
AT&T Laboratories

Bedminster, New Jersey

HOW TO MAKE CHORD CORRECT

(WITH A SURPRISING INVARIANT)

Pamela Zave

Princeton University

Princeton, New Jersey

1

8

14

21

32

42

51

THE PROTOCOL IS
INTERESTING

no central
administration
(almost)

communication
in the network
is fast

protocol
operations are
simple and fast:

no timing
constraints
(almost)

no multi-node
atomic
operations

m = 6

THE CHORD PROTOCOL MAINTAINS A PEER-TO-PEER
 NETWORK
identifier of a node (assumed
unique) is an m-bit hash
of its IP address

nodes are arranged in
a ring, each node
having a successor
pointer to the next
node (in integer order
with wraparound at 0)

the protocol preserves
the ring structure as
nodes join, leave silently,
or fail

redundant pointers
support fault-tolerance
(extra successors,
predecessors)

successor

successor2

predecessor

WHY IS CHORD IMPORTANT?

the 2001 SIGCOMM paper introducing Chord
is one of the most-referenced

papers in computer science, . . .

. . . and won SIGCOMM’s 2011 Test of Time Award

APPLICATIONS

“Three features that distinguish Chord
from many other peer-to-peer lookup
protocols are . . .

. . . its simplicity,

. . . provable correctness,

. . . and provable performance.”

RESEARCH ON PROPERTIES AND
EXTENSIONS

allows millions of ad hoc peers to
cooperate

often used to build distributed
key-value stores (where the key
space is the same as the Chord
identifier space)

the best-known application is
BitTorrent

protection against malicious peers

key consistency (all nodes agree
on which node owns which key),
replicated data consistency

used as a building block in fault-
tolerant applications

OPERATIONS OF THE PROTOCOL

7
10

16

10
JOINS

10
STABILIZES

7
10

16

16
RECTIFIES

10
RECTIFIES

7

10

16

7
10

16

7
STABILIZES

7

10

16

an operation changes
the state of one member

Join and Stabilize are scheduled autonomously,
Rectify is caused by another member’s Stabilize

in addition, a member
can Fail (or leave) silently

there is perfect failure
detection

Stabilizing member
detects a dead successor
and promotes its next
successor

THE CLAIMS

THE REALITY

even with simple bugs fixed and
optimistic assumptions about
atomicity, the original protocol is
not correct

of the seven properties claimed
invariant of the original version, not
one is actually an invariant

Correctness Property:

In any execution state, IF there are
no subsequent Join or Fail events, . . .

. . . THEN eventually . . .

. . . all pointers in the network will be
globally correct, and remain so.

not surprisingly, due to sloppy
informal specification and proof

I found these problems by
analyzing a small Alloy model

Chris Newcombe and others at
AWS credit this work with
overcoming their bias against
formal methods, which they now
use to find bugs.

[CACM, April 2015]

16

3 has no successor2
yet (it is not required
to have all successors
filled in)

16

16

A TYPICAL BUG IN ORIGINAL CHORD

16
FAILS

3
STABILIZES

3

20 3

20

3

20

3 has replaced a pointer
to a live node with a
pointer to a dead one

now 3 is disconnected
from the ring, and the
ring may be broken

BASIC CORRECTNESS STRATEGY 1

7

19

16

13

263

29

29

55

55

41

41

6

appendages

best successor
(first live

successor)

ring

dead

29 2932

extended successor list (ESL)
of 29 (with L = 2):

member
itself

Definition of FullSuccessorLists:
The extended successor list of each member
has L+1 distinct entries.

New operating assumption:

If a Chord network has the property
FullSuccessorLists, then no failure leaves
a member without a live successor.

Original operating assumption:

No failure leaves a member
without a live successor.

But if an ESL with L = 2 is . . .

. . . then 32 cannot fail! if not satisfied for failure rate, increase rate of
stabilization or increase redundancy

BASIC CORRECTNESS STRATEGY 2

7

19

16

13

263

29

55

41

6

appendages

ring

TO MAKE ORIGINAL CHORD CORRECT:

alter the initialization to satisfy FullSuccessorLists
with all members live

alter the operations to populate successor lists more
eagerly, so that they always have L entries

now it is
roughly correct
(in hindsight)

but how do we
prove it

without an
invariant?

requires L+1 members

w

x

y

u

z

ring
x

fails

w

y

u

z

ring

WHY IS FINDING AN INVARIANT SO DIFFICULT?

there is a ring of best successors

there is no more than one ring

on the unique ring, the members
are in identifier order

from each appendage member, the
ring is reachable through best
successors

THE KNOWN, NECESSARY PROPERTIES ARE STATED IN TERMS OF THE RING . . .

about the ring of
best successors

about the appendages

. . . BUT “RING VERSUS APPENDAGE” IS CONTEXT-DEPENDENT AND FLUID:

AN INTERMEDIATE RESULT

THE INDUCTIVE INVARIANT:

OneOrderedRing

ConnectedAppendages

BaseNotSkipped

and

and

ANOTHER OPERATING ASSUMPTION:

A chord network has a stable base
of L+1 nodes that are always
members.

no successor list skips over
a member of the stable base

THE PROOF OF CORRECTNESS:

by exhaustive enumeration, in Alloy,
for all model instances up to N = 9, L = 3

expensive to implement these
high-availability nodes!

a stable base would have 3-6
members, while a Chord network
can have millions of members—
what is the base doing?

I believe it is just preventing
anomalies in small networks,

but how can we know for sure?

THE FINAL RESULT

THE INDUCTIVE INVARIANT:

 OneLiveSuccessor

and SufficientPrincipals

ANOTHER OPERATING ASSUMPTION:

THE PROOF OF CORRECTNESS:

None

 informal and intuitive, but

. . . a real proof (no size limits)

. . . backed up by an Alloy model checked up to N = 9, L = 3
 (as a protection against human error)

 . . .

this is just a formalization
of the original operating
assumption

Definition of a principal member:
A member that is not skipped by any
member’s successor list.

Definition of SufficientPrincipals:
There are at least L+1 principal nodes.

the “stable base” has become
something we can prove, rather than
an assumption!

identifier
space

hypothesize a
disordered extended

successor list
[. . . x, . . . y, . . . z, . . .]

[x, . . . y, . . . z] must
include L + 1 principal
nodes

Proof of OrderedSuccessorLists

CONTRADICTION!

but the length of an
ESL is always L + 1

picture,
principal

nodes not
skipped,

Sufficient Principals

x is either not a
principal node,
or is duplicated in
[y, . . . z]

between [y, x, z]
in identifier

space

same reasoning
for z

so the length of
[x, . . . y, . . . z] is at
least L + 3

(L + 1)
plus one x
and one z

ORDERED SUCCESSOR LISTS . . .
. . . ARE IMPLIED BY THE INVARIANT

x

y z

Definition of OrderedSuccessorLists:
For all distinct identifiers x, y, z,
and sublists [x, y, z] of an ESL
(whether the sublist is contiguous
or not) . . .
 between [x, y, z].

every member has a best
successor (first live successor)

there are sufficient
principal nodes

here is a graph of best
successors:

7

7

7

23

23

23

46

46

460

0

0

15

15

9

9

12

12

37

37

24

24

35

35

33

33

51

51

ssss

s

d d d d

these paths . . .

. . . do not skip
principal nodes

. . . are acyclic

. . . are ordered
by identifiers

each tree has
exactly one p , which
is unique to it

so the re-
arranged
graph must
look like
this

automatically
satisfying
OneOrderedRing
and
Connected-
Appendages

THE PRINCIPAL NODES MAKE THE SHAPE OF THE RING

CONCURRENCY AND COMMUNICATION

node X node Y

atomic step at X

X changes state

step can be
assumed to occur

at this instant

AN OPERATION IS A SEQUENCE OF
ATOMIC STEPS

EACH ATOMIC STEP IS AN INTERNAL
STATE CHANGE OR THIS:

query
message

reply
message

formal model has a
shared-state
abstraction

while waiting for a reply (or timeout),
X cannot answer queries about its
state

because of the structure of operations,
queries cannot form circular waits

extended successor list of
stabilizing node, before Stabilize

extended successor list
of its new successor

some Chord operations
need multiple atomic steps

in the new, provably correct, specification,
every intermediate operation state is also
constructed in this safe way

N N N NS S SS

S

0

0 0

00

01

1

12 23 3

N N N0 0 1 2

because invariant holds, no
current principal nodes are skipped
here or here

precondition guarantees
that between [S , N , S],
so no current principal
nodes are skipped from
S to N

therefore, no former principal
nodes are skipped by this new
successor list, and the number
of principal nodes has not
decreased

HOW STABILIZE PRESERVES THE INVARIANT JOIN AND
RECTIFY

ARE SIMILAR

HOW FAIL PRESERVES THE INVARIANT

PRESERVATION OF
OneLiveSuccessor

PRESERVATION OF
SufficientPrincipals

The operating
assumption is that
no failure leaves a
member with no live
successor, . . .

. . . so the invariant
is assumed to be
preserved.

Why can’t failure of a principal node leave the network
with fewer than L+1 principals?

Lemma: The only operation that can cause a node to
change from principal to non-principal is its own failure.

The life history of a long-lived member:

Join
become principal because all neighbors know you
enjoy life as a principal node
Fail

1
2
3
4

Therefore the number of principal nodes is
proportional to the number of nodes.

Once the network has grown (especially to millions of
members!) it is overwhelmingly improbable that it will
have fewer than 3-6 principal nodes.

PROVING PROGRESS

IF THERE ARE NO MORE
JOIN OR FAIL EVENTS . . .

dead successors are
removed, so that every
member’s first
successor is live

. . . WHILE MEMBERS
CONTINUE TO STABILIZE . . .

every member’s first
successor and
predecessor become
globally correct

tails of all successor
lists become correct

1

2

3

as with construction of intermediate
successor lists, operations must be
specified precisely to ensure
correctness

here preconditions must ensure
that no operation reverses the
progress of a past or current phase

CONCLUSIONS

THE PRODUCT THE PROCESS

initialization is more difficult than
original Chord, but a simple
protocol will get networks off to
a safe start

otherwise correct Chord is just
as efficient as original Chord

these peer-to-peer protocols
have a (justified) reputation for
unreliability

it is an impressive
pattern for fault-tolerance

a correct specification could
pave the way for a new
generation of reliable, more
useful implementations

it also provides a firm
foundation for work on
better failure detection

and security

Chord is a very interesting
protocol—note that the invariant
looks nothing like the properties
we care about!

results would have been impossible
to find without model-checking to
explore bizarre cases and get ideas
from them

the best result was impossible to
find without the insights that came
from the proof process

that is where the idea of a
stable base came from

www.research.att.com/~pamela
> How to Make Chord Correct

