Address Translation in Telecommunication Features

Pamela Zave
AT&T Laboratories—Research
Florham Park, New Jersey, USA

pamela@research.att.com

23 December 2003

Abstract

Address translation causes a wide variety of interac-
tions among telecommunication features. This pa-
per begins with a formal model of address transla-
tion and its effects, and with principles for under-
standing how features should interact in the pres-
ence of address translation. There is a simple and
intuitive set of constraints on feature behavior so
that features will interact according to the principles.
This scheme (called “ideal address translation”) has
provable properties, is modular (explicit cooperation
among features is not required), and supports exten-
sibility (adding new features does not require chang-
ing old features). The paper also covers reasoning
in the presence of exceptions to the constraints, lim-
itations of the theory, relation to real networks and
protocols, and relation to other research.

keywords: component architecture, feature
interaction, formal methods, network address-
ing, network protocols, network security, re-
quirements, telecommunications

1 Introduction

Telecommunications is networking with an emphasis
on real-time communication among people. Telecom-
munication services include conversation in media
such as voice (telephony), video (videoconferencing),
and text (“instant messaging”). Telecommunication
services also include mail in media such as voice
(voice mail) and text (electronic mail). Mail is in-
cluded both because it is simply buffered person-
to-person communication, and because mail is often
used as a backup when an attempt at conversation
fails.

The functions that a telecommunication network
performs for its users, on top of basic services, are
called features. As these networks evolve, new fea-
tures are continually being added. They often in-

teract in unexpected or problematic ways, which has
given rise to a great deal of research on the feature-
interaction problem [5, 6, 7, 9, 11, 20].

The goal of research in feature interaction is to
manage feature interactions, which means preventing
the bad ones and enabling the good ones. Although
this has proven to be difficult for many reasons, two
prominent ones are the need for extensibility and the
lack of telecommunication requirements.

Extensibility is at the heart of the feature-
interaction problem. Many of the new features added
to a telecommunication network are based on con-
cepts or technologies that were not anticipated when
software development for the network began. Their
number quickly mounts into the hundreds or even
thousands. Yet it must be possible to add new fea-
tures without undue effort, and without compromis-
ing the future extensibility of the software.

There are no widely accepted requirements for
telecommunications, in the sense of well-defined be-
havioral properties that all telecommunication net-
works should satisfy. This situation is due to many
factors, among them the long life cycle and incremen-
tal nature of software development, the conflicting
goals of various users, and the ambiguity of telecom-
munication concepts (see below). This lack exacer-
bates the feature-interaction problem by making it
difficult to distinguish good interactions from bad
ones, or, in other words, to determine how a telecom-
munication network should behave.

The goal of this work is to manage one category of
feature interactions, those caused by address transla-
tion.

1.1 The problem of feature interac-
tions caused by address transla-
tion

In every telecommunication protocol, requests for
communication carry at least two addresses: a source

address indicating which object is making the re-
quest, and a target address indicating which object’s
participation is being requested. Address translation
is a function performed by some features; it consists
of modifying a request for communication by chang-
ing its source address, target address, or both.

Address translation is a very common feature func-
tion (any kind of “call forwarding” is translation of
the target address). It also causes a wide variety of
feature interactions. Thus address translation causes
a huge number of feature interactions—possibly more
than any other feature function.

A typical question about the effects of address
translation begins, “If calls to a are being forwarded
to b, then should ” Such a question is usually
impossible to answer because it does not tell us what
a or b identifies or represents, nor does it tell us what
the forwarding is supposed to accomplish on behalf
of a. This is an example of the pervasive ambiguity
of telecommunication concepts.

Once the addresses and features are associated
with concepts and purposes in the users’ domain, the
ambiguity is reduced and judgments become possi-
ble. Then examples of bad feature interaction due to
address translation are easy to find.

In one example, a customer calls a sales group. The
call is forwarded to a sales representative; since the
sales representative is not available, his voice mail
offers to take a message. It would be much better
for the failure to re-activate the group feature to find
another representative. Because of forwarding, both
group and personal features are invoked, and they
interact badly.

In another example [14], two people with addresses
user1 @host1 and wuser2@host?2 correspond by elec-
tronic mail. Since user2@host2 wishes to remain
anonymous in this correspondence, he is known to
user1@host1 as anon2@remailer, and the anonymous
remailer retargets electronic mail for anon2@remailer
to user2@host?2.

However, user2@host2 also has an autoresponse
feature set to notify his correspondents that he is on
vacation. When electronic mail arrives with source
address user!@host1 and target address user2@host?2,
it immediately generates a response with source ad-
dress user2@host2 and target address useri@hostl.
When wuser!@host! receives the response, he learns
the identity of his anonymous correspondent. Thus
the autoresponse feature undermines the purpose of
anonymous remailing.

1.2 Outline of a solution

The first component of a proposed solution is a formal
model of the aspects of telecommunications related
to address translation (Section 2). The model makes
it possible to formalize address translation and its
effects, so that feature interactions can be predicted
and management mechanisms can be defined.

The model itself is part of the solution, as it has a
capability that is not found in many telecommunica-
tion protocols. Section 2 explains its relation to real
telecommunication protocols, including how its extra
capability can be simulated with other protocols.

The second component of a proposed solution is
a classification of feature interactions caused by ad-
dress translation, along with principles for evaluating
these interactions as desirable or undesirable (Sec-
tion 3). The principles balance conflicting desires and
design criteria, so that all can be satisfied to a rea-
sonable degree. They are an attempt to work toward
true requirements for telecommunications.

The third and central component of a proposed so-
lution is the concept of ideal address translation (Sec-
tion 4). This is a form of address translation intended
to capture intuitively what address translation could
and should be. It constrains how address translation
is performed, without constraining significantly what
address translation can accomplish.

Ideal address translation is based on address cate-
gories. Address categories reduce the usual ambigu-
ity about why features are functioning, and on whose
behalf. It then becomes easier to apply the princi-
ples from Section 3, and to understand how features
should interact.

A feature set in which all features obey the con-
straints of ideal address translation automatically
satisfies desirable properties derived from the prin-
ciples. It is modular, in the sense that features do
not need to know about each other or to cooperate
explicitly. It is extensible, in the sense that adding
or deleting features or other objects does not require
changing the existing or remaining ones. Its organi-
zation facilitates reasoning about other properties as
well.

In real telecommunication networks, exceptions to
ideal address translation are inevitable. Most com-
monly, they will occur because of legacy subsystems
that cannot be changed, or because of discrepancies
between the formal model and a real network pro-
tocol. Section 5 shows how the general-purpose rea-
soning embedded in ideal address translation can be
adapted to special-purpose reasoning in the face of
exceptions.

Section 6 summarizes the arguments for the valid-

ity of ideal address translation, and enumerates its
limitations. Section 7 relates it to other research.

2 A formal model of request
chains

2.1 Informal description

In telecommunications, an address can be associated
with a device such as a telephone, with a set of fea-
tures, or both. The distinction between a device and
a feature set is important because a device is an in-
terface to a person, while a feature set is a program.

All telecommunication protocols support requests
for communication. A request carries at least two
addresses: a source address indicating which object
is making the request, and a target address indicating
which object’s participation is being requested.

All telecommunication connections are set up by
request chains. A request chain is a chain consisting
of requests and modules, where each module is an
interface module or a feature module. An interface
module provides an interface to a telecommunication
device. A feature module instantiates a feature set.

Figure 1 shows an example of a request chain. The
device with address s! is requesting communication
with address t2. Its interface module initiated the
request chain with those addresses. A network router
routed the first request to the source feature module
of s1, containing those features applicable to a chain
whose source is s1.

A module continues a request chain by making an
outgoing request that corresponds to an incoming re-
quest it has already received. The source module
of sI continued the chain, in doing so changing the
source address from sf to s2. As a result of this
change, a network router routed the outgoing request
to the source feature module of s2.

The source feature module of s2 also continued the
chain. With no additional source modules to route to,
a network router routed its outgoing request to the
target feature module of t2. It contains those features
applicable to a chain whose target is t2.

The target feature module of t2 continued the
chain, first changing the target address from t2 to
t1. The chain was routed to the target feature mod-
ule of t1, and then finally continued to the interface
module of ¢1.

Every feature module in Figure 1 is optional. The
source region of a chain contains all its source feature
modules, while the target region contains all its target
feature modules.

The request protocol can create a two-way signal-
ing channel between the sender and receiver of the
request. Such a channel persists until it is deliber-
ately destroyed, which can be done from either end.

It is common for a feature module, on receiving
a signal through the signaling channel of a request,
to send the same signal out on the signaling channel
of the request’s continuation. Because of this com-
mon behavior, there can be a two-way signaling path
traversing the entire length of the chain. This is the
only path on which signals can travel among the mod-
ules of the chain.

2.2 Formal definition

There is a set of addresses. Each address can be asso-
ciated with an interface, a source feature set, a target
feature set, or any subset of the three (including the
empty set).

There is a set of modules. A module is an interface
module or a feature module. An interface module is
an instantiation of an interface. A feature module is
an instantiation of a feature set.

A request for communication has four mandatory
fields. The source and target fields contain addresses.
The region field has two possible values, which are
srcRegn and trgRegn. It indicates whether the re-
quest is part of the source region or target region of
a request chain. The status field has two possible
values, which are changed and unchanged. As will
be shown, it provides history that is necessary for
request chains to unfold correctly.

A module behaves as a concurrent process that can
participate in the request protocol. Whenever a mod-
ule issues a request for communication, the request
goes to a router which executes the routing algorithm
specified below to find a next module to route the re-
quest to. The request goes to the next module, which
then replies directly to the requesting module.

A request chain can be initiated by an interface
module or by a feature module. A module that initi-
ates a chain emits a request with:

source == <address of initiating module>
region == srcRegn
status == changed

A request chain that has led to a feature module
can be continued by the feature module. The feature
module has received an incoming request; it contin-
ues the chain by emitting a corresponding outgoing
request. In preparing the corresponding outgoing re-
quest, the module may change source, target, both,
or neither. The module must, however, obey the fol-
lowing rules:

SOURCE REGION

TARGET REGION

|
R source _ source _ target _ target R
src = s2 src = s2 src = s2 =
-_ mlegfalce feature feature feature feature sre =52 mlegfalce
module module ‘
dul module module module
A sl mosju ¢ trg =12 §2 trg =12 2 trg =tl tl trg =tl tl
Figure 1: A request chain.

if (region == srcRegn) {

if (status
nextMod :=
return;
} else {
region := trgRegn;
status := changed;
}
}
// regn == trgRegn
if (status ==

nextMod :=
else if (<target address has an interface>)

nextMod :=
else nextMod :=
return;

<instance of error handler>;

== changed && <source address has a source feature set>) {
<instance of source address’s source feature set>;

changed && <target address has a target feature set>)
<instance of target address’s target feature set>;

<instance of target address’s interface>;

Figure 2: The routing algorithm (pseudocode is delimited by angle brackets).

e The outgoing region is the same as the incoming
Tegion.

o If the region is srcRegn, then if the feature module
has changed source the outgoing status is changed.
Otherwise the outgoing status is unchanged.

o If the region is trgRegn, then if the feature module
has changed target the outgoing status is changed.
Otherwise the outgoing status is unchanged.

In summary, feature modules can change the source,
target, and status fields, but cannot change the region
field. If a module has changed either the source or
target address while continuing a request chain, it
has performed the function of address translation.

A router contributes to request chains by receiv-
ing requests emitted by modules, and routing them
to next modules chosen by the algorithm in Figure 2.
In addition to choosing a next module, the algorithm
can also change the region and status fields of the
request, so that the next module may receive an al-
tered request. A error handler handles routing errors.
For the purposes of this paper, it is indistinguishable
from an interface of the target address.

In the source region, the algorithm chooses a source
feature module if and only if the source address has a

source feature set and the source address was changed
by the feature module that issued the request. If the
source address is unchanged, then an instance of the
source address’s source feature set is already in the
request chain—it is, in fact, the module that issued
the request.

If the algorithm does not choose a source feature
module, then the source region is complete; the router
advances to the target region and continues the rout-
ing process. Routing for the target region is similar,
except that if there is no target feature module to
route to, then the target region is complete, and the
router routes to the target’s interface module.

A source region of a request chain (if any) is a
maximal subchain in which every request has its fi-
nal region equal to srcRegn and every module is a
source feature module to which one of those requests
is routed. A target region of a request chain (if any)
is a maximal subchain in which every request has fi-
nal region equal to trgRegn and every module is a
target feature module to which one of those requests
is routed. Note that if a request chain is initiated by
a feature module, the initiating feature module does
not belong to either region.

The most fundamental property of request chains
is established by the Region Lemma.

Region Lemma: A request chain has at most one
source region and at most one target region. The
source region precedes the target region.

Proof:

(1) A request chain is initiated by a request with re-
gion equal to srcRegn (definitions).

(2) The region field is propagated unchanged through
the request chain, by both feature boxes and execu-
tions of the routing algorithm, except that the rout-
ing algorithm can change its value from srcRegn to
trgRegn (definitions). Clearly this can only happen
once.

(3) If the final region of a request is srcRegn
[trgRegn], then if it is routed to a feature module,
it is a source [target] feature module (definitions).
(4) Only a feature module can continue a request
chain, so if a request is routed to an interface module
or an error handler, the request is the last element of
its request chain. O

The formal model of request chains does not con-
strain the number of instances of any feature set or
interface, but the number may be constrained by the
network. For example, it is common for the address
of a device to have exactly one interface module, to
which all requests are routed.

All signaling channels among interface and feature
modules are created by the request protocol, so that
signals can travel only along the paths of request
chains. The formal model does not constrain how
long any signaling channel persists before it is de-
stroyed. Signals among interface and feature modules
are used to determine when and where media chan-
nels are needed, but direct control of media channels
takes place at a lower level of abstraction.

2.3 Other examples

Figure 3 shows a source feature module that provides
a Three-Way Calling feature. It continues the same
incoming request from its subscriber twice, once when
the subscriber initiates the request chain, and once
when the subscriber invokes the feature. As it main-
tains both continuations simultaneously, the source
feature module and its incoming request belong to
two distinct request chains.

Request chains for a broadcast would look the
same, except that there would be many more of them.
The main difference between a broadcast and a con-
ference is that, in a broadcast, media flows in only
one direction.

Figure 4 shows a feature module that provides a
Call Waiting feature. Here the same module instan-

) source src =
interface feature - T
r 3
module module §
Ky s
srcx‘
trg =12 R

Figure 3: A feature module with Three-Way Calling.

tiates both the source and target feature sets of z.
The incoming request from z arrived after the outgo-
ing request to y was continued by the feature module.
The feature module, knowing that the interface mod-
ule of z is busy, does not continue the request from z,
but rather sends z a signal that a call is waiting. As
a result, the feature module is the end of the request
chain with source z.

. src = x
interface feature |—— =.....
module module rg=y

X X

src =2z trg =x

Figure 4: A feature module with Call Waiting.

Often, feature modules access persistent data
stored in the network. As the distinction between
a feature associated with an address and data asso-
ciated with an address is not significant here, an ad-
dress’s data is simply viewed as part of the address’s
feature sets.

Figure 5 shows request chains for electronic mail
using SMTP [21] and related protocols. The exam-
ple is like the electronic-mail example in Section 1.1,
except that no anonymity has been introduced.

The telecommunication device is a user agent
running on a personal computer. “Mail host
user1@host1” is both the source and target feature
module of user!@hostl, and “mail host user2@host2”
is both the source and target feature module of
user2@host2.

To write mail, the user agent initiates a request
chain which is first routed to its source feature mod-
ule. This feature module buffers the mail, so that
the signaling channel between the user agent and the
mail host can be destroyed as soon as the mail has
been transmitted.

Joen mail
-_ agent g 87¢ = user] @host] mait
RITE MAIL
@uifoe;tll trg = user2 @host2 é‘;lgrs £1 W
mail 1 @host] mail
src = user oS
SEND MAIL | o e = werl @l host_
@hostl | 6 @hsi2
src = user2@host2
= AUTORESPONSE
trg = userl @hostl
mail Tser
src = user2@host2 | aoent
READ MAIL }I;(S):E’Z = null u%erZ _'-
@host2 trg = nu @ hos?

Figure 5: Electronic mail. The three snapshots arise during three different phases in the life of a message.

Electronic mail is sent by continuing the original
request chain from the source feature module of the
source address to the target feature module of the
target address. A mail host acting as a target feature
module only continues an incoming request if it is
forwarding the mail. If it is not forwarding the mail,
it buffers it until the addressee chooses to read it.

The target feature module of user2@host2 includes
an autoresponse feature which is currently enabled.
When the module receives a request for user2@host?2,
the feature initiates a new chain with the source and
target fields of the incoming request reversed. The
black dot indicates the initial request of the chain.
The feature module is acting automatically on behalf
of its owner, and the new chain is treated exactly as
if it had been initiated by the owner of user2@host2.

To read mail, a user agent initiates a request chain
with a null target address.! Like all other request
chains initiated by the user agent, this is routed to
its source feature module. The chain goes no further,
as its only purpose was to connect the agent with its
mail host.

2.4 Relation to real telecommunica-
tion protocols

In general, the formal model of request chains is
an abstraction of real telecommunication protocols.
This section points out significant exceptions to the
generalization.

IThe null value is a distinguished value of type address. It
is often found in the source region of a request chain, either
because the chain is not intended to extend beyond the source
region, or because a source feature module will interact with
the caller to produce a real target address.

Most telecommunication protocols do not pro-
vide for multiple source feature modules in a re-
quest chain. The list of such protocols includes the
protocols of the public switched telephone network
(PSTN), SMTP [21] and other protocols for elec-
tronic mail, and the Session Initiation Protocol (SIP)
for creating, modifying, and terminating multimedia
IP sessions [25].

When a request chain begins, these protocols route
to a source feature module, if any, associated with
the initiating address. If this module continues the
request chain, the next request is routed in the target
region.

When services built on these protocols require mul-
tiple source feature modules, they simulate them. For
example, to simulate Figure 1, the source feature
module of s1 continues the request chain with target
equal to s2. Next a router routes to a target feature
module of s2, which proceeds to behave like a source
feature module.

The obvious disadvantage of this simulation is that
the true target address t2 is lost, and must be recov-
ered with additional signaling and possibly additional
user input. These cases are considered in detail in
Section 5.1.

For services built using SIP, the default assumption
is that a request chain will inform two interface mod-
ules of each other’s addresses, after which they will
send signals directly to each other, rather than along
the path of the request chain. The disadvantages of
this are discussed in Section 7.4.

The formal model of request chains is most closely
matched by Distributed Feature Composition (DFC),
which is a formally defined modular architecture for
description of telecommunication services [18, 19].
DFC has an IP-based implementation [4].

Routing in DFC differs from the formal model here
primarily in being finer-grained. In DFC a source or
target feature set associated with one address can be
instantiated by many independent modules, each one
implementing a single feature. In addition to con-
necting feature modules with different addresses, the
DFC routing algorithm also connects single-feature
modules belonging to the same address. In other
words, an atomic feature module in this paper corre-
sponds to a subchain of requests and feature modules
in DFC.

Another refinement present in the DFC routing al-
gorithm is the distinction between bound and free fea-
ture modules. When a router needs an instance of a
free feature module, it creates a new, interchangeable
one. When a router needs an instance of a bound fea-
ture module, it finds the unique, persistent module
instantiating that feature set for that address. The
use of bound feature modules joins request chains
into graphs, because it allows a request to be routed
to a module that is already participating in another
chain.

For example, in DFC an address that subscribes to
Call Waiting must have the feature in both its source
and target feature sets, and a feature module instan-
tiating Call Waiting must be bound. This is how, in
Figure 4, the same module instantiates both source
and target feature sets, and an incoming request is
routed to that module.

3 Principles for feature interac-
tion

3.1 Ownership

Each address has one or more owners who are respon-
sible for it and have rights concerning it. An owner
is usually a person.

An address may have an authentication secret,
which is assumed to be known only to its owners. If
necessary, an owner must produce the secret to prove
that he is an owner and thus gain access to his right
to use the address.

With respect to knowledge, there is no point in dis-
tinguishing between a feature module and any owner
of its address: if a secret is revealed to a feature
module, the feature module can store it as data, and
the data can be examined by any owner; if an owner
knows a secret, he can insert it into the code or data
of his feature module, so that the feature module can
use it.

3.2 Address-translation functions

In telecommunications, the fundamental addresses
are the addresses of telecommunication devices.
However, addresses are used to identify many things
besides devices.

A group address identifies a group of things, such as
the departments of an institution, or the people of a
work team. Representation is a feature function? that
translates a group target address to the address of an
appropriate representative of the group. Affiliation is
a feature function that changes the source address of
a request to the address of a group. This allows a
representative access to the source features and data
of the group.

A mobile address identifies a mobile object such as
a person. Location is a feature function that trans-
lates a mobile target address, such as a personal ad-
dress, to the address of a device where the person is
located. Positioning is a function that changes the
source address of a request from a device address to
a personal address. This allows the person access to
his personal features and data from any device.?

A role address identifies a role that can be played
by another object such as a group, person, or device.
Assumption is a feature function that changes the
source address of a request to a role address, thus
allowing the caller to assume that role. Resolution
is a function that translates a target role address to
the address of the object playing the role. Roles are
assumed as identities, intended to reveal or conceal.
For example, in Section 1.1, anon2@remailer is a role
address.

Often these concepts are combined in the meaning
of an address. For example, the address of a physi-
cians’ office identifies a group of people. It also serves
as an identity (role) that is more recognizable to pa-
tients than a physician’s home address, and that a
physician would rather give to patients.

3.3 Ordering

The previous section showed that addresses can be
categorized by what they identify. The categories
mentioned are just examples; in practice, there can
be many other categories.

The primary mechanism for management of feature
interactions in this paper is an ordering on address
categories.

2In this paper, a “function” is a task performed by a feature
or a responsibility of a feature, rather than a mathematical
function.

3This is software-based mobility, in contrast to network-
based or device mobility, in which a device moves without
changing its network address.

This ordering is called abstraction because it is a
convenient and familiar name. In many cases, the ab-
straction ordering and the connotations of “abstrac-
tion” coincide. For example, it makes sense to say
that a group address is more abstract than the per-
sonal mobile address of a member of the group, and
a personal address is more abstract than the address
of a device that the person is using. A device address
is more concrete than any other kind.

On the other hand, in some cases the order of two
address categories may seem unrelated to the word
“abstraction.” The categories are ordered so that
features will interact in the most desirable ways, and
for no other reason. In these cases, it is best to think
of “abstraction” as an arbitrary name for a specific
relation.

3.4 Identification

People and feature modules use the addresses that
they know to identify the parties with whom they
are communicating. A feature that performs address
translation interacts with other features by affect-
ing the identification information they receive in re-
quests.

As discussed above, privacy is a motive for address
translation. When it comes to privacy, there is al-
ways an inherent conflict of interests between those
who wish to know and those who wish to conceal. It
seems that this conflict can be resolved fairly with
the following two principles:

e Privacy: A person should be able to conceal a more
private address that he owns behind a more public
address that he owns.

o Authenticity: A person should not be able to pose
as an owner of an address he does not own.

A private address is a more concrete address, while a

public address is a more abstract address.

Achieving authenticity often requires authentica-
tion, another feature function related to address
translation. An authentication function demands
an authentication secret in the form of a password,
voiceprint, or some other proof that a user is an owner
of a particular address.

Authentication might be needed in many different
feature modules, as shown in Figure 6. In this chain,
dI and d2 are device addresses. The source feature
module of d1 assumes the source role of 71, while the
target feature module of r2 resolves that role to d2.

In the absence of physical protection, anyone might
walk up to device dI and start using it. If this is not
acceptable, the source feature module of d1 must au-
thenticate that the user is authorized to use the de-
vice, which (in the simple authorization model used

here) means that the user is an owner of dI. The
brackets indicate that the authentication secret is ob-
tained through a dialogue between the feature mod-
ule and the device/user on its left. If authentication
does not succeed, the source feature module of d1
does not continue the request chain.

The assumption of source role r1 can only be per-
formed by a feature module of some address other
than r1, so anyone can program his source feature
module to assume the identity of anyone else! This
serious problem is solved by putting authentication
that the caller is an owner of 71 into the source feature
module of r1, as shown in the figure. This is secure
because, once the source address has been changed
to r1, the routing algorithm must route the request
chain to the source feature module of r1.

Target feature modules can also authenticate that
the person who answers the telephone is the expected
person. The figure shows authentication of both r2
and d2, through dialogues with the device/user on
the right. If authentication fails, the feature mod-
ule breaks the connection before the unauthenticated
person can talk to the initiating end of the chain.

3.5 Contact

People and feature modules use the addresses that
they know to contact the parties with whom they
wish to communicate. A feature that performs ad-
dress translation interacts with other features by af-
fecting the contact information they receive in re-
quests.

The important principle for contact is:

o Reversibility: A target feature module or callee
should be able to call the source address of a
request chain and thereby target the entity that
initiated it.

The principle must be worded carefully because the
source address may be abstract. For example, if the
chain was initiated on behalf of a group, then the
group is the initiating entity, rather than the group
representative who actually picked up a telephone.

Another potential contact principle is
reproducibility—the notion that if a caller calls
the same abstract address twice, his call should be
directed to the same concrete address both times.
Although reproducibility has certain attractions,
it is a bad idea in general. It undermines the
freedom of representation functions, and it makes
mobility impossible. Section 4.5 shows how a modest
amount of reproducibility can be provided within
the guidelines.

assumption resolution

ofrl ofr2
| |
| |
| |

. source source o target e target o .
ﬂ_ interface | src=dl feature src =rl feature src=rl feature src =rl feature src =rl | interface
. module module module module module module .
i trg =r2 dl rg =r2 rl rg =r2 2 trg =d2 &2 trg = d2 &L

I Lo
| authentication of owner of dI :

! authentication of owner of d2 |
I

Figure 6: Many different feature modules may perform authentication.

3.6 Invocation

Through the routing algorithm, the addresses in a re-
quest chain determine which feature modules are in
the chain. A feature that performs address transla-
tion interacts with other features by affecting which
feature modules are invoked by appearing in the
chain.

Address translation causes the invocation of mul-
tiple source feature modules and multiple target fea-
ture modules. The worst case is having an unbounded
number of them, because of an address-translation
loop. The need for the following principle is obvi-
ous:

e Boundedness: The number of source feature
modules in a source region should be bounded,
and the number of target feature modules in a
target region should be bounded.

A more subtle issue is that address translation can
cause the invocation of several feature modules, in
the same region, with competing features. This is
often desirable, but it requires some coordination so
that competing features interact properly.

For example, often features compete with each
other to handle the same situation. In the target re-
gion, several features may be treatments for unavail-
ability of the target. The target interface module (or
the feature module acting on its behalf) may gener-
ate a signal indicating that the target is unavailable
(busy or not connected to the network). This signal
acts as a trigger for any unavailability treatment that
receives it.

This sharing of a triggering signal is an effective
coordination mechanism for competing features in a
modular, extensible system with distributed author-
ity. Because a triggering signal must travel on the
signaling path of a request chain, it acts as a token.

When a feature module receives a triggering signal,
it has permission to execute any feature triggered by
the signal. The module itself decides when, and if, to
propagate the triggering signal. When it propagates
the signal, it is passing the permission token to other
modules.

If competing features do not already share a trig-
gering signal, it may be necessary to force them to.
For instance, many features are treatments for a no-
answer condition. If the telecommunication protocol
being used does not have a no-answer signal, a feature
triggers itself by setting a timer for some locally de-
termined no-answer interval. This makes it very dif-
ficult to coordinate separate no-answer treatments—
even if the intervals are coordinated, race condi-
tions may disrupt any intended prioritization. The
straightforward solution to this problem is to have
one timer that generates a no-answer signal, which
is shared among features in the same way that other
failure signals are.

This coordination mechanism automatically gives
higher priority to features that are closer to the
source of the shared triggering signal. Many shared
triggering signals are generated by the devices and in-
terface modules at the outer ends of request chains.
Source features triggered by these signals have higher
priority if they are closer to the outer (initiating) end
of the chain, and target features triggered by these
signals have higher priority if they are closer to the
outer (terminating) end of the chain. A useful orga-
nizational structure is imposed by the following prin-
ciple:

e Monotonicity: In a region, the feature modules of
more concrete addresses should be closer to the
outer end of the region than feature modules of
more abstract addresses.

Monotonicity serves two purposes. First, it auto-

matically gives the feature modules of more concrete
addresses default priority over the feature modules of
more abstract addresses in handling triggers from the
outer ends of request chains. This means that most
feature modules interact correctly without extra ef-
fort.

Consider, for example, a person who uses several
role addresses (work, family, youth-group leader), all
of which are translated by target feature modules to
the same personal mobile address. The role addresses
are more abstract than the personal address.

If someone calls one of the role addresses, if the
feature module of the personal address attempts to
locate the person at a particular device, and if the call
to the device is not answered, the no-answer signal is
received first by the personal feature module. It may
be able to handle the no-answer condition success-
fully by trying another device which the person does
answer.? If it cannot handle the condition, it replaces
the no-answer signal (referring to the device) by the
unavailable signal (referring to the person), and sends
it upstream. There it triggers the feature module of
the role in which the person is being called, which
makes a role-based decision about what to do.

Second, monotonicity makes it possible to override
the default priority in the rarer cases when default
priority does not result in correct feature interaction.
Consider the sales-group example in Section 1.1. A
group address is more abstract than a personal ad-
dress, but group features should have priority over
personal features in handling the unavailability of a
person. A group consists of several people, so the
quickest and most effective treatment for the unavail-
ability of one person is to find another person.

In the distributed setting of a request chain, a fea-
ture module in a target region cannot preempt a more
concrete feature module in the target region in re-
sponding to a signal from the target. It can only ask
the more concrete feature modules to relinquish their
priority, and hope that they will cooperate.

Monotonicity is needed to accomplish this in an
extensible setting. The group feature module sends
a relinquish request downstream. Because of mono-
tonicity, the feature module knows that the feature
modules the signal will reach are exactly those fea-
ture modules in the target region whose addresses
are more concrete than its own. It knows this with-
out knowing anything about which feature modules
are actually present or absent.

4Note that in this case the feature module is making two
sequential continuations of the same request chain.

10

4 Ideal address translation

4.1 Addresses and address categories

In telecommunications, the usual meaning of an ad-
dress is an entity that can place or receive calls. In a
system with ideal address translation, there must be
a global, one-to-one mapping between addresses and
meanings.

In a system with ideal address translation, there is
also a finite set of address categories. Fach address
belongs to exactly one category.

There is an abstraction relation on address cate-
gories. It is transitive (hence, an order) and irreflex-
ive. An address can have multiple associations with
other addresses, but they must all be compatible with
respect to the abstraction order.

For an example of a violation that is easy to fall
into, consider a new mobility service offered to office
workers. Each worker already has an office telephone
number, which is printed on his business card. So a
worker subscribes to the mobility service by forward-
ing his office telephone number to his new mobile
telecommunication address.

Now the office telephone number is a public role
address, known to all, which is resolved to the more
private mobile address. In this sense the office tele-
phone number is more abstract than the mobile ad-
dress. At the same time, the office telephone number
represents a device which is sometimes the location of
the mobile address. In this sense the mobile address
is more abstract than the office telephone number. In
ideal address translation, these two relationships be-
tween office telephone numbers and mobile addresses
are incompatible.

Categorizing and ordering addresses tends to make
it very clear what they identify. The resultant lack
of ambiguity is very helpful in designing appropriate
feature behavior and understanding feature interac-
tions. It also has other beneficial side-effects, such as
making presence information [3], which is necessarily
based on addresses, more meaningful.

4.2 Constraints

A system with ideal address translation adheres to
the following constraints.

The first constraint supports reversibility and other
goals. If a target feature module is allowed to change
the source address of a request chain, it is replac-
ing source information with something else, for some
other purpose. With true source information gone,
the chain cannot be reversed.

o Constraint 1: A target feature module in a request
chain does not change the source field.

Constraint 1 has no counterpart in the source region
because it would be too restrictive (not because it
would be useless). One of the most common functions
of source feature modules is creating and modifying
target addresses.

The second constraint supports all the desirable
properties of ideal address translation. It recognizes
that the true purpose of address translation is to
change to a different level of abstraction, as all the
translation functions in Section 3.2 do. The con-
straint forces an orderly progression through the ab-
straction order. The constraint is symmetric across
regions and has two parts, one for each of the two
regions.

e Constraint 2s: If a source feature module in a re-
quest chain changes the source field, the new source
address is more abstract than the old one.
Constraint 2t: If a target feature module in a re-
quest chain changes the target field, the new target
address is more concrete than the old one.

If addresses only appeared in the source and target
fields of requests, then Constraints 1 and 2 would be
sufficient. Addresses also appear, however, in other
signals sent on signaling channels. A third constraint
is necessary to deal with them.

An address in a signal must be constrained only if
it is an alternative source/target of this chain. Such
signals are relatively common; in this paper they can
be found in Figures 8 and 10. The additional con-
straint does not apply to addresses transmitted for
purposes not directly related to the particular chain.
For example, a user might employ the signaling path
to update his personal data. An address transmitted
only so that it can be put in a database is not di-
rectly related to the particular chain along which it
is transmitted.

Constraint 3 supports the goal of privacy. Like
Constraint 2 it has two parts, one for each region.

e (Constraint 3s: A source feature module in a re-
quest chain does not transmit downstream, as an
alternative source of the chain, any address more
concrete than its own.

Constraint 3t: A target feature module in a request
chain does not transmit upstream, as an alternative
target of the chain, any address more concrete than
its own.

4.3 Properties

The purpose of the constraints is to support the goals
of privacy, authenticity, reversibility, boundedness,
and monotonicity. Specifically, the constraints guar-
antee the properties stated in this section.
Constraints 2s and 2t are by far the most important

11

ones. They guarantee boundedness and monotonicity

properties, as well as contributing to the proofs of

other properties.

o Source Boundedness Theorem: In a request chain

that satisfies Constraint 2s, the number of feature

modules in its source region is less than or equal
to the depth of the abstraction order on address
categories.

Target Boundedness Theorem: In a request chain

that satisfies Constraint 2t, the number of feature

modules in its target region is less than or equal
to the depth of the abstraction order on address
categories.

Source Monotonicity Theorem: In a request chain

that satisfies Constraint 2s, if m1 and m2 are fea-

ture modules in its source region, and mI precedes
m2, then the address of m2 is more abstract than
the address of m1.

Target Monotonicity Theorem: In a request chain

that satisfies Constraint 2t, if m2 and m1 are fea-

ture modules in its target region, and m2 precedes
m1, then the address of m2 is more abstract than
the address of m1.

These theorems are straightforward consequences of

the definitions and constraints.

The principle of reversibility says that it should be
possible for a target of a request chain (feature mod-
ule or interface module) to target the entity on whose
behalf the chain was initiated. The best identification
of this entity is the most abstract source address in
the chain.

o Reversibility Theorem: In a request chain that sat-
isfies Constraints 1 and 2s, there is no value of a
source field more abstract than the value of the last
source field. If the chain has a target region, this is
the value of the field throughout the target region.

Proof:

(1) If the source field is changed in the course of the

request chain, it is changed by a source feature mod-

ule (Constraint 1).

(2) If a source feature module changes the source field

of a request chain, it changes it to a more abstract

address than the previous value (Constraint 2s).

(3) Consequently, the source field grows monoton-

ically more abstract throughout the source region,

then stays the same throughout the target region. O
The authenticity of an address cannot be guaran-

teed unless its feature modules perform authenticity

functions, as described in Section 3.4. The proofs of
authenticity properties rely on these functions as well
as on constraints.

o Source Authenticity Theorem: If s2 fills a source
field in the target region of a request chain that
satisfies Constraints 1 and 2s, and if s2 has a source

feature module with unconditional authentication,
then either an owner of s2 is present at the initi-
ating device, or an owner of s2 also owns another
source address s1 of the chain, and s/ is more con-
crete than s2, and the source feature module of sf
contains the authentication secret of s2.

o Target Authenticity Theorem: If t2 fills a target
field in the target region of a request chain that sat-
isfies Constraint 2t and extends all the way to an
interface module on the terminating side, and if ¢2
has a target feature module with unconditional au-
thentication, then either an owner of ¢2 is present
at the terminating device, or an owner of t2 also
owns another target address t1 of the chain, and
t1 is more concrete than t2, and the target feature
module of ¢ contains the authentication secret of
t2.

The proofs of these theorems abstract away the
temporal dimension. For example, the Target Au-
thenticity Theorem applies to a request chain that
“extends all the way to an interface module on the
terminating side,” even though there is a bounded
interval in which the the chain has reached the ter-
minating interface module, but no user has answered
yet, or there has not been sufficient time for the au-
thentication process to occur. The proof assumes
that this interval is past.

Furthermore, both theorems say “an owner of [the
authenticated address] is present at the [relevant] de-
vice,” even though the owner may only have been
present long enough to enter the authentication se-
cret, and then walked away. In practice, the only way
to prevent this is to make the authentication function
demand re-authentication periodically, and to break
the connection if it does not succeed.

Finally, an owner of s2 or t2 might put its authen-
tication secret in a feature module of sI or ¢1 for his
own convenience. (Provided that the same person
owns both addresses, this does not violate ownership
assumptions about keeping secrets.) sI or tI might
be the address of a device used by no one else. If its
feature modules have the authentication secret of the
more abstract address, then he can use the private
device and the abstract address without bothering to
enter the secret manually.

However, contrary to the owner’s expectations,
someone else might use this configuration of equip-
ment and features. This is how the assumptions of
the theorems might be satisfied, yet the owner of s2
[tZ] is not present at the initiating [terminating] de-
vice.

The authenticity theorems are proved as follows.
Proof of Source Authenticity Theorem:

(1) The request chain contains a source feature

12

module of s2. This follows from:

(1a) s2 fills the source field of the unique request
in the chain with initial region equal to srcRegn
and final region equal to trgRegn (Region Lemma,
Constraint 1).

(1b) When issued by a box, this request had status
equal to changed or unchanged (definitions).

(1c) If unchanged, then the issuing box is a source
feature module of s2 (definitions). If changed, then
s2 has no source feature set, which contradicts the
assumptions of the theorem (definitions).

(2) Because the chain has been continued past the
source feature module of s2, that module received
from upstream the authentication secret of s2
(behavior of authentication function).

(3) If there is a feature module upstream of the
source feature module of s2, it is a source feature
module of an address sI, where s1 is more concrete
than s2 (Constraint 2s, Source Monotonicity Theo-
rem).

(4) The source feature module of s2 could only have
received the authentication secret from the initiating
device or from a feature module upstream, which
must be a source feature module of si. This results
in the following two cases:

(4a) If the secret was received from the initiating
device, then an owner of s2 is present at it to enter
the secret (ownership assumptions).

(4b) If the secret was received from a source feature
module of s1, then sI must be owned by an owner of
s2 (ownership assumptions). O

Proof of Target Authenticity Theorem:

(1) The request chain contains a target feature
module of ¢2. This follows from:

(1a) There is a request in the chain with target equal
to t2 and final region equal to trgRegn.

(1b) The final status of this request is changed or
unchanged (definitions).

(1c) If changed, then the request is routed to a
target feature module of of ¢2 (definitions). If
unchanged, then the request was issued by a target
feature module of of ¢2 (definitions).

(2) Because the chain has been allowed to exist
after reaching the terminating device, that module
received from downstream the authentication secret
of t2 (behavior of authentication function).

(3) If there is a feature module downstream of the
target feature module of t2, it is a target feature
module of an address tI, where tI is more concrete
than t2 (Constraint 2t, Target Monotonicity Theo-
rem).

(4) The target feature module of ¢2 could only have
received the authentication secret from the termi-
nating device or from a feature module downstream,

which must be a target feature module of ¢1. This
results in the following two cases:

(4a) If the secret was received from the terminating
device, then an owner of t2 is present at it to enter
the secret (ownership assumptions).

(4b) If the secret was received from a target feature
module of ¢1, then ¢I must be owned by an owner of
t2 (ownership assumptions). O

The privacy of an address is protected by con-
cealing it with a more abstract address and its fea-
tures.

Source Privacy Theorem: If s1 fills a source field in
a request chain that satisfies Constraints 2s and 3s,
and if s has a source feature module that changes
the source address to s2in this chain, and if s2 has
a source feature module, then sf is not observable
as a source of this chain downstream of the source
feature module of s2.

Target Privacy Theorem: If t2 fills a target field in
a request chain that satisfies Constraints 2t and 3t,
and if ¢2 has a target feature module that changes
the target address to ¢1 in this chain, then #1 is not
observable as a target of this chain upstream of the
target feature module of ¢2.

It is very important to note that the proofs of these
theorems ignore the possibility that a source address
could appear in a chain for reasons unrelated to its
source region, and a target address could appear in a
chain for reasons unrelated to its target region. For
example, the Target Privacy Theorem would be vio-
lated (nominally) by a chain in which the caller dialed
t1, a source feature module changed ¢ to t2, and a
target feature module changed t2 to tI. The viola-
tion is only nominal because knowledge of ¢ was not
leaked from the target region into the source region.

The proofs examine and eliminate all the ways that
a private address could be leaked by the region that
is supposed to conceal it. This is the sense in which
the proofs “ignore” other possibilities.

The privacy theorems are proved as follows.
Proof of Source Privacy Theorem:

(1) All the source feature modules in the chain down-
stream of the source feature module of s2 have ad-
dresses more abstract than s2 (Constraint 2s, Source
Monotonicity Theorem).

(2) An address can only be observable as a source
of a request chain because it fills a source field of a
request, or because it appears in a signal as an alter-
native source of the chain (definitions). This leads to
the following two cases:

(2a) A request issued by the source feature module of
s2 or any source feature module downstream of it has
source more abstract than s2, which is more abstract

13

than s1, so it cannot be equal to sI (Constraint 2s).
(2b) s1 is not transmitted downstream as an alterna-
tive source of the chain by the source feature module
of s2 or by any source feature module that follows it
(Constraint 3s). O
Proof of Target Privacy Theorem:
(1) All the target feature modules in the chain up-
stream of the target feature module of ¢2 have ad-
dresses more abstract than ¢2 (Constraint 2t, Target
Monotonicity Theorem).
(2) An address can only be observable as a target
of a request chain because it fills a target field of a
request, or because it appears in a signal as an alter-
native target of the chain (definitions). This leads to
the following two cases:
(2a) t1 cannot fill a target field of a request in the
target region upstream of the target feature module
of t2, because if it did, some target feature module
changed a target address to a more abstract one, in
violation of Constraint 2t.
(2b) t1 is not transmitted upstream as an alternative
target of the chain by the target feature module of
t2 or by any target feature module that precedes it
(Constraint 3t). O

In addition to the direct proofs, some of the theo-
rems and proof steps above have been checked for
a large number of instantiations by Greg Dennis,
Daniel Jackson, and Rob Seater using the Alloy Con-
straint Analyzer [16, 17].

4.4 Example: The anonymous corre-
spondent

Figure 7 shows how anonymous electronic mail and
an autoresponse feature can interact well within
the framework of ideal address translation. The
anonymous address anon2@remailer is a role address,
used to conceal the more concrete personal address
user2@host?. In the top half of Figure 7, the target
feature module of anon2@remailer resolves the role
address to the personal address.

The target feature module of user2@host2 con-
tains the autoresponse feature, set to notify all cor-
respondents that the owner of this address is on
vacation. The autoresponse initiates a new chain,
which is first routed to the source feature module
of user2@host2. The source feature module con-
tains a list of correspondents in which user!@host!
is marked as a correspondent with whom anonymity
must be preserved. Because the target of the chain
is user1@host1, the source feature module performs
assumption, changing the source address of the chain
to anon2@remailer.’

5The correspondent list may seem to be an ad hoc mech-

SOURCE REGION TARGET REGION
I - - - - - ---~-~-~-~-=-~-° | /\—-- - - -"-"-"-"-"-"-"=-"=-"=-"-"=~"=-"-"="~=~"~="~"=~"~=”"~"=~"~" =~ - ~" -~ -~ -~ -~~~/ -~ “~- - =/~ |
| |
| mail I | mail mail :
host ® src = user] @hostl host src = user] @hostl host
userl . anon2 user2
_ = user? 2
@host] trg = anon2 @remailer @remailer trg = user2@host @host2
src = user2 @host
trg = userl @hostl
mail mail . mail
host src = anon2 @remailer host src = anon2 @remailer host
userl 2 user2
trg = userl @hostl anon trg = 1@hostl
! @hostl § | ! @remailer T8 = user os @host2 |
| |
e L I :
TARGET REGION SOURCE REGION
Figure 7: Anonymous electronic mail and autoresponse, in an ideal setting.
There can be a source feature module asso- |
iated with anon2@remailer, to authenticate its "8=8 group g =p bersona
Giate) B ’ ——— = features features —=
use, if desired. The owner of user2@host? and g [nearparty = g] »
anon2@remailer must encode his secret in the source
modules of both addresses, so that the source mod-
ule of user2@host2 can send it automatically, and the
source mﬁdule of anon2@remailer can validate it au- e = personal
tomatically. .) features —=
Because the Source Privacy Theorem applies, »
user2@host2 is not observable as a source of the au-
toresponse chain downstream of the source feature
module of anon2@remailer. This is what the owner
of user2@host2 cares about most.
Obviously an autoresponse feature relies com- _78=8 group frg =p personal
v y Or¢ 'p ————= features features —=
pletely on the reversibility of the source address it [favorite g [nearparty = g] P
receives. Because the Reversibility Theorem applies, =p]

autoresponse works.

4.5 Example:
tive

The sales representa-

Figure 8 shows three ways that the voice mail features
of a sales group and of the members of the sales group
can be coordinated successfully. Each snapshot is the
target region of a request chain.

In the top snapshot, the caller has called the group
address g. The feature module of g arbitrarily selects
the sales representative with personal address p, and
continues the request chain to that address. Both fea-
ture modules have voice mail as a failure treatment.

anism for solving this problem, but it is not. Some messages
from user2@host2 are anonymous, and some are not. Some
messages from user2@host2 are generated automatically, and
some are generated manually. A correspondent list is the only
mechanism for distinguishing anonymous messages that works
for both automatically and manually generated messages.

Figure 8: Three target regions containing the feature
module of a sales representative.

As explained in Section 3.6, group failure treat-
ments should have priority over personal failure treat-
ments, because this is really a call to the sales group.
The feature module of g seizes priority by sending
downstream a signal that nearparty = g. This sig-
nal indicates that g is an alternative target address
of the chain.® Note that this signal does not violate
Constraint 3t because the alternative target is being
sent downstream rather than upstream.

A nearparty signal has many uses, and should be

8The term nearparty is used to indicate an alternative ad-
dress from the same region, here the target region. This is in
contrast to an alternative farparty address, which in the target
region would be from the source region.

propagated downstream by any feature module that
receives it. In this example it is a request to any
target feature module to relinquish its voice mail fea-
ture. Another potential use is “callee identification.”
If the request eventually rings a shared home tele-
phone, and if the device displays the nearparty ad-
dress, it will help family members know who should
answer the call.

The middle snapshot of Figure 8 simply reminds
us that address p can be called directly, and that the
target features of p will be unconditionally invoked.

The bottom snapshot of Figure 8 provides more
complex behavior, combining the advantages of the
top two. The caller’s favorite sales representative is
p. He calls g, also sending a signal indicating a pref-
erence for p. The feature module of g selects p as the
sales representative; unlike the representation deci-
sion in the top snapshot, this decision is reproducible,
so it has the advantage of the middle snapshot. If p
is unavailable, however, p will relinquish treatment,
and the unavailability will be treated by the feature
module of g. Note that the signal favorite = p (which
comes from a module in the source region) does not
violate Constraint 3s because it provides an alterna-
tive target rather than an alternative source.

Figure 9 shows how the sales representative can
use his home telephone. The source feature module
of the device address h includes an assumption func-
tion, allowing the sales representative to assume his
personal identity p.

The source feature module of h also includes a
screening function, preventing certain kinds of out-
going calls. Screening applies to continuations of the
request chain in which the source is unchanged, and
not to continuations in which the source is changed.
Thus the sales representative can make unscreened
calls, while his children cannot.

The source feature module of p includes an authen-
tication function, which is important to prevent the
children’s misusing the telephone. It also has an af-
filiation function, so that the sales representative can
make a call with source address g.

The source feature module of g also has an au-
thentication function. After authenticating, it alters
the billing so that work-related calls are billed to the
company rather than the sales representative.

4.6 Modularity and extensibility

Ideal address translation is modular. A feature mod-
ule can always satisfy the constraints without cooper-
ating explicitly with other feature modules, and with-
out even knowing which other features are present.
This means that each feature module can be designed

15

independently of other feature modules.

Because there is no requirement that the abstrac-
tion order is total, new address categories can be
added to the domain without relating them to all
the old categories in the domain. This is important
because a real telecommunication system could have
a large number of categories. In practice, most ad-
dress translation works within totally ordered clus-
ters of associated address categories; across clusters,
these categories may be unordered. If so, request
chains can pass from cluster to cluster only where
they change from source to target region.

Ideal address translation is also extensible. Ad-
dress categories can be added (or deleted) as de-
scribed above. Adding (or deleting) compliant fea-
tures does not require changing the existing (or re-
maining) ones, because their coordination is not
based on explicit cooperation.

5 Reasoning about exceptions

Reasoning about exceptions is typically a kind of re-
finement of the general-purpose reasoning presented
as part of ideal address translation. We bring in more
information about the features and the context in
which they are being used. Based on stronger as-
sumptions, we prove weaker, more specialized results.

In the worst case, there is no additional reasoning,
but we know which constraints are violated. From
this information we can trace which desirable prop-
erties will not be preserved in the presence of the
exception, and thus contain its bad effects.

The remainder of the section presents examples of
common exceptions and how they can be dealt with.

5.1 Exception: Remote identification

Section 2.4 explained that, when using most real
telecommunication protocols, multiple source feature
modules are not available directly and must be sim-
ulated. Because the simulation might be used for
any source-translation function, including assump-
tion, positioning, or affiliation, it goes by the more
generic name of remote identification.
Unfortunately, remote identification violates Con-
straint 1. This section shows how remote identifica-
tion is used to implement the example of Section 4.4
on today’s electronic-mail protocols. Then it consid-
ers how to reason about it despite the exception.
Figure 10 shows how to approximate Figure 7 with
electronic mail as it is today. Figure 10 contains only
the autoresponse chain; everything leading up to the
initiation of this chain is the same as in Figure 7.

i screened alternative
device src=h .
featuresr - - ------------>
h .
. unscreened alternative
src=p
i personal sre=g group sre=g
assumption, features features
screenin; —
g p g trg=c
authentication,

affiliation

authentication, ‘ billing

Figure 9: The sales representative makes work-related calls from a shared household telephone.

src = user2@host
trg = userl @hostl

mail . mail

host src = anon2 @remailer mail src = user2 @host2 host

userl _ host _ ; user2

@host] trg = userl @hostl remailer trg = remailer @host?
[src = anon2 @remailer]
[trg = userl @hostl]
| I \ |
I I \ I
L e e e e e e e e e e e e e e = I C D e e e e - — |
TARGET REGION SOURCE REGION

Figure 10: Anonymous electronic mail, achieved with remote identification.

To “anonymize” the request, the address book fea-
ture sends the request to remailer, the address of a re-
mailing service. It also sends the truly-intended tar-
get user1@host1, in a signal, as an alternative target.
It may also send the intended source anon2@remailer
as an alternative source, although this may be unnec-
essary because user2@host2 has an account with the
remailing service. The remailer continues the chain
with the intended source and target addresses.

The remailer is a target feature module that
changes a source address, violating Constraint 1. Al-
though this compromises reversibility and source au-
thenticity in their most general forms, because the
general theorems assume Constraint 1, the general
theorems can be customized to fit the situation. In
the following theorems, let the remote-identification
prefix be the prefix of the chain up to and including
the remailer module.

e Remote-Identification Reversibility Theorem: In a
request chain with the remote-identification pre-
fix, such that its suffix satisfies Constraint 1,
anon2@remailer is the source address of the chain
throughout the suffix.

16

o Remote-Identification Source Authenticity Theo-
rem: In a request chain with the remote-
identification prefix and some continuation of
it, if the remailer module has unconditional
source authentication, then anon2@remailer and
user2@host2 have a common owner.

The proofs are straightforward. Note that even if
anon2@remailer had a source feature module it would
not be present in the request chain, because once that
address becomes the source of the chain, routing has
already progressed to the target region. Note also
that all the remailer’s customers must be owners of
it, in the sense of the simple ownership assumptions
used here. The awkwardness of this is another disad-
vantage of simulating multiple source feature mod-
ules, rather than providing for them in the service
protocol.

Another problem with remote identification is that
the Source Privacy Theorem does not apply, because
the module that conceals user2@host2 is not a source
feature module. It can be replaced by the following
specialized theorem.

e Remote-Identification Source Privacy Theorem: In

a request chain with the remote-identification pre-
fix, such that the remailer module does not trans-
mit wuser2@host? downstream as an alternative
source of the chain, user2@host2 is not observable
as a source of this chain downstream of the remailer
module.

This theorem is also easy to prove.

5.2 Exception: Noncompliant legacy

Section 4.5 discussed a shared household telephone.
A household may have been using a single device ad-
dress h for a long time. Then new technology comes
along, and everyone in the family acquires a personal
address and personal features. Yet the device address
h is still widely known and frequently called.

When a call to h fails, the target feature module of
h prompts the caller to identify the family member
he is calling. Then the module retargets the call to
the personal address p of that family member. This
violates Constraint 2t, as a personal address is more
abstract than a device address.

The target feature module of p might locate that
person elsewhere, or might record voice mail in a per-
sonal mailbox. Unfortunately, it will be common for
the target feature module of p to locate p at (retarget
to) h. In this situation it is quite difficult to avoid
unbounded looping and other problems.

The only solution is to program the target fea-
ture modules of h and p to make explicit exceptions
for each other. Each feature module should send a
nearparty signal downstream, to alert other feature
modules that it is present in the request chain. Then
the programs make the following exceptions:

o If the target feature module of p receives nearparty
= h, then it must not retarget to h.

e If the target feature module of h receives nearparty
= p, then it must propagate a failure upstream
rather than providing any failure treatment.

Taking these exceptions into account for the personal

addresses of all family members, it is possible to prove

by case analysis that no request chain has more than
one target feature module of h, and no request chain
has more than one personal target feature module of

a family member. Thus target boundedness is pre-

served, but target monotonicity is not.

In the ideal setting, callers would call personal ad-
dresses rather than h, and h would have no person-
or family-oriented features. As an addition or alter-
native, there could be a family address f with both
family features and a feature enabling the caller to
select a family member. The difference between f
and h is that f, being a group address, is more ab-
stract than personal addresses. Because h is a device

17

address, it cannot be more abstract than personal
addresses.

5.3 Exception: Delegation

Delegation is a feature function that translates a tar-
get address, such as a personal address, to another
address in the same category. Delegation can be per-
formed automatically, as a failure treatment. It can
also be performed at the command of the callee, ei-
ther while the call is ringing at the callee’s telephone
or after the callee has answered.

Delegation violates Constraint 2t, and is a very
common exception to ideal address translation. For
every instance of delegation, it is possible to concoct
a story in which there is a more abstract address
that the caller could have used to express his pur-
pose in calling, and in which the target feature mod-
ule of that address retargets to various personal ad-
dresses, so that Constraint 2t is satisfied. According
to this story, delegation occurred because the func-
tions that belong to this hypothetical target feature
module were performed by people instead.

Although such stories explain how and why dele-
gation is an exception to ideal address translation,
the exception will always remain. The purposes, cat-
egories, and rules involved are too dynamic and in-
formal to be automated on the time scale on which
addresses are published and features are subscribed.
People would much rather make their own decisions
on the time scale on which feature data is updated
and calls are handled.

So the important question is how to adapt the
reasoning behind the Target Boundedness Theorem,
Target Monotonicity Theorem, Target Authenticity
Theorem, and Target Privacy Theorem to this less
constrained situation. Specifically, instead of Con-
straint 2t, we have:

o Constraint 2t’: If a target feature module in a re-
quest chain translates the target address, the new
target address is more concrete than, or as concrete
as, the old one.

When Constraint 2t” holds but 2t does not, the Tar-

get Monotonicity Theorem must be weakened:

o Weak Target Monotonicity Theorem: In a request
chain that satisfies Constraint 2t’, if m2 and m1 are
feature modules in its target region, and m2 pre-
cedes m1, then the address of m2 is more abstract
than, or as abstract as, the address of m1.

The Target Authenticity Theorem is easy to adapt.
If we change the phrase “tI is more concrete than ¢2”
to “tl is more concrete than, or as concrete as, t2’
then the theorem can be proved with Constraint 2t’
and weak target monotonicity.

The Target Privacy Theorem is also easily adapted.
We must add to the theorem the additional assump-
tion that ¢2 is more abstract than ¢, which should
certainly be true if ¢2 is being used to hide ¢1. (Re-
quiring the particular address ¢2 to be more abstract
than the particular address tI is different from re-
quiring strong monotonicity along the whole target
region.) In Step (1) of the proof, the target feature
modules preceding that of t2 may have addresses as
abstract as, or more abstract than, ¢t2. Either way,
the rest of the proof still holds.

The implicit assumption behind the explanation of
feature coordination in Section 3.6 is that a region
contains at most one feature module at each level of
abstraction, so that each module is its level’s unique
representative. With only weak monotonicity we can-
not make this assumption. Feature coordination be-
comes harder, which usually means that it requires
more assumptions about feature behavior.

Consider, for example, delegation among personal
addresses, each of which offers personal voice mail
in its target feature module. How can we guarantee
that each request chain stimulates at most one offer
to record voice mail? One way is to stipulate that
a personal target feature module in a request chain
can delegate or offer voice mail, but not both. Then
even if the request chain contains several personal
target feature modules, only the last one can offer
voice mail. All of the other personal target feature
modules have delegated control of the call to another
module, and control includes the right to offer voice
mail.

By far the hardest problem caused by delegation is
the loss of the Target Boundedness Theorem, which
cannot be patched or weakened. Without Constraint
2t, boundedness proofs are difficult. The proofs must
present an order on addresses that plays the same role
as the abstraction order, while being more dynamic
and ad hoc.

6 Validity and limitations

Ideal address translation is yet another illustration
of the well-known saying, “There is no problem in
computer science that cannot be solved with another
level of indirection.” When features are not interact-
ing properly, the problem can usually be solved by
introducing another layer of addressing.

The value of ideal address translation has been
proven in practice. For one example, Hall’s study
of 10 common electronic-mail features [14] revealed
26 undesirable feature interactions. Of these 26, 12
have nothing to do with address translation (they

18

concern encryption and crude filtering based on do-
main names). All the remaining 14 are predicted by
the principles presented here, and would be elimi-
nated by adherence to ideal address translation.

For another example, at AT&T we recently devel-
oped a set of features for personal mobility, multi-
party control, and device augmentation [33]. De-
pending on personal preferences, device characteris-
tics, and network capabilities, these features can be
composed in many different ways—so many that we
have used only a small fraction of the possible config-
urations. Yet the address categories are ordered by
abstraction, and the features satisfy the constraints
of ideal address translation, so we can be sure that
many potential problems do not arise in any config-
uration.

The formal model has four important limitations
which need to be removed by further work. First, the
assumptions about ownership are simplistic. Second,
the model represents a closed network, even though
almost all real telecommunication networks are open,
interoperating with other networks that may have
different address spaces and different policies. The
model also has a flat address space, even though
many networks are hierarchical.

The third limitation is particularly interesting.
This paper concerns only request chains in which all
the requests are going in the same direction, from the
initiating user or his proxy to the terminating user or
his proxy. In practice, it is common for a connec-
tion path between two endpoints to consist of a con-
catenation of segments, where the segments are little
request chains initiated in alternating directions.

To understand why, imagine a long-standing con-
nection path from one endpoint device into the net-
work, routed through several interesting feature mod-
ules. During the life of the path, due to the actions
of the features, segments of the path might be re-
placed by segments connecting to different places, or
destroyed and later restored. The initiation of such
an action is not the same as the initiation of the orig-
inal request chain, so it need not come from the same
end of the path.

The routing algorithm of Distributed Feature Com-
position (DFC) [18, 19] has been augmented to ac-
commodate such paths in an orderly way. Despite
their complexity, there has been some initial success
at extending the organization and results of ideal ad-
dress translation to them [32].

The fourth limitation concerns addresses in sig-
nals. They must be constrained for privacy properties
to hold, but it is difficult to state constraints pre-
cisely. Many signals have address fields. Addresses
are transmitted for many purposes, including billing,

data update, security, and correct feature interaction.
Most protocols allow ad hoc signals containing ad-
dresses.

As a result, Constraints 3s and 3t are somewhat
vague. It will not be possible to state them more
precisely until we know more about the purposes for
signaling among telecommunication features. These
purposes may lead to a rigorous classification of sig-
nals, upon which a better statement of Constraints
3s and 3t can be based. It is likely that there will be
an enforced distinction between addresses revealed
to the infrastructure and addresses revealed to user-
oriented features.

Even when these limitations are removed, there
will always be exceptions to ideal address translation.
Given that fact, what is its justification? First and
foremost, it is useful as a design guideline. It provides
a global coordinating convention that makes feature
interactions easy to manage, and guarantees certain
kinds of extensibility.

It also leads to better features. For example, ideal
address translation makes it impossible to have a tar-
get feature that blocks all calls from payphones; if
some source feature changes the payphone address
to a more abstract address, the payphone address is
concealed from all target features.

If one were planning to implement such a block-
ing feature, one might be tempted to ignore the con-
straints of ideal address translation. But it would be
better to consider them first. Ideal address transla-
tion does allow a target feature that blocks all pay-
phone calls not identified as having an abstract source
address. The latter feature is an improvement over
the former, as it is not desirable to block calls from
close friends just because they are calling from pay-
phones.

Even when an exception is necessary, ideal address
translation is useful as a reasoning guideline. Reason-
ing about exceptions is usually a matter of specializ-
ing the more general reasoning in Section 4.3. The
principles of Section 3, which tell us something about
what to prove, are in themselves new and valuable.

7 Relation to other research

7.1 On requirements engineering

True requirements are derived from user goals [22].
They concern only the environment of a proposed sys-
tem, describing how the environment should behave
when the system is deployed and interacting with it
[34]. Asnoted in Section 1, agreed-upon requirements
for telecommunication systems are badly needed.

19

The principles in Section 3 are not true require-
ments because they are vague and informal. The
properties in Section 4.3 are precise and formal reflec-
tions of the principles, but they are not true require-
ments because they are all stated in terms of request
chains. Request chains are internal artifacts of sys-
tem architecture, and are not observable in the sys-
tem’s environment. Thus a telecommunication net-
work without internal request chains could not satisfy
the properties, regardless of its external behavior.

Undoubtedly, it is possible to find the true require-
ments that lie between the principles and properties
provided in this paper. To do so, it will be necessary
to identify the phenomena in the environment that
determine the internal structure of request chains,
and to formalize the principles in terms of those phe-
nomena instead of in terms of request chains.

7.2 On feature interaction in telecom-
munication systems

Early research on feature interaction, as character-
ized by Velthuijsen [30], focused on detection of
bad feature interactions. Formal methods for do-
ing this use formal descriptions of base systems B,
formal descriptions of features F; and F5, a feature-
composition operator), and correctness assertions
¢1 and ¢o. The features are correct individually if
B@F = ¢ and B F> |= ¢2. There is an un-
desirable interaction if (B F1) @ F» £ ¢1 A ¢2 or
(B F)P Fi = ¢1 A ¢po. Numerous formal lan-
guages have been used to describe the systems and/or
properties, and numerous tools have been used to per-
form the analysis.

The approach to feature interaction in this paper
is different in important ways:
e It recognizes the existence of good feature inter-
actions, such as the interaction between the au-
toresponse feature in the target feature module
of user2@host2 and the correspondent-list feature
in the source feature module of user2@host2 (Fig-
ure 7).
The “detection” of feature interactions is per-
formed by applying experience rather than formal
methods. The application of formal methods has
proven difficult and not very productive for this
purpose [30]. When experience is available, it is a
far superior route to understanding what interac-
tions might occur. Experience can be generalized
to cover all features in a large class, including fea-
tures that have not been specified or implemented
yet.
This work goes beyond diagnosis to cure and pre-
vention.

More recent research on feature interaction is much
more like the work here in focusing on architectures
and policies for managing interactions. However,
most architectures do not single out the issues raised
by address translation. For example, one agent archi-
tecture [35] is based on the following separations of
concerns: separating users from terminals, calls from
connections, user sessions from services, and services
from resource management. The “roles” in this archi-
tecture include owner, subscriber, payer, caller, and
callee. The roles of owner and subscriber overlap with
the concepts of address translation, but all the other
concepts of this architecture are orthogonal to the
concepts of address translation.

A Mitel architecture incorporates some of the con-
cepts of address translation, but they are still in flux.
In one version [1], the roles a person can play are
simply the motivations for various rules in the per-
son’s agent. In another version [2], there are separate
agents for devices, persons, and roles, and an address
can identify a role as well as a person. The relation-
ships among these addresses have not been described,
however.

A BNR architecture [8] incorporates a limited form
of ideal address translation. There are roles that
correspond to the group addresses, mobile addresses,
and role addresses of Section 3.2. These roles resolve
to sub-roles. Although a sub-role may have some fea-
ture functions associated with it, it is also associated
with a device address. Thus the BNR architecture
satisfies Constraints 2s and 2t, and enjoys (as the
authors note) boundedness. The limitation is that
addressing has exactly two levels. It is not composi-
tional (as the authors also note) because, for instance,
a sub-role of a group address must be a device address
and cannot be a mobile address.

Like ideal address translation, the Negotiating
Agents approach to feature interaction [12] is mo-
tivated by the ambiguity of telecommunication fea-
tures, which often makes it impossible to tell why a
function is being performed, and on behalf of whom
(Section 1.1). In one example motivating Negotiating
Agents, a person wishes to place a call, revealing her
name but not her telephone number to the callee. In
another example motivating this approach, a security
feature can be associated with a device or a person.
If it is associated with a person, then only calls to
that person invoke security, regardless of which de-
vice they are routed to. If it is associated with a
device, then only calls to that device invoke security,
regardless of which person they are for.

It should be clear that these examples are directly
concerned with address translation. Ideal address
translation achieves their desired behavior with the

20

correct organization of addresses and the correct as-
sociation of features with addresses.

The Negotiating Agents approach is more com-
plex. It includes agents, negotiators, arbitrators, pol-
icy specifications, proposals, counter-proposals, and a
hierarchy of goals. It requires a platform that imple-
ments a negotiation process based on these concepts.

7.3 On component architectures

The formal model of Section 2 is a component archi-
tecture. It has modularity in the style of a pipes-and-
filters architecture [28]: a filter (feature module) in-
teracts with others only through pipes (requests and
the signaling channels they set up); a filter does not
know what is at the other end of its pipes; each fil-
ter is optional and context-independent. This shows
that the pipes-and-filters concept applies to interac-
tive systems, although it was not originally thought
to do so [28].

There is currently a great deal of interest in mobile
agent systems for electronic commerce and other dis-
tributed applications. Griss defines a [mobile] agent
system as a component system with some of the char-
acteristics of adaptability, autonomy, collaboration,
knowledgeability, mobility, and persistence [13].

Mobile agents systems have rich behavior, but
there is no reason why the formal model of Section 2
could not serve as one aspect of their architectures.
Griss describes [mobile] agent systems as employ-
ing varying levels of “choreography” among agents.
Sometimes agent communication is semantically rich
and loosely constrained, while at other times or be-
tween other agents it is semantically rigid and tightly
constrained—as telecommunication protocols are.

“Active networks” are another area of research
at the intersection of software architecture and dis-
tributed applications [29, 31]. The goal of this re-
search is to introduce application-specific processing
at the network level, for example at the level of IP.
So far this work has concentrated on mechanisms for
extending network routers and on issues such as per-
formance and infrastructure security. It has not yet
reached the service-level issues of interest here.

7.4 On the Session Initiation Protocol

The Session Initiation Protocol (SIP) is an IETF pro-
tocol for creating, modifying, and terminating mul-
timedia sessions [25]. It has emerged as the leading
protocol for voice-over-IP services.

SIP has now become large and complex—the new
standard has 269 pages, and there are so many ex-
tensions being proposed that the primary creators of

SIP have written a set of guidelines for extending it
[24]. Many equipment manufacturers are using SIP
as the basis of their products.

With this explosion of activity, it is difficult to pin
down what SIP is and is not. There are many special-
interest groups using SIP in a particular way and
deprecating how it is used by others. SIP is certainly
rich enough to do anything anyone wants it to do.
So the only thing that can be said with confidence
about SIP and ideal address translation is that some
of the uses that have been recommended for SIP in
the literature violate the principles of ideal address
translation.

For one example, SIP is designed so that servers
can be stateless with respect to individual sessions
[24, 26]. SIP requests carry an address stack so that
SIP application servers (feature modules) along a re-
quest chain can implement an end-to-end signaling
path without maintaining any state concerning it.
Whenever a request is continued by a feature mod-
ule (server), the module adds its own address to the
stack. The reply stimulated by the request chain is
routed to the originator of the chain, along the same
path, by successively peeling addresses off the stack.

One problem with the address stack is that it vio-
lates Constraint 3s. The address stack can be en-
crypted so that the routing infrastructure sees it
while user services do not, but encryption was depre-
cated in the original SIP standard [15], and it is not
required now.

For another example, most SIP scenarios [10, 26]
show SIP being used to inform two interface modules
of each other’s addresses so that they can communi-
cate directly, without any intervening servers.

This has two major disadvantages. First, it has
the same effect as violating Constraints 3s and 3t, so
that all address privacy is undermined. Second, it
makes mid-call features impossible, simply because
there is no feature module in the mid-call signaling
path to implement them. This is particularly serious
because features active during calls are common and
important. They include switching features such as
Call Waiting, conferencing features such as Three-
Way Calling, transfer features, special billing fea-
tures, features with interactive voice-response menus,
and many others.”

Various protocols for mobile IP also have the same
characteristic [23]. The protocols enable an initiat-
ing host to contact a mobile host through its home

"The original SIP philosophy was to put all mid-call fea-
tures in the endpoints. This is unrealistic for many reasons,
including the need for persistent, shared data, the need for spe-
cialized resources, and the problems of software maintenance.
Now most SIP-based feature development is for application
servers.

21

agent, after which the home agent drops out and the
initiating and mobile hosts communicate directly.

Needless to say, these protocols bypass the initial
request chains for good reasons. In particular, this is
what their designers felt was necessary for efficiency,
scalability, and reliability [27]. However, there is an
inherent conflict between this approach to efficiency
and the requirements for telecommunication services,
which include requirements for privacy and mid-call
features in the network.

At AT&T we have been experimenting with a dif-
ferent approach to efficiency, one that does not un-
dermine telecommunication requirements. For many
years, the protocols of the PSTN have achieved net-
work efficiency by separating signaling from media
transmission. We are adapting this approach to the
IP context, so that all signals follow request chains,
but the high-bandwidth media transmission can take
a shorter path [4].

7.5 On address spaces

The design of network address spaces is a complex
engineering task, with ramifications at many levels
of abstraction [23]. Ideal address translation makes
it more complex, by introducing yet another set of
goals.

The requirements of ideal address translation, par-
ticularly a globally unique set of addresses, and reli-
able global knowledge of address categories, are diffi-
cult to satisfy in a network as open as the Internet. In
the near future, they will be much easier to guarantee
in a protected subnetwork.

At the same time, there is definite research inter-
est in how such assumptions might be imposed on
the Internet [23]. Certainly the problems caused by
network address translators (NATS) in the Internet
are a motivating force. Ultimately, the design of a
single address space for a network may be recognized
as an over-constrained problem, one that can only be
solved by separation of concerns and a layered design.

8 A final
methods

note on research

This work was initiated to solve a domain-specific
problem. Although there was no other goal, the re-
sults have significance for requirements engineering,
extensibility, and component coordination in a much
wider range of applications than the original problem
domain. This is evidence of the richness and poten-
tial of domain-specific research.

The original problem was festooned with legacy
constraints. I did not make any real progress on solv-
ing it until I allowed myself some freedom from that
burden. This is evidence of the value of seeking the
ideal in the real, provided that one is working with a
large set of practical examples. A large set of exam-
ples keeps one grounded in reality, even without the
weight of legacy constraints.

Acknowledgments

This work has benefited greatly from the contribu-
tions of my colleagues Greg Bond, Eric Cheung, Bob
Hall, Michael Jackson, Hal Purdy, Chris Ramming,
and Jennifer Rexford.

My special thanks to Greg Dennis, Daniel Jackson,
and Rob Seater for checking the proofs. The sugges-
tions of the reviewers improved the paper in many
ways.

References

[1] Magdi Amer, Ahmed Karmouch, Tom Gray, and
Serge Mankovskii. Feature-interaction resolution us-
ing fuzzy policies. In [6], pages 94-112.

D. Amyot, L. Charfi, N. Gorse, T. Gray, L. Logrippo,
J. Sincennes, B. Stepien, and T. Ware. Feature de-
scription and feature interaction analysis with Use
Case Maps and LOTOS. In [6], pages 274-289.

Russell Bennett and Jonathan Rosenberg. Inte-
grating presence with multi-media communications.
White paper, http://www.dynamicsoft.com.

Gregory W. Bond, Eric Cheung, K. Hal Purdy, J.
Christopher Ramming, and Pamela Zave An open
architecture for next-generation telecommunication
service. ACM Transactions on Internet Technology,
to appear, 2004.

2]

L. G. Bouma and H. Velthuijsen, editors. Feature
Interactions in Telecommunications Systems. 10S
Press, Amsterdam, 1994.

M. Calder and E. Magill, editors, Feature Interac-
tions in Telecommunications and Software Systems
VI. 10S Press, Amsterdam, 2000.

E. Jane Cameron, Nancy D. Griffeth, Yow-Jian Lin,
Margaret E. Nilson, William K. Schnure, and Hugo
Velthuijsen. A feature-interaction benchmark for IN
and beyond. IEEE Communications XXXI(3):64-69,
March 1993.

D. Cattrall, G. Howard, D. Jordan, and S. Buj.
An interaction-avoiding call processing model. In [9],
pages 85-96.

K. E. Cheng and T. Ohta, editors, Feature Inter-
actions in Telecommunications Systems III., 10S
Press, Amsterdam, 1995.

22

[10] C. Cunningham and S. Donovan. Session Initia-
tion Protocol service examples. Internet Engineering
Task Force work in progress, November 2002.

[11] P. Dini, R. Boutaba, and L. Logrippo, editors.
Feature Interactions in Telecommunication Networks

IV. 10S Press, Amsterdam, 1997.

Nancy D. Griffeth and Hugo Velthuijsen. The Nego-
tiating Agents approach to runtime feature interac-
tion resolution. In [5], pages 217-235.

[12]

[13] Martin L. Griss. Software agents as next generation
software components. In G. T. Heineman and W.
T. Councill, Component-Based Software Engineer-

ing, pages 641-657. Addison-Wesley, 2001.

[14] Robert J. Hall. Feature interactions in electronic

mail. In [6], pages 67-82.

M. Handley, H. Schulzrinne, E. Schooler, and J.
Rosenberg. SIP: Session Initiation Protocol. IETF
Network Working Group, Request for Comments
2543, 1999.

[15]

[16] Daniel Jackson. Automating first-order relational
logic. In Proceedings of the Eighth ACM SIGSOFT
International Symposium on the Foundations of

Software Engineering, pages 130-139. ACM, 2000.

Daniel Jackson, Ilya Shlyakhter, and Manu Sridha-
ran. A micromodularity mechanism. In Proceedings
of the Ninth ACM SIGSOFT International Sympo-
stum on the Foundations of Software Engineering
and the Eighth European Software Engineering Con-
ference, pages 62-73. ACM, 2001.

Michael Jackson and Pamela Zave. Distributed fea-
ture composition: A virtual architecture for telecom-
munications services. IEEE Transactions on Soft-
ware Engineering XXIV(10):831-847, October 1998.

Michael Jackson and Pamela Zave. The DFC Man-
ual. http://www.research.att.com/projects/dfc,
updated as needed.

K. Kimbler and L. G. Bouma, editors. Feature In-
teractions in Telecommunications and Software Sys-
tems V. I0S Press, Amsterdam, 1998.

[19]

[20]

[21] J. Klensin, editor. Simple mail transfer protocol.

IETF Request for Comments 2821, 2001.

[22] Axel van Lamsweerde. Goal-oriented requirements
engineering: A guided tour. In Proceedings of the
Fifth IEEE International Symposium on Require-
ments Engineering, pages 249-261. IEEE Computer

Society, 2001.

E. Lear and R. Droms. What’s in a name: Thoughts
from the NSRG. IRTF Name Space Research Group,
work in progress, 2003.

[23]

[24] J. Rosenberg and H. Schulzrinne. Guidelines for au-
thors of extensions to the Session Initiation Proto-
col (SIP). Internet Engineering Task Force work in

progress, November 2002.

25]

[26]

[27]

28]

29]

[30]

31]

32]

[33]

[34]

[35]

J. Rosenberg, H. Schulzrinne, G. Camarillo, A. John-
ston, J. Peterson, R. Sparks, M. Handley, and E.
Schooler. SIP: Session Initiation Protocol. IETF Net-
work Working Group, Request for Comments 3261,
2002.

Jonathan D. Rosenberg and Richard Shockey. The
Session Initiation Protocol (SIP): A key compo-
nent for Internet telephony. Computer Telephony
VIII(6):124-139, June 2000.

J. Saltzer, D. Reed, and D. D. Clark. End-to-end
arguments in system design. ACM Transactions on
Computer Systems 11(4):277-288, November 1984.

Mary Shaw and David Garlan. Software Architec-
ture. Prentice-Hall, 1996.

David L. Tennenhouse, Jonathan M. Smith, W.
David Sincoskie, David J. Wetherall, and Gary J.
Minden. A survey of active network research. IEEE
Communications XXV (1):80-86, January 1997.

Hugo Velthuijsen. Issues of non-momnotonicity in
feature-interaction detection. In [9], pages 31-42.

David Wetherall, Ulana Legedza, and John Guttag.
Introducing new Internet services: Why and how.
IEEE Network Magazine, July 1998.

Pamela Zave. Ideal connection paths in DFC. AT&T
Research Technical Report, November 2003.

Pamela Zave, Healfdene H. Goguen, and Thomas
M. Smith. Component coordination: A telecommu-
nication case study. Computer Networks, to appear,
2004.

Pamela Zave and Michael Jackson. Four dark corners
of requirements engineering. ACM Transaction on
Software Engineering XXI11(7):508-528, July 1996.
Israel Zibman, Carl Woolf, Peter O‘Reilly, Larry
Strickland, David Willis, and John Visser. Minimiz-
ing feature interactions: An architecture and pro-
cessing model approach. In [9], pages 65-83.

23

