e ) is not sufficient to determine which

transition occurs!

This is not a problem because the signature contains more information

about these events than just nzacltine3(e ). In particular, it contains the

predicates belt3-deletion( e ), belt4-deletion(e ), and beIt6-addition( e ) that un-

ambiguously identify all three transitions, so that all place, increment, and

decrement predicates have deterministic definitions in terms of the predi-

cates of the signature. For instance, two related definitions are

Ve( dec-pl-size( e) = dec-belt3-size( e))
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obelt6-
size

Fig, 10. AnotherP etrinetd escribings ynchronizat]onl nthethirdm achine.

and

Ve(inc-p3-size(e) *dec-belt3-size( e)).

The initial value of each place predicate is determined by the numbes of

tokens visible in the diagram. (Note that the initial values of the belt-szze(s, u)

predicates, which are all zero, are redundantly specified by the flow diagram.)

On the basis of initial values and the increment and decrement predicates, it

is easy to write definitions of the place predicates for all unlabeled places,

The translation of Figure 10 shows the value of flexible signature options.

Without them we would have had to overspecify by identifying many more

predicates in the semantic domain than we wanted or needed.

5.3 The Multiplexing Telephone

A multiplexing telephone is a modern device with the capacity to participate

in many calls simultaneously. It has a set of resources that we have named

virtual telephones [35] because each resource is similar to an old-fashioned

telephone in its capabilities for making and receiving calls (each virtual

telephone has a button for selection and several lights for indicating its

status). Because virtual telephones share a handset, dialpad, etc., we need

some new terminology: an operz or close event is to a virtual telephone what

an offiook or onhook event is to an old-fashioned telephone, respectively.
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Virtual
Multiplexing Telephone t

select(e, t)

%

open-t(e) ojj%ook(e)
of/hook(e)

onhook(e)
close-t(e) onhook(e)

Fig. 11. A description graph for the specification of a multiplexing telephone

Figure 11 shows a specification of multiplexing telephone, decomposed for

several different reasons into two partial sl?ecifications.

The partial specification “Virtual Telephone t“ is in fact a specification of

an old-fashioned telephone, which we are reusing as a description of a virtual

telephone. It is a DFSA, and can be used without modification as long as its

internal predicates offiook( e ) and onhook( e ) are renamed to open-t(e) and

close-t(e).

The “Multiplexing” specification describes the shared state of the telephone

and its relationship to input events. It defines an important predicate se-

lected(t, u ), meaning that during interval u virtual telephone t is in control of

the shared resources of the telephone (pressing the selection button of virtual

telephone t generates an event e such that select (e, t).)The specification also

classifies input events by defining the predicates open-t(e) and close-t(e).

These predicates have interesting definitions. An offiook event is an open for

the currently selected virtual telephone. A.n ordzook event is a close for the

currently selected virtual telephone. A select event has no additional classifi-

cation if the button pressed was that of the currently selected virtual tele-

phone, or if the telephone is onhook. Otherwise, the select event is also an

open event for the new virtual telephone and a close event for the old one.

These rules are conveniently expressed in pure Prolog.

Thus, there are three reasons for decomposing this specification:

(1)

(2)

(3)

Different portions are more conveniently written in different languages,

One portion is new while the other is an old specification reused, and

There are two modules encapsulating different portions of the state (the

state of a virtual telephone versus the state of the shared resources of a

telephone).

State encapsulation is a justifiably popular style of decomposition. Note how

conveniently classification provides communication between state-based mod-

ules, especially since events are individua”k and can be described and classi-

fied just as other types of individual can.

5.4. .The Shakespeare Concordance

Figure 12 is a Jackson diagram (a graphical form of regular expression with

labeled subexpressions [14]) describing the text of a play as a sequence of

characters. It might be part of the specification of a system computing a

concordance of Shakespeare.
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I play I
I I

nonjinal
token

end

part marker

rlnonfinal *
subpart

etoken space

HE3
Fig. 12. A Jackson diagram describing the text of a play as a character sequence.

Its signature must include rtzember( i ) and precedes( i ~, i ~ ) predicates defin-

ing the sequence being parsed. Its semantics is described in terms of contigu-

ous subsequences of the parsed sequence, of which there are many, so the

signature must also include a predicate subsequences) true of all contiguous

subsequences of the parsed sequence, and a predicate subsequence-

mem ber(i, s) meaning that sequence member i is also a member of subse-

quence s. The same ordering predicate applies to both primary sequence and

subsequences!

Like the strings in Section 3.2, these sequences and subsequences consist of

individual items related to alphabetic characters by the predicate

con ten ts( i, c). Relevant character types are distinguished by the disjoint

character predicates letter(c), separator(c), and end-ma rker( c).

Just as any reasonable translation of a nontrivial DFSA into predicate logic

uses state predicates, any reasonable translation of a nontrivial regular

expression into predicate logic uses subexpression predicates true of subse-

quences of the described sequence. The subexpression predicates required to

translate Figure 12 are plakv(s ), non firzal-part(s ), tolzen(s ), n on final-

subpart (s), and space(s). Just as with states of a DFSA, they may be part of

the signature of the specification, or they may be absent from the signature.

Just as with states of a DFSA, if they are absent from the signature, then the
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Token Idenmy

amlet-precedes(i, , i J precedes(l, , i2) precedes(i ~, i2)

Hamlet-item(i) nwnber(i)

letter(c)

separator(c) word- equal(l, ,12) Hamlet- token-equal(t, , t2)

end-nwrke<c)

Hamlet-substring(s) subsequence(s) token(t) Hamlet-token(t) list(l)

Hamlet-substring- item(i,s) subsequence.nuvnber(i,s) list-memberfi,l)

contents(i, c)

Fig 13. A description graph showing the composit [on of Figure 12 and a Prolog program.

predicates present in the signature must be sufficient to define them. And

just as with DFSAS, if the subexpression predicates are not in the signature,

then a regular expression can be equivalent to a different regular expression

(with different subexpressions) that describes the same regular language.

Figure 13 is a description graph for part of the specification of a Shake-

speare concordance. The “Lexical Analysis” partial specification is Figure 12,

here being applied to describe the text of Hamlet.

“Token Identity” is written in pure Prolog. Its purpose is to define when

two tokens are to be considered equal for purposes of the concordance—

capitalization is irrelevant.

word_ equal([], []),
word_ equal([PIQ], [PISI) .-word _equal(Q, S).
word _equal([PIQ], [RIS]) :- case_ pair(P, R), word_ equal(Q, S).
case_ palr(’{a”, “A”),
case_ pair(’’A”, ‘(a”).
case_ pair(’’b”, “B”),
case_ palr(’’B”, “b”). . . .

The Prolog program is concerned with lists of characters. To define its

semantics, we need a predicate list(l) characterizing the set of lists. In this

application of the program, all lists will be tokens of Hamlet, so the predicate

list(l) is renamed as Hamlet-tohen(t ). The latter predicate is also a renaming

of the predicate token(t) defined by the “Lexical Analysis” specification. The

set characterized by token(t) is a subset of the set characterized by Hamlet- ,
substring(s ), that is, all tokens are substrings of Hamlet.

To say that i is a member of 1, that is, list-member(i, 1), is the same as to 6

say that i is an item of the Hamlet substring s, that is, Hamlet-substring-

item( i, s). The total order on list members ( precedes(i ~, i ~) in the signature of
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“Token Identity”) is exactly the same as the total order on sequence members

( precedes( il, iq ) in the signature of “Lexical Analysis”), which is also the total

order on items in Hamlet ( Hamlet-p recedes( i ~, i ~ )).

6. CONSISTENCY CHECKING ACROSS LANGUAGE BOUNDARIES

A set of partial specifications is consistent if and only if its composition is

satisfiable. Consistency checking is one of the most important kinds of formal

reasoning about specifications, and it is closely related to verification in

general. With multiparadigm specifications, there is the new challenge of

consistency checking across language boundaries.

In theory, the consistency of a multiparadigm specification could be investi-

gated within predicate logic, after translating all partial specifications into

that form. In practice, this is obviously infeasible. The logical formulas

resulting from the translation are large and incomprehensible, and the

complexity of a real specification in that form would be far beyond the

capacity of existing automated tools.

We believe that most practical consistency checking must be formulated at

the same conceptual level as the specification languages used, and that

algorithms for consistency checking will be specialized for particular lan-

guages and styles of decomposition.

For an example of a decomposition style, let us consider a multiparadigm

specifllcation of a real switching system (with multiplexing telephones as in

Section 5.3 ) [36]. In this specification, one of the principal partial specifica-

tions is written in Z. The state of the Z specification includes all configuration

information (such as which telephone each virtual telephone is part of), and

all information about calls (connections and other relationships among vir-

tual telephones). The Z operations are event classes associated with event

predicates, as in Section 3.3.

These event classes are not directly observable in the domain, however, but

are defined by other partial specifications as classifications of raw event types

such as offiook, onhook, and select. The parsing of the Z operations is

actually performed by several layers of partial specifications written using

DFSAS, Jackson diagrams, and pure Prolog.

One of the few ways that the Z specification could be inconsistent with

these other partial specifications is that one event might be parsed as two

distinct Z operations (this occurs in the example of Section 5.3, where under

certain conditions a select is interpreted as both an open and a close). This

would violate the constraint, written into our version of the Z semantics, that

the sets of events identified as Z operations are disjoint. This constraint is

necessary because there are no structural limits on which parts of the state a

Z operation can modify.

Fortunately, it is easy to show that this potential inconsistency does not

occur here. To establish consistency, it is sufficient to prove two properties.

No event class (whether identified in the domain, intermediate result of

parsing, or Z operation) can be in the signature of more than one partial
specification; this is easily determined to be true here from the syntax of the
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description graph. Also, for the whole specification to be consistent, no partial

specification can classify an event of one class as a member of two other

classes. For the simple partial specifications we use in parsing, this can be

checked algorithmically, and is true of the example discussed here.

The use of a state-based specification whose operations are created by

parsing raw inputs is an example of what we are calling a “decomposition
style.”g It prescribes which specification languages (or, in this case, families

of languages) are used, which properties are specified in each, and how the

specifications interact across paradigm boundaries. This example illustrates

several points that we would like to make about consistency checking and the

role of the common semantics.

(1)

(2)

(3)

(4)

A decomposition style may have broad applicability. (This one certainly

does.) Since it is useful in a variety of situations, investments in analyz-

ing it to find sufficient consistency conditions, and in supporting that

analysis with automated tools, are practical.

A decomposition style maybe amenable to practical consistency checking.

(This one certainly is.) In this case, the partial specifications are largely

independent, their interdependencies are few, and at least some of the

interdependencies can be checked algorithmically.

The proper role of the common semantics is in investigating decomposi-

tion styles—in conceiving ways that languages can be used together, in

fully understanding the semantics of their composition, and in fully

appreciating the interdependencies that arise. For the everyday uses of

reading, writing, and checking specifications, the more these underpin-

nings can be hidden, the better.

Finding good decomposition styles will not be a simple matter, and there

are many interesting trade-offs in this area. For example, less redun-

dancy among partial specifications should make checking their consis-

tency easier. At the same time, expanding the signature of a partial

specification often makes it self-contained and therefore analyzable with

respect to some property, even though more redundancy with other

partial specifications is introduced. This effect can be illustrated by

deadlock and performance analysis oft he same protocol in two different

languages [33].

The distinguishing characteristic of our approach to composition is the

complete absence of arbitrary restrictions on specification languages and

decomposition styles. This means that we have preserved the freedom of

specifiers to exploit the potential of multi paradigm specification, and the

freedom of researchers to investigate the properties of decomposition styles.

It is already common practice for researchers to work on analyzing and

verifying specifications within particular application areas or written in

particular languages, and they are beginning to work on verifying specifica-

tions of popular system architectures [1, 7]. We are not proposing any change

g It might lust as accurately be called a “composition style.”
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to this practice except the use of a small set of complementary languages

instead of one language, which should make the overall goal easier to achieve.

7. RELATED WORK

Multiparadigm programming and specification have been topics of research

interest for some time. In all cases, languages used together must have

something in common; much of this work can be compared by noticing where

the common ground lies.

By far, the most popular approach to this problem is the design of multi-

paradigm languages—languages in which several paradigms share a com-

mon syntactic and semantic framework (Hailpern’s collection [8] provides a

good introduction to this work). Wide-spectrum languages, an older idea, are

similar in this respect.

Although multiparadigm languages are a practical approach to supporting

multiparadigm programming in the near future, they are too inflexible for

our goals. Considerations of cost and complexity will limit them to combining

particular representatives of a few of the most popular paradigms, while we

are interested in experimenting with a wide variety of notations, including

those that are highly specialized or similar to each other. Furthermore,

merging languages tends to compromise their analyzability, as most algorith-

mic manipulations of formal languages are quite sensitive to the features of

the languages.

Wile’s approach to multiparadigm programming [29] is based on a common

syntactic framework defined in terms of grammars and transformation. Like

multiparadigm languages and unlike our scheme, different paradigms can

appear in one partial specification or program. It seems difficult to apply this

approach to graphical languages. It also seems difficult to use it for compos-

ing multiple descriptions of the same phenomena at the same level of

abstraction (as in the factory example), since a certain amount of semantic

independence must be maintained.

The Garden project [26] also provides multiparadigm specification by means

of a common semantics, but the Garden semantics is operational rather than

assertional. In Garden an interpreter for each language is written in a

well-integrated object-oriented environment.

“Interoperability” could be described as coarse-grained or loosely coupled

multiparadigm programming. Interoperability research tends to assume that
programs communicate through procedure calls, and focuses on the problem

of sharing data whose types are defined in different languages. At least two

interoperability projects [ 11, 30] provide a partial common semantics for

programming languages—covering data types only.

Like our scheme, the transition-axiom method (TAM) [20] provides a

common semantics that can serve as a foundation for many different nota-

tions. However, the purposes of these two formal systems are very different.

TAM is intended to facilitate proofs of the properties of concurrent systems,

and all the examples of use of TAM include such proofs. TAM is clearly not

intended to facilitate multiparadigm specification. There are no examples of
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multiparadigm TAM specifications, and TAM’s successor, the temporal logic

of actions (TLA) [21], has its own specification language.

From our perspective, TAM and TLA should be regarded as a specification

paradigm with its own high-level notations, styles, and characteristic

proof/analysis techniques. The translation into our semantic domain, for the

purpose of composition with other paradigms, should be straightforward.

The ARIES project [ 17] is closely related to this work in providing a

multiparadigm environment based on a common underlying semantics for all

paradigms. In the ARIES project, the emphasis is on tool support, however,

so only a limited set of specific notations is involved. The common semantics

is higher level, richer, and therefore more prescriptive than ours. For exam-

ple, types, events, temporal operators, components, and roles are all built into

the underlying representation. All of these concepts can be represented in our

semantics, but since they are not built in it is possible to compose languages

based on different versions of them.

Finally, the Viewpoint project [5, 6] is investigating requirements specifica-

tion in exactly the style we favor: using many languages (some of them

graphical) to write overlapping, interdependent partial specifications of dif-

ferent aspects and properties of a specified system. This project has not

settled on a formal framework for composition of partial specifications, and

could use ours without modification.

8. LIMITATIONS AND FUTURE RESEARCH

8.1. The Semantics of Specification Languages

At this point, the weakest part of our results is the translation of specification

languages into first-order predicate logic. The weaknesses are as follows:

(1) We have defined complete, algorithmic translations only for a small
number of simple languages.

(2) We have no intention of tackling the cclmplete algorithmic translation of
large, rich languages such as Z, as it would clearly be beyond our

patience.

(3) Our semantics for a language does not necessarily have the same proper-
ties as the semantics given by the language designers. For example, in

the normal Z semantics two instances of the Project schema (Figure 1)

with the same variable values would be considered equal, just as two data

records with the same type and the same field values are equal. In our

semantics for the same Z specification, there would be two distinct

individuals of type Project, which cannot be equal regardless of the values

of their attributes.

(4) Inevitably, there will be features of specification languages whose seman-
tics have no translation into first-order logic. For example, in Z a nonenu-

merated set can be declared as finite or infinite.

One issue raised by these weaknesses is that of coverage. Can all specifica-

tion paradigms be represented in the common semantics? We are fairly
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confident on this point, having considered a wide variety of notations. In

addition, Burstall has shown how to describe a major part of AIgol 60 in

first-order logic [3]. Many extensions to first-order logic (such as the axiom

schema mentioned in Section 3.4) do not compromise this framework, and can

be used to cover difficult cases. The only untranslatable language feature we

have encountered so far, the example in (4) above, does not seem

important—computationally there is little difference between an infinite set

and a very large finite set.

Another issue raised by these weaknesses is translation complexity. The

problem is exacerbated by the fact that we would like to offer various

signature options to specifiers, as in Section 3.4, all of which are variations on

the basic semantics of a language.

We are optimistic on this point because our experience suggests that

multiparadigm specification makes it possible to use much simpler specifica-

tion languages than are now considered state-of-the-art. There seem to be two

reasons for this simplifying trend. One is obvious: if you can compose lan-

guages freely, there is no need to extend languages with features that other

languages already have. The other reason is that the composition framework

subsumes and can replace features, such as composition operators, found in

many languages.

For example, the language of Statecharts is rich. The concurrent (“and”)

decomposition can be replaced by our decomposition into partial specifica-

tions. The broadcast communication between concurrent specifications can be

replaced by our event classification. The data updates and queries in State-

charts can be replaced by decomposition into a pure DFSA and a data-ori-

ented partial specification. If all of these replaceable features were elimi-

nated, little more than DFSAS with hierarchical states would remain. These

remaining features are simply and straightforwardly translatable into the

common semantics.

A third issue raised by these weaknesses is the nonstandard semantics we

provide for some languages. It is really too early to tell whether this is a

significant practical problem. It is important to note that since the standard

semantics for many specification languages are incompatible, the only hope of

composing such languages lies in providing them with alternative semantics.

However nonstandard, our semantics has the advantages that it facilitates

meaningful composition of partial specifications, and that it is based on

careful consideration of the relationship between a formal specification and

the real world it is describing [ 16]. For example, with respect to the semantic

difference mentioned in (3) above, it certainly makes some sense to assume

that two projects are distinct even if their attributes are equal during some

interval of time.l”

In conclusion, there is much work yet to be done in this area. There are

difficulties, but little reason to be pessimistic. And it will be impossible to

10 This remark is not meant to cast aspersions on any particular specification A particular

specification can only be validated with respect to the semantics in force when it was written,
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draw firmer conclusions until much more experience with multiparadigm

specifications is available.

8.2. Other Aspects of Specification

There are several other areas in which the work reported here is incomplete.

The major limitation of the semantic domain is that it represents only

observable behavior, without any notion of agency, causality, or control. For

example, we can duplicate the trace semantics of CSP [12], but cannot

represent the stronger semantic domains used by CSP to capture such

concepts as hidden internal choices. We are currently extending the semantic

domain to include control, but feel that even the limited form discussed in

this paper provides useful insight.

The example of Section 5.3 is highly unsatisfactory in one respect: it

specifies a single virtual telephone identified as t. What is really needed, of

course, is application of the partial specification “Virtual Telephone t” to all
virtual telephones. We have made some progress on techniques for specifica-

tion reuse, application of a specification to all members of a set, etc., but they

are outside the scope of this paper.

A variety of temporal models are used in specification. We have mentioned

atomic versus hierarchical actions, and total versus partial orderings. Time

can also be modeled as continuous (there is a nice example by Mahony and

Hayes [231), in which case real instants of time are the interesting individu-

als, and predicates relate state observations to these instants, Although there

is little difficulty in translating any one o]f these models into the common

semantics, it will be very interesting to see how easily partial specifications

based on different temporal models can be composed.
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