
Audio Feature Interactions in Voice-over-IP

Pamela Zave
AT&T Laboratories—Research, Florham Park, New Jersey USA

pamela@research.att.com

ABSTRACT
In telecommunications, audio signaling is the use of the au-
dio channel for signaling and user-interface purposes. When
features use audio signaling, and are assembled in a pipes-
and-filters configuration, there is a potential for undesirable
feature interactions. This paper analyzes the potential fea-
ture interactions. It proposes a method for eliminating some
of them, as well as directions for future work on the remain-
ing interactions. The method can be implemented in SIP,
using compositional patterns of signaling that will work cor-
rectly regardless of how many features are active.

Keywords
telecommunications, protocol verification, SIP

1. INTRODUCTION
Since the 1960s, when telecommunication systems became

software-controlled, there has been a trend toward adding
functionality in increments called features. Since the 1980s,
when telecommunication software became overwhelmingly
complex, there has been a trend toward encapsulating new
features in software modules.
The inevitable by-product of feature modularity is feature

interaction, because telecommunication features cannot be
completely independent of one another. Feature interactions
must be managed by a process that distinguishes between
desirable and undesirable interactions, enables the good in-
teractions, and prevents the bad ones.
Although the purpose of voice telecommunications is to

enable conversation among people, throughout most of its
history the audio channel to a user has also been used for
signaling and user-interface purposes. Here “audio signal-
ing” refers to progress tones, announcements, voice prompts,
touch-tone detection, and voice recognition for control pur-
poses.
Many technologists have predicted that VoIP would be the

end of audio signaling, on the grounds that VoIP devices
have much better signaling capabilities than old-fashioned

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

telephones. Like audio and unlike old-fashioned telephones,
the user interface of a personal computer is infinitely exten-
sible.
For all features and services implemented outside endpoint

devices, however, audio signaling is alive and well. The over-
whelming reason is that audio signaling requires no assump-
tions about endpoint devices. Most users are still talking on
ordinary telephones, and are still connected (even to VoIP
users) through the Public Switched Telephone Network.
Even in a future world in which all telecommunication is

IP-based and all endpoint devices are full-functioned com-
puters, audio user interfaces will still be valued. They are
user-friendly, highly portable, do not require the use of eyes,
and are often hands-free. The audio user interfaces of fea-
tures in endpoint devices and in the network will continue
to interact, just as they do today.
This paper analyzes the large and important class of fea-

ture interactions in telecommunications due to audio signal-
ing. In building the advanced features for a consumer broad-
band VoIP service [1], this was one of the major classes of
interaction that we had to manage. Most of the example
features in this paper were present in some version of this
VoIP service. The paper also presents the foundations of a
method for managing the feature interactions.
The paper assumes that feature modules are composed

in a pipes-and-filters configuration, with feature modules
being the filters, and instances of the call protocol being
the pipes. Distributed Feature Composition (DFC) was the
first pipes-and-filters architecture for VoIP systems [2, 7].
The pipes-and-filters idea has since been adopted for the
SIP Servlets architecture [8, 9]. It appears that no circuit-
switched telecommunication systems have a pipes-and-filters
architecture, so the method presented here applies only to
VoIP.
The paper begins with a brief summary of the pipes-

and-filters architecture for telecommunication services (Sec-
tion 2). Section 3 analyzes the possible audio feature in-
teractions in this architecture, while Section 4 presents the
rudiments of a method for managing them.
The analysis and method both use an abstract protocol

that is related to both the DFC protocol and SIP [6, 13], but
is not identical to either of them. Section 5 outlines how this
abstract protocol might be implemented in SIP. Related and
future work is discussed in Section 6.

2. THE PIPES-AND-FILTERS
ARCHITECTURE

2.1 Protocol
At the highest level of abstraction, the call protocol begins

when the caller endpoint sends the callee a request for con-
nection. Eventually the callee endpoint (for example, any
kind of telephone) should send a response, which is success
or failure. If the response is failure, then the call is over; the
failure signal may include a modifier indicating the reason
for the failure. If the response is success, then there is an
audio connection between caller and callee. Control of the
audio channel is introduced in Section 3.
The realization of this protocol in a pipes-and-filters archi-

tecture is shown in Figure 1. A request is typically routed to
the next feature module that applies to it (see Section 2.2).
The feature module is an object, and unless otherwise noted,
it is a new instance of its class. If there are no more features
that apply to the request, then the request is routed to an
endpoint device.
As a request travels from one module to the next, it cre-

ates a two-way signaling channel between the sending and
receiving modules. An observer of this signaling channel
would see a complete and self-contained instance of the call
protocol. These individual calls are linked through the fea-
ture modules to generate the end-to-end call behavior.

request

FM

FM

success

success

success

request

request

Figure 1: A chain of feature modules linked by calls.
In this diagram, all features are behaving transpar-
ently.

When none of its functions is triggered, a feature module
behaves transparently. Transparent signaling behavior of
a module with two calls, one incoming and one outgoing,
consists simply of sending each received signal out on the
other call. Because all the feature modules in the figure
are behaving transparently, the success response from the
endpoint device is propagated backward through the chain
of calls.
When a feature module is not behaving transparently, it

can modify, delay, or absorb any signal that it receives. It
can also generate new signals. The only constraint is that
the signals exchanged on each signaling channel between two
adjacent modules must form a legal and complete instance
of the call protocol.

The requesting end of a call instance can send an end sig-
nal to end the call at any time. The accepting end can send
an end any time after sending success. Additional hand-
shaking signals are needed to set up the two-way signaling
channel and to acknowledge that it has been torn down at
the end of a call, but these signals are not relevant to audio
feature interaction.

2.2 Routing
In a pipes-and-filters architecture, a typical caller request

is handled by a chain of feature modules and calls, as shown
in Figure 1. This chain is assembled dynamically by a rout-
ing algorithm that routes each request in the chain to the
appropriate module.
Routing in a pipes-and-filters architecture is outside the

scope of this paper. However, interested readers can find
informal presentations in [2] or [7], and complete formal def-
initions in [15] or [9].
Because feature modules can be the sites of forks and

joins, a configuration of feature modules can be a graph
as well as a linear chain. Some examples later in the paper
include forks and joins.

2.3 Feature phases and functions
The benefit of a pipes-and-filters architecture is that fea-

ture modules can be specified, implemented, and deployed as
independent entities, greatly reducing software complexity.
A feature module behaves transparently except when it

receives a signal or time-out that triggers the feature. Once
triggered, the feature module can query databases, use audio-
processing, or manipulate signaling. It may return to quies-
cence (transparency). If it does, it may be triggered again.
Thus, over its lifetime, a feature module alternates between
active and inactive (transparent) phases. Each active phase
is triggered by a received signal or time-out.
It is often useful to refer to directions within a chain. The

downstream direction is toward the callee; requests travel
downstream. The upstream direction is toward the caller;
success and failure signals travel upstream.
The decomposition of overall system functions into sep-

arate feature modules is arbitrary—features can be “big,”
with many functions, or “small,” each doing a single task.
This is valuable because many historical and economic forces
constrain designs in the real world. The examples in this
paper tend toward “small” features, because this style illus-
trates that a high degree of modularity is possible.

3. ANALYSIS OF AUDIO FEATURE
INTERACTIONS

For descriptive and analytic purposes, first assume that
a single two-way audio channel accompanies each signaling
channel. Just as signals in a chain of calls go through feature
modules, assume that the audio channel also passes through
feature modules, which can manipulate it.
Whenever a feature module is described as performing an

audio function such as generating a progress tone, playing
an announcement, or detecting touch tones, assume that
the function is being performed within the module itself, as
opposed to being delegated to some media server. Subse-
quent sections will show how to turn this abstraction into a
realistic implementation.

3.1 Progress tones

requestrequestrequest

device

caller
endpoint

request

ringback

alerting

dialtone
busytone

callee
endpoint
device

errortone

Figure 2: Endpoint devices are feature modules that may generate progress tones.

Much audio signaling is highly customized for the feature
using it. For example, a Call Forwarding on Request (CFR)
feature redirects a request to one of a set of addresses. Often
it has a user interface in which the caller uses touch tones
to answer the question, “How may we direct your call?”
This user interface is typically implemented by a VoiceXML
script specifying the menu of prompts.
Progress tones such as ringback and busytone are different

from interactive voice-response interfaces because they are
simple and standardized. We might reasonably expect them
to be implemented by endpoint devices, so that features
never have to do anything to generate progress tones except
send signals to the endpoints.
Wherever they are generated, progress tones are an im-

portant use of the audio channel, so they must be included
in our analysis. To begin, we regard endpoint devices as
feature modules with hardware that may generate progress
tones (Figure 2). The figure makes no distinction between
requests that are user actions (such as picking up a hand-
set) and requests that travel through the network. It makes
no distinction between alerting through the handset speaker
and alerting through the air, by a bell or other mechanism.
If an endpoint feature module receives a request from a

user, it is currently playing the caller role. It may play
dialtone upstream (toward the user), then send the request
downstream (to the network). If the outcome of the request
is a failure signal from downstream, it may play busytone or
errortone upstream, until the user does something to stop
the tone.
If an endpoint feature module receives a request from the

network, it is currently playing the callee role. It may alert
the user downstream and play ringback upstream, until the
request is aborted or a user accepts the call. Ringback
should be regarded as being played by the callee end for
two reasons. For one reason, ringback is, conceptually, the
echo of alerting. For another reason, Section 4.1 will show
that this is the best place to control ringback. As stated at
the beginning of Section 3, the location of an audio function
in this analysis is not necessarily its location in the final
implementation.

3.2 Audio contention
Features in a pipes-and-filters configuration are programmed

independently and run concurrently with respect to each
other. If they use audio signaling, then they have the po-
tential to attempt to use the same audio channel simultane-
ously. This audio contention is always a bad feature inter-

action, because at least one of the features will not work as
expected. Because it is a bad feature interaction, the only
way to manage it successfully is to prevent it.
For one example of potential audio contention, many fea-

tures use audio signaling to communicate with the caller
before sending a request to an endpoint. CFR as described
above is one such feature. Another such feature is Do Not
Disturb (DND), which may play an announcement to the
caller that the callee does not wish to be disturbed, and
prompt to ask the caller if the call is urgent. If the call is
urgent, DND will send the request to an endpoint despite
the callee’s default preference. When both of these features
apply to a caller’s request, it is important to ensure that
they do not attempt to use the audio channel to the caller
simultaneously.
For another example of potential audio contention, forking

in SIP can reach multiple features simultaneously, some of
which expect to use the audio channel to the caller. At most
one of them can be connected to the caller, which means that
some of them may not work as expected [4].

3.3 Reversed and sequential progress tones
The second feature interaction in the audio category is a

potential bad interaction between the endpoint device fea-
ture modules and some other features, which produce re-
versed and sequential progress tones. Consider the Click-to-
Dial (C2D) feature, as illustrated in Figure 3. After being
triggered by a signal from a Web service, it first places a call
to the clicker’s phone. Once the clicker has answered, C2D
places a call to the clicked address.

C2D
to clicker to clicked address

21

Figure 3: Click-to-Dial makes two outgoing calls in
the numbered order.

Because of C2D, the user on the clicker end should hear
progress tones such as ringback and busytone to indicate the
status of the second call, even though the clicker’s phone was
reached in the role of a callee. These are reversed tones, be-
cause they reverse the expectation that ringback and busy-
tone are heard only by callers.
Similarly, a person who is already talking to another per-

son can try to add a third person by activating a Three-Way
Calling (3WC) feature. This person (the activator) should

hear progress tones to indicate the status of the third call. If
the activator was originally the caller, then these are sequen-
tial tones, because the caller has already made one successful
call, and heard the tones for it as it was being set up. If the
activator was originally the callee, then these are reversed
tones.
Reversed and sequential tones are desirable from the stand-

point of users, because they provide a complete and famil-
iar user interface for many features in many different situa-
tions. Reversed and sequential tones produce a bad interac-
tion with endpoint device feature modules, however, if the
endpoint device feature modules do not support them.
For example, although the expectation of the SIP archi-

tecture is that endpoint devices will perform all tone gen-
eration, SIP signaling constraints do not allow devices to
generate reversed or sequential tones. This is because the
standardized SIP signals that would cause an endpoint to
generate progress tones (180 for ringback, failure responses
for busytone and errortone) are not allowed in reversed or
sequential situations.1

4. A METHOD FOR PREVENTING AUDIO
FEATURE INTERACTIONS

4.1 Audio contention in single chains
First, a method for eliminating audio contention in a re-

stricted context will be presented. Then the context of ap-
plicability will be widened.
Consider the handling of a single request. In the pipes-

and-filters architecture, the request stimulates assembly of
a dynamic chain of feature modules. In this section we con-
sider these chains, with two restrictions: (1) No module can
have more than one continuation request at a time. (2) All
continuation requests sent by a module are sent for the pur-
pose of helping its incoming request succeed. This means
that once the module has sent a success signal upstream, it
cannot send any additional requests.
If all the feature modules in the chain obey a simple con-

vention, then we can be sure that there is no audio con-
tention. The essence of the convention is that a request
signal traveling downstream, followed by a success signal
traveling upstream, can be regarded as a token that is pos-
sessed by no more than one feature module at once. If a
feature module performs audio signaling only when it has
the token, then there can be no contention.
Figure 4 is a more precise and detailed representation of

this convention. It is a nondeterministic meta-program that
can be refined to a program for any feature module that
follows the convention.
The letters i and o name the ports of the incoming and

current outgoing call, respectively. ! and ? denote sending
and receiving a signal, respectively. Each state is labeled
with a letter and the calls that exist in the state, which may
be [i] or [i,o]. The black dot is the initial state, while bars
are final states. Commas separate independent transition
labels with the same source and sink states. The label o?end
/ i!end means that the module propagates an end signal

1As an aside, the scope of this problem extends beyond au-
dio signaling. Even if a SIP endpoint indicates progress to
its user by graphical or other means, it cannot do so in re-
versed or sequential situations, because SIP does not allow
the necessary signals.

i!failure

i!success
o!request

o?success

i!success

upstream end

A: [i]

C: [i, o]

i?request

E: [i]

channel to

o?failure,

audio−transparent

audio−transparent

can use audio

can use audio channel

can use audio channel i!end

o!end

o?end,

o!end

i!end
o?end /

D: [i, o]

to downstream end

to upstream end

B: [i, o]

Figure 4: A meta-program for modules that receive
a single request and have no more than one contin-
uation request at a time. i?end is possible in any
post-initial state.

received from downstream.
In addition to the transitions shown explicitly in the fig-

ure, in any state except the initial state, the program can
receive an end signal from the incoming call. In response,
the program must end the outgoing call (if any) and termi-
nate.
If a feature program is in state A or E of the meta-

program, its activity may include using the audio channel
through i to communicate with whoever is connected to the
upstream end of the audio channel. If a feature program is in
state C of the meta-program, its activity may include using
the audio channel through o to communicate with whoever
is connected to the downstream end of the audio channel. If
a feature program is in state B or D, it must be transparent
with respect to audio, which means that the audio channels
associated with i and o are connected to each other.
The meta-program is nondeterministic because it makes

room for many possible behaviors of programs that refine it.
For example, in state A, a program can choose to leave the
state by sending request, success, or failure signals.
By reasoning about the meta-program and the signaling

properties of chains, it is easy to prove that if a module is

in state A, then all modules upstream of it are in state B,
and are therefore audio-transparent. This is true because all
the modules upstream have sent a downstream request, and
have not yet received a success signal from downstream.
Furthermore, if a module is in state C, then all modules

downstream of it are in state D or E. These modules are
either audio-transparent, or represent the audio endpoint of
the chain. This is true because these modules have already
sent a success signal upstream.
These two theorems guarantee the absence of contention

when a feature module uses the audio channel in states A or
C. The use of the audio channel in state E will be discussed
in Section 4.3.

4.2 Refinements of the meta-program
The examples in this section illustrate the many ways in

which the meta-program can be refined.
The Do Not Disturb (DND) feature is enabled by sub-

scriber data. If enabled, it behaves as described in Sec-
tion 3.2. The announcements and prompts mentioned there
all occur when the DND program is in state A of the meta-
program. If the call is urgent, DND continues it by sending
o!request, entering state B, and going transparent.
Transparent behavior is a refinement of the meta-program.

From state B, if a transparent program receives a success
signal from downstream, it propagates the signal upstream,
and enters state D. From state B, if a transparent program
receives a failure signal from downstream, it propagates fail-
ure upstream, and terminates.
If the incoming call is not urgent, DND (in state A) sends

i!failure and terminates. Because of the highly modular de-
composition illustrated by the features in this paper, the
failure is handled by a different feature such as Record Voice
Mail.
Call Forwarding on Request (CFR), introduced in Sec-

tion 3.1, also does all its work in state A, then sends the
forwarding address in o!request. CFR could be combined in
the same feature module with Call Forwarding on Failure
(CFF), in which case it might have an active phase on a
second visit to A after o?failure. Usually, this phase would
use a database query rather than a caller choice to deter-
mine the forwarding address. Again, the forwarding address
would be sent in the request causing a transition from state
A to state B.
As a refinement of the meta-program, a Collect feature

module would interact with the caller in state A, possibly
to record the caller’s name. In state C the module would
interact with the callee, possibly playing the recorded name,
and certainly asking for permission to bill the call to the
callee. If the callee accepts, the module sends i!success and
goes transparent. If the callee refuses, the module sends
o!end and returns to state A. In state A it can inform the
caller that the callee has refused, and finally send i!failure.
A No-Answer Time-Out (NATO) feature module gener-

ates a time-out so that a request is guaranteed to yield an
outcome after a bounded amount of time. It does not use the
audio channel. As a refinement of the meta-program, it does
nothing in state A except to set the timer and continue the
request. If there is a time-out in state B, the module sends
o!end and i!failure, then terminates. If the module receives
an outcome before a time-out, it becomes transparent.
As a refinement of the meta-program, an endpoint device

feature module playing the caller role receives a user request

i?request through the hardware. It can generate dialtone on
its first visit to state A, and busytone or errortone on a
subsequent visit to A if the request fails. If it is generating
busytone or errortone, receiving i?end from the user through
the hardware will turn off the tone.
Record Voice Mail (RVM) is a familiar feature that is

triggered by the failure of its continuation request, and that
provides a good substitute for reaching its subscriber by
offering to record a voice message. Thus RVM turns failure
into success. On receiving o?failure in state B, an RVM
program passes instantly through A, sends i!success, and
goes to state E.
Note that a feature module in state B can monitor the

audio channel, provided that it does not interfere with end-
to-end audio communication. For example, a Sequential
Find Me (SFM) feature might sequence through outgoing
requests to a list of addresses, attempting to reach the in-
tended callee. It might allow the caller to abort any partic-
ular attempt because it is alerting too long or is otherwise
unpromising. The feature module would do this, in state B,
by monitoring the audio channel from the caller for a touch-
tone signal to abort. If the signal arrives, then the feature
module sends o!end and returns to state A to make another
attempt. In the same way, a feature module can monitor
the audio channel in state D.
As a refinement of the meta-program, an endpoint-device

feature module playing the callee role is a slight exception.
It generates both alerting and ringback in state B. To make
it fit the meta-program, we must imagine that the alerting
bell is just downstream of the feature module, and that ring-
back is heard upstream because the feature module is audio-
transparent in state B, and ringback is the same sound as
alerting. It is safe to bend the rules in this way because we
know that there are no feature modules between the end-
point device feature module and the imaginary bell.

4.3 Audio contention in multiple chains
Parallel Ringing (PR) is one of the most interesting fea-

tures we have implemented. When a PR feature module
receives a request for the person who subscribes to PR, it
sends simultaneous outgoing requests to several device ad-
dresses where the person might be reached. If one succeeds,
then PR connects that device to the caller and ends the
other requests.
To manage audio contention with the method introduced

above, it is necessary to regard PR as playing two roles: as
the end of one chain and as the beginning of some number
of others (Figure 5). As the end of the chain initiated by
the caller, PR remains in state A until it sends success or
failure upstream. In state A, it generates ringback. From
this viewpoint, its outgoing requests do not exist.
As the beginning of some number of independent chains,

PR spends most of its time in state B for each one of them.
However, in this state i is vestigial, and any downstream
module that attempts to use its state A to communicate
with the caller will get no response. This unfortunate feature
interaction is well known; it cannot be fixed, because there
is no graceful way to share the caller’s audio channel among
the parallel requests.2

2Forking in SIP has the same purpose as PR. Although this
problem has been discussed in the forking context [4], none
of the actions proposed there will help if a downstream mod-
ule needs communication with the caller to make its branch

RVM

parallel chainschain

AC

PR

AC

Figure 5: Multiple chains linked by Parallel Ringing.

Fortunately, it is possible for the downstream requests to
make productive use of the audio channel. Our consumer
VoIP service [1] has the target address of each device sub-
scribe to Answer Confirm (AC), as shown in Figure 5. AC
solves the following well-known problem: if the target of
one of the requests is a cellphone with RVM (for example),
and the cellphone is turned off, then the cellphone’s RVM
will answer the request immediately. This will cause PR to
abort the other requests immediately, so that there will be
no chance of reaching a person.
When AC receives success from downstream, it enters

state C. In this state it uses an audio interface downstream
to announce, “This is a call for John Doe. Please press 1
to accept the call.” If it receives the correct touch-tone, it
sends i!success and enters state D. Only a person will enter
the tone, so AC distinguishes requests accepted by RVM,
and causes them to fail or time out.
The third theorem about the behavior of the meta-program

concerns use of the audio channel in state E. When a feature
module is in state E, it is the permanent audio endpoint of
the chain. The theorem states that if a feature module is
in state E, then all feature modules upstream of it are in
states B, C, or D. B and D are audio-transparent states,
so they do not contend with the module in state E. The
AC/RVM example shows that a C/E combination is not a
case of audio contention, but rather a legitimate situation
in which the module in state C is using the audio channel
to communicate with the audio endpoint of the chain.

4.4 Evaluation of the meta-program
Conformance to the meta-program eliminates audio con-

tention only among those features that conform to it. If
there is an island of conforming components in a sea of non-
conforming components, then the island will interoperate
with the sea as well as usual, but there may be audio con-
tention between features on the island and features in the
sea.
Experience indicates that the meta-program is a valid ab-

straction of a large variety of feature modules. Inevitably,
however, there will be feature modules that seem legitimate
but do not conform exactly to the meta-program.

succeed.

In these cases the use of the meta-program, which is a very
easy way to guarantee the absence of audio contention, must
be augmented with additional reasoning about the special
case. The reasoning that an endpoint device feature module
on the callee end can safely use the audio channel in state
B is an example of such additional reasoning. So is the
section about PR, which shows that PR is safe in every way
except that feature modules downstream of PR cannot use
the audio channel to communicate with the caller.
Eventually it may be possible to design a more powerful

meta-program that accommodates all the exceptions. But
even if this is not possible, the current meta-program is a
powerful tool for distinguishing between easy and difficult
cases, taking care of the easy cases quickly, and showing
exactly what work must be done on the difficult cases.
As a last resort, cases of audio contention can be elimi-

nated by conferencing. Mixing audio sources allows several
to be heard simultaneously. Consider, for example, a feature
module that for some reason must use the audio channel in
state B. If it forms a three-way conference with i, o and its
audio-processing resource, then the audio channels of i and
o can still be regarded as transparently connected.

4.5 Definition of added calls
Assuming that all feature modules adhere to the discipline

of the meta-program, added calls are calls whose requests are
sent or received by feature modules in state D. If a feature
module receives a second incoming request in any state other
than D, the request should be rejected.
Many feature modules can add calls, and they are the

cause of reversed and sequential progress tones. Section 3.3
already introduced C2D and 3WC. Another well-known fea-
ture that adds calls is Call Waiting (CW). CW is different
from the others because the added request is incoming rather
than outgoing.
Another feature that adds calls is Sequential Credit-Card

Calling (SCCC). This feature prompts the caller to enter
credit-card information. Then the user can make a sequence
of calls charged to the same account, without re-entering
information. SCCC may seem very similar to SFM, which
also makes a sequence of continuation requests, even though
the requests of SFM are not considered to be “added calls.”
The difference is that all the continuation requests of SFM
are made for the purpose of helping its incoming request to
succeed, and once one continuation request has succeeded,
it makes no others. SCCC, on the other hand, can make
any number of successful continuation requests.
Figure 6 shows feature modules attempting to add a call.

In the figure, endpointW, through its Endpoint Device (ED)
feature module, is already talking to X, and Y is already
talking to Z. W subscribes to 3WC, and Z subscribes to
CW. W is using 3WC to call Z through CW. There may be
other feature modules, implicitly, in any of the paths.
Because of the presence of added calls, a feature module

may have signaling channels to three or more endpoints.
This introduces the possibilities of switching or conferencing
their audio channels.

4.6 Supporting reversed and sequential
progress tones

The structure provided so far makes it straightforward to
produce reversed and sequential progress tones, which are
necessitated by added calls. The basic idea, as exemplified

ZY

XED

ED

ED

ED

3WC

CW

W

Figure 6: Adding a call from W to Z.

by Figure 6, is that the 3WC module of W acts like a caller
endpoint feature module, generating any tones needed to be
heard byW. It also connects the audio channel of the added
call to its subscriber W when appropriate. Similarly, the
CW module of Z acts like a callee endpoint feature module,
generating any tones needed to be heard by Z. It also con-
nects the audio channel of the added call to its subscriber Z
when appropriate.
Tone generation can be moved from the modules where

the tone is specified (3WC and CW in the example) to any
point between that module and the ears of the user. All
we need is a simple set of end-to-end signals indicating the
beginning and ending of tones.
Ideally all tone generation would be implemented in end-

point devices, where it is most efficient. However, as noted
in Section 3.3, the infrastructure does not always support
reversed and sequential tones. SIP allows tone-generation
signals in some circumstances and not in others.
The solution that we used in our consumer VoIP service [1]

is as follows. There are two distinct sets of tone-generation
signals, those standardized in SIP, and a set invented for our
purposes (and sent in SIP info signals). Whenever possible,
feature modules use the standardized SIP signals, so that
tones will be generated by the endpoints. When this is not
possible, feature modules send the invented signals.
Every telephone automatically subscribes to a Tone Gen-

eration (TG) feature module, which is placed in feature
chains nearer to the devices than any other feature. A TG
module responds to the invented tone-generating signals,
playing the tones on the audio channel toward its device.

4.7 Audio contention and added calls
Added calls introduce many new opportunities for audio

contention. Each adding feature module needs, during the
addition phase, a clear audio path to its subscriber.3 Three
things might go wrong to interfere with the clear audio path,
thus producing audio contention:
† Some feature module between the adding module and its
subscriber might be in state C.

† Some feature module between the adding module and its
subscriber might also be in the process of adding a call.

† Feature modules that manage multiple parties, such as
3WC and CW, often perform switching of the audio chan-
nel. The audio channel from the subscriber may have been
switched away from the adding module in favor of the au-

3A possible exception to this is CW, which serves as the
callee endpoint feature module. It can alert its subscriber
with a very short tone or with conferencing, so that there is
no contention with the ongoing use of the audio channel.

dio path to some other party.
Managing audio contention for added calls seems to be quite
challenging. Although it will be left to future work, there
is some reason to expect that a satisfactory solution can be
found.
The ray of hope is that outgoing added calls do not occur

at random times, but are added because of explicit com-
mands from a subscriber. This makes it reasonable to as-
sume that such actions should be sequentialized, and to de-
sign enforcement into the user interface. In our commercial
VoIP service [1], for example, we had to manage possible au-
dio contention among several features that could be active
mid-call. Although our techniques were ad hoc, they were
intuitive and proved to be successful.

5. IMPLEMENTING AUDIO SIGNALING
IN SIP

5.1 Implementation architecture
The meta-program is a tool for understanding how to

coordinate use of audio channels. It should be viewed as
a specification that can be implemented in many different
ways.
In our implementation, the abstract call protocol is im-

plemented in SIP. Most feature modules are B2BUAs, so
that each signaling channel between two adjacent feature
modules carries its own dialogue. For example, Figure 7
illustrates a signaling chain consisting of a UAC (caller, re-
ferred to as T), a UAS (callee, referred to as U), and two
B2BUAs (feature modules F and G).

G

B2BUA
FT

UAS
U

audio

Server

Voice−
XML

subsequent call

B2BUAUAC

Figure 7: Architecture of a SIP implementation.

Whenever a feature module needs to perform media pro-
cessing, it makes a call to a media server. In the figure, G
is in state A, and is interacting with the caller through an
interactive voice-response user interface. To do this, it has
placed a SIP call to a VoiceXML server loaded with an ap-
propriate script. G coordinates the signals of its two calls so
that an end-to-end audio channel is set up directly between
the VoiceXML server and T.
If the interaction with the caller is successful and G pro-

ceeds to state B, then G will end the call to the server and
continue the incoming request to U. It will coordinate signals
so that an end-to-end audio channel can be set up between U
and T. Subsequent sections describe how this coordination
is accomplished.

UAC B2BUA B2BUA UAS

T F G U
1: invite

2: 200 ok [preliminary]

offer1, T

answer1, F

3: ack

empty

4: invite

solicit

5: 200 ok [preliminary]

offer2, G6: re-invite [preliminary]

offer2, G

14: 200 ok
15: 200 ok

answer2, T
8: ack

16: ack

answer2, T9: ack

18: ack

empty

empty
empty

10: invite

solicit

11: 200 ok

offer3, U

offer3, U

offer3, U

12: re-invite

13: re-invite

answer3, T
answer3, T

answer3, T17: ack

7: 200 ok

use upstream audio

use upstream audio

A

A

B

B

D
D

Figure 8: Implementation of upstream audio user interfaces in SIP.

5.2 Using the audio channel to the upstream
end

We first consider how feature modules that are refine-
ments of the meta-program can use the audio channel to
the upstream end.
Figure 8 is a message-sequence chart showing signaling

along the chain pictured in Figure 7. This configuration
illustrates a feature module with an ordinary SIP client up-
stream, a feature module with an ordinary SIP client down-
stream, a feature module with a feature upstream, and a
feature module with a feature downstream.
In the figure, a request eventually reaches end-to-end, as

does a success response. At the end of the signal sequence,
T and U are connected. However, on the way to this result,
both F and G use the audio channel to T in state A of the
meta-program. The figure shows the states of F and G at
all times.
The label above each arrow shows the type of SIP signal

and additional fields that are being used. The label below
each arrow shows the session description contained in the

signal, in an abbreviated form. The meaning of offer and
answer are obvious [12]. Offers and answers are numbered to
show their correspondence. Both solicit and empty indicate
no real session description. An invite or re-invite without a
session description is called solicit because it is soliciting an
offer. Ack signals without session descriptions are merely
empty. For offers and answers, the figure shows explicitly
the media endpoint represented by the signal.
The two feature modules F and G use media servers as

in Figure 7, but the media servers and the signaling with
them are not shown in Figure 8. When the names F and G
are used in signals to indicate media endpoints, they actually
refer to the corresponding media servers. In actuality, signal
1 is forwarded by F to a media server, signal 2 comes from
the media server and is forwarded by F to T, etc.
When a feature module receives a request by means of an

invite (signals 1 and 4) and generates 200 ok locally to pre-
pare for using the audio channel, it adds the tag preliminary
in an extra field (signals 2 and 5). This tag is an extension
to SIP. The tag will mean nothing to a user agent, but it

UAC B2BUA B2BUA UAS

T F G U

17: 200 ok

13: 200 ok
14: ack

23: ack
24: ack

empty

21: 200 ok
20: 200 ok

11: 200 ok

offer3, U

offer3, U
12: re-invite

16: re-invite

offer4, T
offer4, T

offer4, T

answer3, F
answer3, F15: ack

22: ack

solicit

18: re-invite
19: re-invite

answer4, U

answer4, U

answer4, U

empty
empty

use downstream audio

B

C

D

B

D

Figure 9: Implementation of a downstream audio user interface in SIP.

will indicate to another feature module that the signal is not
an implementation of success in the meta-program.
A 200 ok from a UAS will not have this tag, so it will

be interpreted by a feature module as success in the meta-
program (signal 11). Signals 12 and 13 also implement suc-
cess in the meta-program.
The general way in which offers and answers are handled

should not be surprising, as it is similar to many third-party
call control scenarios [11]. When a feature module is behav-
ing transparently, it forwards offers and answers faithfully.
Offers can travel in invite, re-invite or 200 ok signals. An-
swers can travel in 200 ok or ack signals. The transparent
module may need to change the type of the signals in which
an offer or answer is traveling, to fit the state of the dialogue
into which the signal will be sent.
For example, feature module F is logically transparent

from signal 4 onward. It changes a 200 ok with an offer to a
re-invite with an offer (signals 5 and 6). It changes a 200 ok
with an answer to an ack with an answer (signals 7 and 8).
Feature module G behaves similarly from signal 10 onward.
Figure 8 is a pattern that will work no matter how many

feature modules in the chain wish to use the audio channel
to the upstream end.

5.3 Implementing the remainder of the meta-
program

Figure 9 continues after signal 12 of Figure 8 in a differ-
ent way. Signal 12 causes F to enter state C of the meta-
program, and the figure shows how it creates an audio chan-

nel to U, uses it to communicate with the callee, and then
sends success to T in signal 16.
As in the previous section, this pattern will work no mat-

ter how many feature modules in the chain wish to use the
audio channel to the downstream end.
If a feature module needs to generate an upstream failure

after it has already sent a preliminary 200 ok, then it simply
sends bye. An upstream feature module that has not yet
received a final 200 ok when it receives bye interprets the
bye as failure.
If a feature module receives 183 with a session description

(early media) from downstream, then the feature module is
in state B, and there is no problem with allowing a down-
stream module to use the audio channel. Depending on
the state of the upstream dialogue, however, the transpar-
ent feature module may need to translate 183 into re-invite.
SIP early media is not used in the basic implementation of
the meta-program because it does not allow the final session
description from downstream to differ from the preliminary
session description. This makes it completely unsuitable for
a chain of feature modules, each of which may have its own
media server.
If a feature module receives 180 from downstream, it may

not be able to forward the signal upstream, because of the
state of the upstream dialogue. In this case, the feature
module receiving 180 could generate ringback upstream with-
out fear of audio contention.

5.4 Backward compatibility

UAC B2BUA B2BUA

T NATO G
1: invite

4: 200 ok [preliminary]

offer1, T

offer1, T

answer1, G

5: ack

empty 6: ack

empty

2: invite

3: 200 ok [preliminary]

answer1, G

8: bye [failure]
7: bye [end]

9: 200 ok

10: 200 ok

use upstream audio

B A

time-out

Figure 10: Implementation of No-Answer Time-Out in SIP.

Section 4.4 spoke of “an island of conforming components
in a sea of non-conforming components.” An island of con-
forming components will work successfully in a sea of SIP
components that comply with [13], although, as noted, only
contention among components on the island will be elimi-
nated.
All components on the island must conform with SIP im-

plementation of the meta-program, even if they do not use
audio signaling. Figure 10 illustrates this point. The sce-
nario in Figure 10 begins like the scenario in Figure 8, except
that module F has been replaced by a No-Answer Time-Out
(NATO) module.
This module sets its timer between signals 1 and 2. It

does not cancel the timer on receiving signal 3, because it is
only preliminary. When the time-out occurs, it sends a bye
signal to G that corresponds in G to i?end, and a bye signal
to T that corresponds in T to o?failure. Because of this
behavior, NATO must be a B2BUA rather than a proxy.
The NATO example serves to illustrate certain protocol

issues, but it is otherwise quite artificial. It is unwise to
put NATO in the chain in front of G, because G uses audio
signaling as a user interface to the caller, and this placement
means that the time spent in audio signaling exhausts the
time allowance for successful completion.
In a more practical arrangement, NATO would be placed

on the shore of the island, so that the timer would not be set
until audio signaling was completed. In this arrangement,
the NATO module might be an ordinary SIP proxy.

6. RELATED AND FUTURE WORK

6.1 Analysis and management of audio
interactions

There has been little previous work on analysis and man-

agement of audio feature interactions in VoIP. Most work on
VoIP feature interactions concerns the interaction of features
implemented within a single endpoint device, e.g. [14]. The
endpoint device is assumed to be a personal computer, so
there is no need for such features to communicate with their
user by means of a audio channel. In general, the emphasis
of most VoIP research is on exploiting the new opportuni-
ties provided by IP-based signaling. Not surprisingly, this
de-emphasizes audio signaling.
In our laboratory, we take a broader view of VoIP. We are

interested in supporting commercial voice-based services (in
the network) as well as personal features (in user devices).
We are committed to the interoperation of all voice net-
works, including the Public Switched Telephone Network
and cellular networks. In this broader context, audio signal-
ing is ubiquitous.
When overwhelmed with the difficulties of audio signaling,

it is easy to miss the opportunities it provides. Consider, for
example, the bad interaction of personal Parallel Ringing
(PR) with cellphone Record Voice Mail (RVM), as discussed
in Section 4.3.
This feature interaction is well-known in the VoIP world,

and has been discussed by several authors. One proposal for
resolving the problem is to require that cellphone RVM does
not answer the incoming call until about 24 seconds have
passed, so that a person has a chance to answer another
parallel attempt [5]. A second proposal for resolving the
problem is to require that the implementation of PR know
which addresses have RVM, and to disallow parallel ringing
of an address with RVM [10]. A third proposal is to set
the SIP caller preference so that a voicemail server has the
lowest priority as a callee.
In the commercial VoIP service we have worked with [1],

none of these proposals would be effective.

† The first proposal is not feasible because cellphone net-
works are out of our service’s control, so we have no power
to alter the behavior of their RVM features.

† The second proposal is not feasible for roughly the same
reason—we have no ability to probe the subscriber infor-
mation of a cellphone network. Even if it were feasible, it
would not be satisfactory, because it would force us to dis-
allow parallel ringing to cellphones, while that capability
is very popular with our customers.

† The third proposal is also infeasible because the cellphone
network is not using SIP signaling. The caller preference
will not be enforced in the cellphone network, and it can-
not be enforced by PR in the VoIP network because PR
has no way to distinguish between voicemail and human
callees. Also, it is a little odd to fix a callee feature in-
teraction with a caller capability, because the caller does
not know that the callee has these features or this feature
interaction.
Our solution to the problem is the use of Answer Confirm,

which employs audio signaling to distinguish people from
machines, and can do so while interoperating with any voice
network whatsoever. This is a good example of the benefits
of audio signaling.
Section 4 outlined solutions to two categories of bad fea-

ture interaction: audio contention in handling initial re-
quests, and lack of support for reversed and sequential progress
tones. The third category, that of audio contention caused
by added calls, requires future work to find one or more
systematic solutions.

6.2 SIP implementation of audio signaling
Because of the limitations of SIP early media as defined

in [13], there have been other proposals for providing early
media in SIP in a more general way [3, 4].
Although these proposals have some overlap of goals with

the mechanisms presented in Section 5, they appear to be
less general. They are presented as providing the final end-
point with the capability to use early media upstream. There
is no discussion of how to allow an application server that
is not the final endpoint the capability to use early media
upstream or downstream. There is, of course, no discussion
of how multiple application servers can have this capability.
Nevertheless, it is clear that Section 5 is not the only

way to implement the abstract protocol of the meta-program
in SIP. It may be that the techniques of [3] or [4] could
be elaborated to provide alternative implementations of the
abstract protocol.
Media clipping is an important issue raised in [4]. As

explained there, an offer/answer exchange in which the offer
travels in a 200 ok signal and the answer travels in an ack
signal is subject to media clipping. The endpoint sending
200 ok is free to send media immediately afterward, the
media is likely to reach the other end before the 200 ok
signal, and therefore the other end may receive media before
receiving even an offer on the signaling channel.
Given the current design of SIP, it is very difficult to cor-

rect this problem. The examples in this paper, as well as
many other third-party call-control scenarios [11], show that
the flexibility of invite signals that solicit offers is necessary.
The problem of media clipping arises because the 200 ok
is both a user-interface event (answering the phone) and
an end-to-end signal required for media setup. The Public
Switched Telephone Network, in contrast, is ready to carry

audio for a call before alerting begins at the callee’s device.
Of course, the design of SIP gives two distinct functions

to 200 ok so that the user who answers a call can choose the
media for the call. In the normal case the choice is made
from those media offered by the caller, while in the solicit
case, the callee chooses first. It is worth asking the following
question: How, and how often, does the callee actually make
such a choice? If seldom used in practice, perhaps it should
not have such a big impact on VoIP architecture.
Finally, one of the biggest practical problems with any ap-

proach to audio signaling in VoIP is that it entails a substan-
tial burden of programming. The general problem can be
characterized as that of compositional media control: How
can multiple, independent feature modules coordinate their
signaling so that end-to-end media channels are arranged
correctly?
This general problem has been solved with a distributed

algorithm executed by concurrent feature modules in a sig-
naling graph [16]. The algorithm allows them to manipulate
media streams independently, for their own purposes, while
ensuring that the resulting end-to-end media streams will
be provably correct.
Our current challenge arises from the fact that the gen-

eral solution in [16] does not work in SIP; it is built on
a signaling protocol that is both faster and more compo-
sitional than SIP. Section 5 indicates how we are working
to achieve full compositional media control in SIP. After
perfecting our techniques, we will incorporate abstractions
such as the meta-program in a high-level domain-specific
language for programming SIP servlets, so that the language
implementation can generate the programming details auto-
matically.

7. CONCLUSION
This paper has defined and analyzed the feature inter-

actions caused by audio signaling in VoIP, and outlined a
method for managing two out of three of the elucidated sub-
problems. Our experience with a commercial VoIP service
indicates that both the problems and the solutions are real-
istic.
Two assumptions shape the perspective and approach of

this work:
† Signaling in a VoIP system has a pipes and filters architec-
ture, in which service is controlled by chains of alternat-
ing feature modules and signaling channels. Physically, a
feature module could be an application server, a servlet
within an application server, a gateway, or some other
component.

† All features, modules, and functions should be viewed
compositionally. The compositional viewpoint says that
there is no such thing as a unique component. If it is
plausible that a system has one instance of some type of
component, then it is equally plausible that the system
has multiple instances of it. If a system has multiple in-
stances of some type of component, then their functions
must be composed correctly.

These assumptions are quite different from the usual VoIP
perspective. However, the research reported here illustrates
two arguments that can be made in their favor.
One argument for these assumptions is that they are re-

alistic and robust. No matter how hard designers try to
avoid them, in real systems, network components are likely
to be present. Among other reasons, network components

provide interoperation between heterogeneous subnetworks,
and they represent the interests and functions of essential
third parties. Even if designers feel that it is important to
minimize network components, it is prudent to assume that
some will be present, and to design systems that will work
when they are present.
A second argument for making these assumptions is that

generality can lead to simplicity. For example, Section 5
shows how to implement both upstream and downstream
audio signaling for any number of feature modules. This
appears to require less extension to SIP than the proposal
in [3] for implementing upstream audio signaling for the final
endpoint only. This illustrates that a solution to a more gen-
eral problem need not be more complex than a solution to a
more specific problem, and it will certainly last longer. This
is the fundamental argument for thinking compositionally.

Acknowledgments
My colleagues Greg Bond, Eric Cheung, Hal Purdy, Tom
Smith, and Venkita Subramonian have made many contri-
butions to this work. I am grateful for our long and produc-
tive collaboration.

8. REFERENCES
[1] Gregory W. Bond, Eric Cheung, Healfdene H.
Goguen, Karrie J. Hanson, Don Henderson, Gerald M.
Karam, K. Hal Purdy, Thomas M. Smith, and Pamela
Zave. Experience with component-based development
of a telecommunication service. In Proceedings of the
Eighth International Symposium on Component-Based
Software Engineering, pages 298–305. Springer-Verlag
LNCS 3489, May 2005.

[2] Gregory W. Bond, Eric Cheung, K. Hal Purdy,
Pamela Zave, and J. Christopher Ramming. An open
architecture for next-generation telecommunication
services. ACM Transactions on Internet Technology,
4(1):83–123, February 2004.

[3] G. Camarillo. The early session disposition type for
the Session Initiation Protocol (SIP). IETF Network
Working Group Request for Comments 3959, 2004.

[4] G. Camarillo and H. Schulzrinne. Early media and
ringing tone generation in the Session Initiation
Protocol (SIP). IETF Network Working Group
Request for Comments 3960, 2004.

[5] Ken Y. Chan and Gregor v. Bochmann. Methods for
designing SIP services in SDL with fewer feature
interactions. In D. Amyot and L. Logrippo, editors,
Feature Interactions in Telecommunications and
Software Systems VII, pages 59–76. IOS Press,
Amsterdam, 2003.

[6] M. Handley, H. Schulzrinne, E. Schooler, and
J. Rosenberg. SIP: Session Initiation Protocol. IETF
Network Working Group Request for Comments 2543,
1999.

[7] Michael Jackson and Pamela Zave. Distributed
Feature Composition: A virtual architecture for
telecommunications services. IEEE Transactions on
Software Engineering, 24(10):831–847, October 1998.

[8] JSR 116: SIP Servlet API Version 1.0. Java
Community Process, http:// www.jcp.org/
aboutJava/ communityprocess/ final/ jsr116,
2003.

[9] JSR 289: SIP Servlet API Version 1.1. Java
Community Process Early Draft Review, http://

www.jcp.org/ en/ jsr/ detail?id=289, 2007.

[10] Jonathan Lennox and Henning Schulzrinne. Feature
interaction in Internet telephony. In M. Calder and
E. Magill, editors, Feature Interactions in
Telecommunications and Software Systems VI, pages
38–50. IOS Press, Amsterdam, 2000.

[11] J. Rosenberg, J. Peterson, H. Schulzrinne, and
G. Camarillo. Best current practices for third party
call control in the Session Initiation Protocol (SIP).
IETF Network Working Group Request for Comments
3725, 2004.

[12] J. Rosenberg and H. Schulzrinne. An offer/answer
model with the Session Description Protocol. IETF
Network Working Group Request for Comments 3264,
2002.

[13] J. Rosenberg, H. Schulzrinne, G. Camarillo,
A. Johnston, J. Peterson, R. Sparks, M. Handley, and
E. Schooler. SIP: Session Initiation Protocol. IETF
Network Working Group Request for Comments 3261,
2002.

[14] Xiaotao Wu. Ubiquitous programming Internet
telephony end system services. PhD thesis, Columbia
University, 2006.

[15] Pamela Zave. Ideal connection paths in DFC.
Technical report, AT&T Research, November 2003.

[16] Pamela Zave and Eric Cheung. Compositional control
of IP media. In Proceedings of the Second Conference
on Future Networking Technologies. ACM SIGCOMM,
2006.

