
Theories of Everything

Pamela Zave
AT&T Labs—Research

Bedminster, New Jersey, USA
pamela@research.att.com

ABSTRACT
In 2025 semantic tools for software engineering will be ma-
ture, and their frequency of use in software development
will still be disappointing. This proposal explains how re-
search directed at building theories of everything (or, at
least, important software domains) can consolidate progress
and bring semantic tools into the mainstream of software
practice.

1. INTRODUCTION
It is now 2025. In the last ten years the explosive improve-

ment in “semantic” tools for software engineering, which was
well underway in 2015, has continued. In addition to pro-
gramming tools and environments, tools for analysis, veri-
fication, constraint satisfaction, optimization, and machine
learning have all matured. These tools are powerful and easy
to use. They solve problems that were infeasible in 2015.

At the same time, industry’s heart has been won by Dev-
Ops, the successor to agile methods. In the DevOps frame-
work, agile principles are extended to operations; devel-
opment and operations engineers collaborate to create a
smoothly running cycle of software change, deployment, vir-
tualization, monitoring, performance tuning, and problem
diagnosis. The prominent tools, used by developers and op-
erations staff alike, do code configuration control, provision-
ing, load testing, measurement, and data visualization.

The divergence between these two worthwhile trends has
become a major disappointment. The mathematical tools
that reveal and optimize the semantic core of a software
system are under-utilized in practice, despite the decades of
research on which they are built, and the dramatic improve-
ments in their quality. The engineering tools that work for
all software systems, regardless of their purposes—on their
code configuration, deployment, and resource usage—still
bear almost all of the weight.

Our perspective on this situation is that the semantic tools
are much easier to use than they were in 2015, but they are
still difficult to use in the most important ways. Three points

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSE ’16 Companion, May 14 - 22, 2016, Austin, TX, USA
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4205-6/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2889160.2889213

in particular highlight the situation:
Formal modeling: To use these tools on a software devel-

opment problem, it is necessary to have a comprehensible,
abstract formal model of important aspects of the problem.
Producing good models has always been arduous and chal-
lenging, and that has not changed.

Tool knowledge: It may not be difficult to get a verifier or
optimizer to run, but choosing the inputs properly and in-
terpreting the outputs correctly is a subtle matter that often
requires deep understanding of the underlying mathematics.
Ideally all software engineers would have this understand-
ing, but most of them do not. Although the sophistication
of tools has grown tremendously, the time available to train
software engineers has not grown at all, and this is a funda-
mental limitation.

Computational complexity: Although the sizes of problems
that tools can handle are greatly increased, so are the sizes
of problems to be solved. As in 2015, it is still not feasible
to get good results from tools used in naive ways.

It should be clear why the research between 2015 and 2025
did not solve these problems. As in 2015, most papers on se-
mantic tools were illustrated with simplistic examples show-
ing little interest in real software domains. Yet the problems
above are problems of applying semantic tools to particular
software domains. As they require insight, relative judg-
ments, and compromises, they cannot have one-size-fits-all
solutions.

In this paper we argue that the only research that will
solve these problems is research dedicated to understanding
important software domains, to exploiting that understand-
ing, and to packaging the results in re-usable ways. This is
not a new idea, and unfortunately has proven insufficiently
convincing in the past.

The new emphasis here is that the concept of a mathe-
matical theory strengthens the old arguments in many ways.
It shows that formal modeling of a domain is not an empty
exercise, because there are strong relationships such as proof
obligations among different artifacts (Section 2). These for-
mal relationships in a domain theory reveal new opportu-
nities for semantic tools to contribute directly to produc-
ing software (Section 3). The benefits of a domain theory
are multiplied by generalization to families of domains (Sec-
tion 4), and by theorems that reflect increasingly deep do-
main understanding (Section 5). The benefits can be multi-
plied further by composition of domain theories (Section 6).

In short, future research should be aimed at producing
theories of everything (or at least important software do-
mains). The work will be intellectually rigorous, and will

demand the contributions of all available research methods.
Most importantly, it will consolidate and amplify the impact
of past research on semantic tools, as it eases their way into
the mainstream of software development.1

2. SOFTWARE DEVELOPMENT AS
THEORY-BUILDING

A mathematical theory has well-known parts, namely dec-
larations, definitions, axioms, theorems, and proof obliga-
tions. This section explains how these parts relate to soft-
ware system development and the use of semantic tools.

The example theory in this section supports development
of a controller for a very specific simple network. The con-
cept of a centralized network controller is a key part of to-
day’s major trend toward Software-Defined Networks (SDN).
Our development problem is deliberately narrow and well-
defined. In Section 4 we will discuss some ways in which
such a theory can be generalized.

Domain knowledge: A mathematical theory is a theory of
something, in this case a particular packet-switched network.
Our purpose in building the theory is to produce software to
control the network. Note that the network and the software
controller are two different things; in common terminology,
the network is the domain and the controller is the system
that will control it. The theory is a theory of the domain.

The theory must have a formal representation of the static
parts of the network, which are its nodes (networked ma-
chines) and links (one-way communication links between
pairs of nodes). Nodes can be endpoints (sources and des-
tinations of packets) or routers. Links have attributes such
as length and bandwidth. Some of this information can be
declared; where the expressive power of the formal declara-
tion language fails, the remainder of the information must
be expressed in a more powerful language as axioms.

The theory must also have a formal representation of the
dynamic behaviors of the network. Because the set of pos-
sible behaviors is infinite and the actual behaviors are not
known in advance, this representation can only constrain the
possibilities.

A particular behavior of the network could be represented
or modeled using three components: (1) for each endpoint,
a timestamped stream of packets of which this node is the
source, (2) for each endpoint, a timestamped stream of pack-
ets for which this node is the destination, and (3) for each
router, a sequence of forwarding tables with timestamps in-
dicating when each table is installed in the router. A for-
warding table instructs a router what to do when it receives
a packet. The entries of a forwarding table map packet head-
ers onto actions such as “drop this packet” and “forward on
outgoing link k.”

In the theory, some axioms model operating assumptions
about the network, such as the maximum rates at which end-
points can generate new packets. In the theory, other axioms
model how all the network components behave to produce
a particular behavior. When a node sends a packet on a
link, the link delivers the packet at some later time to the
node at its receiving end. When a router receives a packet,
it looks up the header in the router’s forwarding table, and
performs the action mandated by the table. Although the

1In this brief presentation, references are omitted. There
is an expanded version with references at http://www2.
research.att.com/˜pamela/ToE.pdf.

axioms may be nondeterministic with respect to timing, for
a given behavior of source streams (1) and forwarding ta-
bles (3), only some behaviors of destination streams (2) are
possible.

Together all these declarations and axioms constitute a
formal representation or model of domain knowledge. They
record what we need to know about how the domain works.

Specification: The controller to be developed will provide
and maintain the forwarding tables for the routers. So there
must be an interface between the controller (system) and the
network (domain) through which the controller can update
the forwarding tables. This interface is a special part of the
domain that is shared with the system. As with other parts
of the domain, it is modeled formally with declarations and
axioms.

The controller must have input as well as output. To
give it the input it needs, the domain and interface must be
augmented with various sensors such as packet logs and per-
formance measurements. If a router receives a packet whose
header has no match in its forwarding table, the router can
ask the controller for a new table entry. Domain axioms re-
late network behavior to the controller inputs provided by
these sensors.

The specification is a set of axioms, separate from domain
knowledge, that prescribes how the controller should behave.
More specifically, it prescribes how the controller inputs in
the interface should relate to the controller outputs in the
interface. The controller must be implemented to satisfy
this specification.

Requirements: Network requirements come from its cus-
tomers. Customers might wish certain destinations to be
reachable from certain sources, and certain destinations to
be unreachable from certain sources. They might give band-
width and latency requirements for some traffic or all traffic.

All parts of the theory—including domain knowledge, spec-
ification, and requirements—can benefit from formal defini-
tions that extend the vocabulary of the formal modeling.
For example, we might define a path as a chain of links and
routers that is traversed by packets with a particular header,
from a source endpoint to a destination endpoint or router
where they are dropped. Requirements might stipulate that
paths have no loops. They might demand that two paths
must be isolated, in the sense that they share no links or
routers.

Requirements are conjectures that should be proved as
theorems from the domain knowledge and specification. This
is a crucial proof obligation of a software theory.

Use cases: Because the axioms of a theory usually take the
form of constraints on the declared objects, there is a proof
obligation to show that an instance of the theory exists, i.e.,
that the constraints can be satisfied by something.

Software theories are complex, and this proof obligation
must be taken very seriously. There should be a set of
use cases or test cases, including both static structure and
dynamic behavior, that illustrate how the domain is sup-
posed to work when the specification is implemented and
connected to the domain through the interface. Formally
speaking, all the use cases should be instances of the theory.

Traditional software development: Domain knowledge, re-
quirements, and specifications in a theory are all mathemati-
cal expressions. They can describe behavior, but they cannot
behave.

In traditional software development, domain knowledge is
unique among these three because it describes a real do-
main that does behave. The purpose of implementing the
specification is to make a real thing that behaves as de-
scribed by the specification. The basic way to do this is to
create a program (another mathematical expression) in the
instruction set of a computer, and install it on the computer,
thus creating a real machine that behaves according to the
program/specification. The final step of development is to
connect the machine to the domain through the interface.

If the theory’s proof obligations have been met, the result
will be a domain that behaves according to the requirements
and use cases.

3. EXPLOITING SEMANTIC TOOLS
If software development is approached as theory-building,

then the formal artifacts provide many opportunities to use
semantic tools. Most fundamentally, static analysis can help
make these artifacts syntactically consistent and complete.
Verification can be used to satisfy the proof obligations of
the theory and to prove that the implementation (described
formally as a program) satisfies the specification. If the the-
ory contains quantitative properties and the tool technology
can handle them, it may be possible to verify timing and
reliability properties as well as logical ones.

In some cases it may be possible to apply semantic tools in
even more powerful ways. Consider a moment in the life of
our network, when the controller’s internal state (obtained
from domain knowledge, dynamic sensor data, and its own
history) shows a particular profile of incoming traffic. The
controller’s job is to ensure that the next state of all the
forwarding tables in the network is such that the traffic will
be handled by the network in compliance with the require-
ments. With the help of all the information in the domain
model, this is a constraint-satisfaction problem. If we had
a sufficiently capable constraint solver, the constraints from
domain knowledge and requirements could be the specifi-
cation and the solver could be the implementation. This
skips two development steps: deriving a specification from
domain knowledge and requirements, and implementing the
specification. The idea of constraint-solver-as-controller is
adaptable to a wide range of real-time process-control and
Internet of Things applications, at least in principle.

Alternatively, engineers could define a cost function on
the links and routers of the network, and there could be a
requirement to handle the traffic at the lowest cost. This
would change the problem from constraint satisfaction to
optimization, so that an optimizer would be the appropriate
implementation tool.

In cases where computing a satisfactory or optimal state is
not so straightforward or feasible, machine learning may be
applicable. Reinforcement learning could help a controller
keep link utilizations lower during peak periods, thus sub-
stituting for a predetermined specification and implemen-
tation. Even unsupervised learning could allow the con-
troller to detect traffic anomalies that might indicate denial-
of-service attacks in the making, in effect simplifying specifi-
cation and implementation by simulating a highly-desirable
sensor that does not exist.

These development shortcuts are not possible without for-
malization of domain knowledge and requirements. When
these shortcuts become available, the benefits of formaliza-
tion will be far greater than they were in 2015.

4. THEORY GENERALIZATION
It is unlikely that anyone would build a theory as elabo-

rate as the example in Section 2 to describe a single network
(domain). A better theory would describe a family of simi-
lar networks (domains), so that it could be used to develop
controllers for all of them. Just as applying semantic tools
increases the benefits of formalization, generalization dra-
matically decreases the marginal costs of formalization.

For the remainder of the paper, unless specifically noted,
“domain”will be used collectively, referring to a family rather
than an individual.

Whenever there is a generalized domain theory, there is
a need to describe particular information about individual
domains. This is built into the theory with domain-specific
languages, which can substitute for any of the parts of a
software theory. In the network example, a domain-specific
configuration language can allow engineers to describe the
nodes and links of a particular network. A domain-specific
requirements language can allow customers to express their
desired traffic policies. A domain-specific test language can
allow customers and engineers to express use cases.

All of these languages need tool support, if only to trans-
late them to general-purpose languages as inputs to other
tools. A test language might be supported by a combina-
tion of drivers, simulators, and real domain components to
see how a specification or implementation works.

The most powerful domain-specific languages so far ex-
press specifications. They are powerful because they can
eliminate the implementation step of software development.
Some domain-specific specification languages are executable,
which means that there exists a machine that executes them
directly, just as an ordinary computer executes its general-
purpose instruction set. Another variation is to define a
domain-specific specification language from which distinct
implementations of distinct specifications can be generated
automatically. For example, Verilog and VHDL are speci-
fication languages from which semiconductor chips can be
fabricated.

5. THEOREMS
Section 3 offered an enticing prospect: constraint solvers

serve as all-purpose software systems! Realistically, how-
ever, general-purpose constraint solvers will never be pow-
erful enough to replace all domain-specific software.

A better prospect is that domain theories will encourage
the discovery of domain theorems—significant results that
facilitate all aspects of software development for the domain.
The best-understood aspect of networks is routing, and there
are many theorems grounded in algebra, graph theory, and
control theory that are exploited for network routing. These
theorems relate routing algorithms (specifications) to net-
work properties (requirements) such as latency, bandwidth,
resource utilization, and fault-tolerance.

More recently, there has been exploration of the layered
nature of networks, because many virtual networks are in
fact built on top of physical networks. There is ongoing
work toward theorems that relate mechanisms in networks
and compositions of networks (specifications) to functional
requirements for mobility and security.

To give a better-known example, in the domain of dis-
tributed databases, there are well-known trade-offs among
consistency, availability, partition-tolerance, and latency. In

router endpointendpoint controller

client server data
storephysical

link

physical
link

physical
link

Distributed Database Domain

Network Domain

user interface of network domain
satisfies requirements on latency, reliability

struggling to understand these trade-offs better, researchers
are working toward a comprehensive theory of this impor-
tant domain. The Holy Grail of distributed databases would
be a theorem that tells us which points in the trade-off space
are feasible. The theorem could lead to a tool that, for each
feasible point, generates a distributed database system per-
forming at the feasible point.

6. COMPOSITION OF DOMAIN THEORIES
Just as it is artificial to build a theory for an individual

domain rather than a family of domains, it is also artificial
to think of domains in isolation.

In software engineering, many domains of interest are com-
putational domains, which means that they are made up
of computational resources rather than “real-world” objects
such as people, robots, institutions, documents, and farms.
For our purposes, the main difference between computa-
tional and real-world domains is that computational do-
mains always have interfaces through which they can be
used by other domains. There is much to learn about how
computational domains relate to each other. As an exam-
ple, consider how a distributed database as mentioned in
Section 5 is composed with a network (see figure).

In both domains, the objects of the domain are shown in
black. Database clients and network endpoints both consist
of software running as modules, threads, processes, or vir-
tual machines on the shared resources of a computer. Note
that when objects are aligned vertically, it means that they
are running on the same computer.

In both domains, the software system to be developed and
attached to the domain is shown in blue. Note that the do-
main/system boundary is simply defined by the boundaries
of a particular software-development project. Once the soft-
ware system is finished and deployed, it can be viewed as
part of the computational domain.

The user interface of the network domain (in red, omitting
dynamic policy changes) is the capability of the endpoints
to accept messages from users in other domains, transmit
them, receive them, and deliver them to users in the do-
main of origin. The user interface of a particular endpoint
is available only to other domain objects on the same com-
puter.2 Some of the requirements on the network domain
govern behavior at the user interface, including latency and
reliability properties.

The distributed database domain without the system to
be developed consists only of distributed clients and persis-

2The interface is implemented by the operating system of
the computer, which is another computational domain!

tent data stores. Its requirements include the ability of the
clients to access stored data with specific properties of con-
sistency, availability, and latency. The requirements will be
met by a distributed database system consisting of a collec-
tion of cooperating servers.

Domain knowledge in the database domain includes prop-
erties of the network imported from its user interface and re-
quirements. The database domain uses the network domain
for communication among its clients and servers. (Each data
store has a local server, and communicates with it on a sepa-
rate local link.) The ability of the servers to meet domain re-
quirements on consistency, availability, and latency depends
on the reliability and latency of the network service.

Doubtless there are many other relationships between soft-
ware domains. If the relationships are sufficiently clear,
software-development steps for them can be done in any or-
der. The purpose of understanding domain relationships
is to exploit these relationships in building and composing
their theories.

Research questions concerning composition of domains over-
lap with many questions of software architecture that have
been addressed in the past. The new slant is that each do-
main theory should be substantial in its own right, and tasks
within each theory should be supported by effective seman-
tic tools. This constrains the answers to questions in a con-
structive way, because the value provided by the tools must
not be lost or undermined by architectural composition.

7. CONCLUSION
It should be obvious that building worthwhile theories for

important domains (if not “everything,” as in the title) in-
volves solving hard research problems and embodying those
solutions in an integrated, re-usable way. In doing so, it ad-
dresses the obstacles to tool use listed in the introduction.

Formal modeling: The formal model is supplied by the re-
searchers who have created the generalized theory. Domain-
specific languages make it easy for practitioners to customize
the theory with specific details. Researchers have solved
the problem of finding the important aspects of the do-
main and the right abstractions of them. Choices among
general-purpose formal languages are not arbitrary because
the chosen language must be able to express the necessary
properties and serve as input to the semantic tools.

Tool knowledge: In choosing semantic tools for the theory,
and defining the parts of the model that are their inputs and
outputs, researchers must ensure that the interpretation of
tools outputs is mathematically valid. Equally important,
they must ensure that all the relevant operating assumptions
are recorded in the domain model and marked for empirical
validation by practitioners.

Computational complexity: Researchers must ensure that
tools are capable of the jobs they are expected to do, at
the scale of the real domain. This problem may be solved
by incremental improvements in several areas. There might
be empirical comparisons between competing tools. There
might be carefully crafted limitations on the automated parts
of the theory. And there might be domain-specific optimiza-
tions of general-purpose tools.

Of course, many such activities are going on in 2015, and
may be well advanced by 2025. The more clearly researchers
see their individual projects as unified by the goals of theory
building, the more likely they are to make contributions that
amplify the contributions of others.

